Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(3): e2220532121, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38207077

ABSTRACT

MicroRNAs (miRNAs) are key post-transcriptional regulators of gene expression that have been implicated in a plethora of neuronal processes. Nevertheless, their role in regulating brain activity in the context of sleep has so far received little attention. To test their involvement, we deleted mature miRNAs in post-mitotic neurons at two developmental ages, i.e., in early adulthood using conditional Dicer knockout (cKO) mice and in adult mice using an inducible conditional Dicer cKO (icKO) line. In both models, electroencephalographic (EEG) activity was affected and the response to sleep deprivation (SD) altered; while the rapid-eye-movement sleep (REMS) rebound was compromised in both, the increase in EEG delta (1 to 4 Hz) power during non-REMS (NREMS) was smaller in cKO mice and larger in icKO mice compared to controls. We subsequently investigated the effects of SD on the forebrain miRNA transcriptome and found that the expression of 48 miRNAs was affected, and in particular that of the activity-dependent miR-709. In vivo inhibition of miR-709 in the brain increased EEG power during NREMS in the slow-delta (0.75 to 1.75 Hz) range, particularly after periods of prolonged wakefulness. Transcriptome analysis of primary cortical neurons in vitro revealed that miR-709 regulates genes involved in glutamatergic neurotransmission. A subset of these genes was also affected in the cortices of sleep-deprived, miR-709-inhibited mice. Our data implicate miRNAs in the regulation of EEG activity and indicate that miR-709 links neuronal activity during wakefulness to brain synchrony during sleep through the regulation of glutamatergic signaling.


Subject(s)
MicroRNAs , Sleep , Mice , Animals , Sleep/physiology , Sleep Deprivation/genetics , Electroencephalography , Wakefulness/physiology , Prosencephalon , MicroRNAs/genetics , MicroRNAs/pharmacology
2.
Neurobiol Dis ; 198: 106526, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38734152

ABSTRACT

Alzheimer's disease (AD) is a multifactorial neurodegenerative disease with a complex origin, thought to involve a combination of genetic, biological and environmental factors. Insulin dysfunction has emerged as a potential factor contributing to AD pathogenesis, particularly in individuals with diabetes, and among those with insulin deficiency or undergoing insulin therapy. The intraperitoneal administration of streptozotocin (STZ) is widely used in rodent models to explore the impact of insulin deficiency on AD pathology, although prior research predominantly focused on young animals, with no comparative analysis across different age groups. Our study aimed to fill this gap by analyzing the impact of insulin dysfunction in 7 and 23 months 3xTg-AD mice, that exhibit both amyloid and tau pathologies. Our objective was to elucidate the age-specific consequences of insulin deficiency on AD pathology. STZ administration led to insulin deficiency in the younger mice, resulting in an increase in cortical amyloid-ß (Aß) and tau aggregation, while tau phosphorylation was not significantly affected. Conversely, older mice displayed an unexpected resilience to the peripheral metabolic impact of STZ, while exhibiting an increase in both tau phosphorylation and aggregation without significantly affecting amyloid pathology. These changes were paralleled with alterations in signaling pathways involving tau kinases and phosphatases. Several markers of blood-brain barrier (BBB) integrity declined with age in 3xTg-AD mice, which might have facilitated a direct neurotoxic effect of STZ in older mice. Overall, our research confirms the influence of insulin signaling dysfunction on AD pathology, but also advises careful interpretation of data related to STZ-induced effects in older animals.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Mice, Transgenic , Streptozocin , tau Proteins , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , tau Proteins/metabolism , Mice , Amyloid beta-Peptides/metabolism , Disease Models, Animal , Insulin/metabolism , Aging/metabolism , Male , Age Factors , Phosphorylation , Brain/metabolism , Brain/pathology
3.
Brain ; 145(9): 3035-3057, 2022 09 14.
Article in English | MEDLINE | ID: mdl-34936701

ABSTRACT

Huntington's disease is a neurodegenerative disorder caused by CAG expansions in the huntingtin (HTT) gene. Modelling Huntington's disease is challenging, as rodent and cellular models poorly recapitulate the disease as seen in ageing humans. To address this, we generated induced neurons through direct reprogramming of human skin fibroblasts, which retain age-dependent epigenetic characteristics. Huntington's disease induced neurons (HD-iNs) displayed profound deficits in autophagy, characterized by reduced transport of late autophagic structures from the neurites to the soma. These neurite-specific alterations in autophagy resulted in shorter, thinner and fewer neurites specifically in HD-iNs. CRISPRi-mediated silencing of HTT did not rescue this phenotype but rather resulted in additional autophagy alterations in control induced neurons, highlighting the importance of wild-type HTT in normal neuronal autophagy. In summary, our work identifies a distinct subcellular autophagy impairment in adult patient derived Huntington's disease neurons and provides a new rationale for future development of autophagy activation therapies.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Adult , Autophagy/physiology , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Neurons
4.
Wilderness Environ Med ; 34(4): 427-434, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37479605

ABSTRACT

INTRODUCTION: The Canadian Frostbite Collaborative project is exploring frostbite patient care needs and current practices in Canada to inform the development of a Canadian frostbite care network (CFCN) as a national quality improvement initiative. METHODS: Using a quantitative and qualitative approach, this study aimed to define the landscape of current frostbite practices, challenges, and interest in future work. RESULTS: Current frostbite care practices were initially assessed through semistructured phone interviews of Canadian healthcare providers. Canadian healthcare providers managing frostbite in a range of health disciplines and contexts then participated in focus group sessions discussing the potential roles and opportunities as well as potential challenges in developing a CFCN. Roles and opportunities for a network in advancing frostbite care included facilitating research, educating stakeholders, facilitating collaboration, standardizing care, and advocating for frostbite care. Challenges identified in frostbite care and network development included managing resources, navigating the Canadian healthcare system, overcoming low numbers, and communicating with policymakers and frontline providers. CONCLUSIONS: Formalizing a CFCN may provide important opportunities and support in overcoming critical barriers to providing high-quality frostbite care across Canada.


Subject(s)
Quality of Health Care , Humans , Canada
5.
Mol Psychiatry ; 26(10): 5592-5607, 2021 10.
Article in English | MEDLINE | ID: mdl-33144711

ABSTRACT

Although APP metabolism is being intensively investigated, a large fraction of its modulators is yet to be characterized. In this context, we combined two genome-wide high-content screenings to assess the functional impact of miRNAs and genes on APP metabolism and the signaling pathways involved. This approach highlighted the involvement of FERMT2 (or Kindlin-2), a genetic risk factor of Alzheimer's disease (AD), as a potential key modulator of axon guidance, a neuronal process that depends on the regulation of APP metabolism. We found that FERMT2 directly interacts with APP to modulate its metabolism, and that FERMT2 underexpression impacts axonal growth, synaptic connectivity, and long-term potentiation in an APP-dependent manner. Last, the rs7143400-T allele, which is associated with an increased AD risk and localized within the 3'UTR of FERMT2, induced a downregulation of FERMT2 expression through binding of miR-4504 among others. This miRNA is mainly expressed in neurons and significantly overexpressed in AD brains compared to controls. Altogether, our data provide strong evidence for a detrimental effect of FERMT2 underexpression in neurons and insight into how this may influence AD pathogenesis.


Subject(s)
Alzheimer Disease , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Humans , Membrane Proteins , Neoplasm Proteins , Neuronal Plasticity/genetics , Neurons , Risk Factors
6.
J Phys Chem A ; 126(9): 1518-1529, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35201779

ABSTRACT

Modified nucleobases are found in functionally important regions of RNA and are often responsible for essential structural roles. Many of these nucleobase modifications are dynamically regulated in nature, with each modification having a different biological role in RNA. Despite the high abundance of modifications, many of their characteristics are still poorly understood. One important property of a nucleobase is its pKa value, which has been widely studied for unmodified nucleobases, but not for the modified versions. In this study, the pKa values of modified nucleobases were determined by performing ab initio quantum mechanical calculations using a B3LYP density functional with the 6-31+G(d,p) basis set and a combination of implicit-explicit solvation systems. This method, which was previously employed to determine the pKa values of unmodified nucleobases, is applicable to a variety of modified nucleobases. Comparisons of the pKa values of modified nucleobases give insight into their structural and energetic impacts within nucleic acids.


Subject(s)
Nucleic Acids , RNA , RNA/chemistry
7.
Chem Res Toxicol ; 33(4): 1010-1027, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32119534

ABSTRACT

Imidazolone (Iz) is one of the many products resulting from oxidative damage to DNA. Three pathways for the formation of Iz and related degradation products have been studied by density functional theory using the ωB97XD functional with the 6-31+G(d,p) basis set and SMD implicit water solvation plus a small number of explicit water molecules positioned to help stabilize charged species and facilitate reaction steps. The first pathway starts with guanine radical and the addition of superoxide at C5. Endoperoxide formation was calculated to have slightly lower barriers than diol formation. The next steps are pyrimidine ring opening and decarboxylation. Ring migration then proceeds via an acyclic intermediate rather than a bicyclic intermediate and is followed by formamide loss to yield Iz. The second pathway starts with 8oxoG and proceeds via C5 superoxide addition and diol formation to a relatively stable intermediate, oxidized guanidinohydantoin (Ghox). The barriers for hydroxide ion addition to Ghox are much lower than for water addition and should yield more Iz and parabanic acid at higher pH. The third pathway starts with 8-hydroxy guanine radical formed by hydroxyl radical addition to C8 of guanine or water addition to C8 of guanine radical. Superoxide addition at C5 is followed by diol formation, ring opening and decarboxylation similar to pathways 1 and 2, subsequently leading to Iz formation. The calculated pathways are in good agreement with experimental observations.


Subject(s)
Guanine/chemistry , Imidazoles/chemistry , Hydrogen-Ion Concentration , Molecular Structure , Oxidation-Reduction , Water/chemistry
8.
J Neuroinflammation ; 16(1): 3, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30611289

ABSTRACT

BACKGROUND: Immunologic abnormalities have been described in peripheral blood and central nervous system of patients suffering from Alzheimer's disease (AD), yet their role in the pathogenesis still remains poorly defined. AIM AND METHODS: We used the triple transgenic mouse model (3xTg-AD) to reproduce Aß (amyloid plaques) and tau (neurofibrillary tangles) neuropathologies. We analyzed important features of the adaptive immune system in serum, primary (bone marrow) as well as secondary (spleen) lymphoid organs of 12-month-old 3xTg-AD mice using flow cytometry and ELISPOT. We further investigated serum cytokines of 9- and 13-month-old 3xTg-AD mice using multiplex ELISA. Results were compared to age-matched non-transgenic controls (NTg). RESULTS: In the bone marrow of 12-month-old 3xTg-AD mice, we detected decreased proportions of short-term reconstituting hematopoietic stem cells (0.58-fold, P = 0.0116), while lymphocyte, granulocyte, and monocyte populations remained unchanged. Our results also point to increased activation of both B and T lymphocytes. Indeed, we report elevated levels of plasma cells in bone marrow (1.3-fold, P = 0.0405) along with a 5.4-fold rise in serum IgG concentration (P < 0.0001) in 3xTg-AD animals. Furthermore, higher levels of interleukin (IL)-2 were detected in serum of 9- and 13-month-old 3xTg-AD mice (P = 0.0018). Along with increased concentrations of IL-17 (P = 0.0115) and granulocyte-macrophage colony-stimulating factor (P = 0.0085), these data support helper T lymphocyte activation with Th17 polarization. CONCLUSION: Collectively, these results suggest that the 3xTg-AD model mimics modifications of the adaptive immunity changes previously observed in human AD patients and underscore the activation of both valuable and harmful pathways of immunity in AD.


Subject(s)
Adaptive Immunity/physiology , Alzheimer Disease/immunology , Alzheimer Disease/pathology , Cytokines/metabolism , Lymphocytes/pathology , Adaptive Immunity/genetics , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Bone Marrow/pathology , Cell Polarity/genetics , Granulocytes/pathology , Humans , Mice , Mice, Transgenic , Monocytes/pathology , Mutation/genetics , Neurofibrillary Tangles , Presenilin-1/genetics , Spleen/pathology , tau Proteins/genetics
9.
Chem Res Toxicol ; 32(11): 2295-2304, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31571479

ABSTRACT

Oxidative damage to DNA leads to a number of two-electron oxidation products of guanine such as 8-oxo-7,8-dihydroguanine (8oxoG). 5-Carboxyamido-5-formamido-2-iminohydantoin (2Ih) is another two-electron oxidation product that forms in competition with 8oxoG. The pathways for the formation of 2Ih have been studied by density functional theory using the ωB97XD functional with the 6-31+G(d,p) basis set and SMD implicit water solvation plus a small number of explicit water molecules positioned to help stabilize charged species and facilitate reaction steps. For oxidative conditions that produce hydroxyl radical, such as Fenton chemistry, hydroxy radical can add at C4, C5, or C8. Addition at C4 or C5 followed by loss of H2O produces guanine radical. Guanine radical can also be produced directly by oxidation of guanine by reactive oxygen species (ROS). A C5-OH intermediate can be formed by addition of superoxide to C5 of guanine radical followed by reduction. Alternatively, the C5-OH intermediate can be formed by hydroxy radical addition at C5 and oxidation by 3O2. The competition between oxidative and reductive pathways depends on the reaction conditions. Acyl migration of the C5-OH intermediate yields reduced spiroiminodihydantoin (Spred). Subsequent water addition at C8 of Spred and N7-C8 ring opening produces 2Ih. Hydroxy radical addition at C8 can lead to a number of products. Oxidation and tautomerization produces 8oxoG. Alternatively, addition of superoxide at C5 and reduction results in a C5, C8 dihydroxy intermediate. For this species, the low energy pathway to 2Ih is N7-C8 ring opening followed by acyl migration. Ring opening occurs more easily at C8-N9 but leads to a higher energy analogue of 2Ih. Thus, the dominant pathway for the production of 2Ih depends on the nature of the reactive oxygen species and on the presence or absence of reducing agents.


Subject(s)
Guanine/chemistry , Hydantoins/chemistry , Hydroxyl Radical/chemistry , Oxidation-Reduction
10.
Chem Res Toxicol ; 32(1): 195-210, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30592213

ABSTRACT

When oligonucleotides are oxidized by carbonate radical, thymine and carbonate can add to guanine radical, yielding either a guanine-thymine cross-link product (G∧T) or 8-oxo-7,8-dehydroguanine (8oxoG) and its further oxidation products such as spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh). The ratio of thymine addition to carbonate addition depends strongly on the pH. Details of the mechanism have been explored by density functional calculations using the ωB97XD/6-31+G(d,p) level of theory with the SMD implicit solvation method, augmented with a few explicit waters. Free energies of intermediates and transition states in aqueous solution have been calculated along the pathways for addition of thymine, CO32-/HCO3- and carbonate radical to guanine radical. The pH dependence was examined by using appropriate explicit proton donors/acceptors as computational models for buffers at pH 2.5, 7, and 10. Deprotonation of thymine is required for nucleophilic addition at C8 of guanine radical, and thus is favored at higher pH. The barrier for carbonate radical addition is lower than for bicarbonate or carbonate dianion addition; however, for low concentrations of carbonate radical, the reaction may proceed by addition of bicarbonate/carbonate dianion to guanine radical. Thymine and bicarbonate/carbonate dianion addition are followed by oxidation by O2, loss of a proton from C8 and decarboxylation of the carbonate adduct. At pH 2.5, guanine radical cation can be formed by oxidization with sulfate radical. Water addition to guanine radical cation is the preferred path for forming 8oxoG at pH 2.5.


Subject(s)
Carbonates/chemistry , Density Functional Theory , Guanine/chemistry , Thymine/chemistry , Free Radicals/chemistry , Hydrogen-Ion Concentration , Nucleic Acid Conformation
11.
J Phys Chem A ; 123(24): 5150-5163, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31140806

ABSTRACT

Oxidative damage to DNA can lead to DNA-protein cross-links which can interfere with DNA transcription, replication, and repair. In experimental studies modeling oxidative damage to DNA, oxidation of guanosine by sulfate radical anion in the presence of lysine produced a mixture of lysine (Lys)-substituted spiroiminodihydantoins (Sp): ∼65% 5-Lys-Sp, ∼30% 8-Lys-Sp, and ∼5% 5,8-diLys-Sp. Pathways for formation of the lysine adducts during the oxidation of guanine by sulfate radical anions have been mapped out using B3LYP density functional theory and the SMD solvation model. Methylamine was used as a model for lysine, and imidazole served as a proton acceptor. The lowest barrier for methylamine reaction with guanine radical is addition at C8, yielding mainly 8-NHR-Sp and some 5,8-diNR-Sp. This is in good agreement with the cross-link ratios for mild oxidations mediated by type I photosensitizers such as benzophenone, but this is not in agreement with the product ratios for strong oxidants such as sulfate radical anion. The calculations explored pathways for oxidation of guanine by sulfate radical anion that produced guanine radical and radical cation and doubly oxidized guanine (Gox) and its cation. Sulfate radical anion can also oxidize methylamine to produce neutral methylamine radical (CH3NH•) after deprotonation. The calculations qualitatively reproduced the observed product ratio at pH 7 via a pathway involving the barrierless addition of methylamine radical at C5 and C8 of guanine radical. After C5 addition of methylamine radical, the lowest barrier is for H2O addition at C8 leading exclusively to 5-NHR-Sp. After C8 addition of methylamine radical, H2O and methylamine addition to C5 lead to 8-NHR-Sp and some 5,8-diNR-Sp.

12.
Acta Neuropathol ; 135(2): 249-265, 2018 02.
Article in English | MEDLINE | ID: mdl-29134321

ABSTRACT

Accumulating evidence highlights the potential role of mixed proteinopathies (i.e., abnormal protein aggregation) in the development of clinical manifestations of neurodegenerative diseases (NDD). Huntington's disease (HD) is an inherited NDD caused by autosomal-dominant expanded CAG trinucleotide repeat mutation in the gene coding for Huntingtin (Htt). Previous studies have suggested the coexistence of phosphorylated-Tau, α-synuclein (α-Syn) and TAR DNA-binding protein 43 (TDP-43) inclusions in HD. However, definite evidence that HD pathology in humans can be accompanied by other proteinopathies is still lacking. Using human post-mortem putamen samples from 31 controls and 56 HD individuals, we performed biochemical analyses of the expression, oligomerization and aggregation of Tau, α-Syn, TDP-43, and Amyloid precursor protein (APP)/Aß. In HD brain, we observed reduced soluble protein (but not mRNA) levels of Htt, α-Syn, and Tau. Our results also support abnormal phosphorylation of Tau in more advanced stages of disease. Aberrant splicing of Tau exons 2, 3 (exclusion) and 10 (inclusion) was also detected in HD patients, leading to higher 0N4R and lower 1N3R isoforms. Finally, following formic acid extraction, we observed increased aggregation of TDP-43, α-Syn, and phosphorylated-Tau during HD progression. Notably, we observed that 88% of HD patients with Vonsattel grade 4 neuropathology displayed at least one non-Htt proteinopathy compared to 29% in controls. Interestingly, α-Syn aggregation correlated with Htt, TDP-43 and phosphorylated-Tau in HD but not in controls. The impact of this work is twofold: (1) it provides compelling evidences that Tau, α-Syn and TDP-43 proteinopathies are increased in HD, and (2) it suggests the involvement of common mechanisms leading to abnormal accumulation of aggregation-prone proteins in NDD. Further studies will be needed to decipher the impact of these proteinopathies on clinical manifestation of HD.


Subject(s)
Huntington Disease/complications , Huntington Disease/pathology , Proteostasis Deficiencies/complications , Proteostasis Deficiencies/pathology , Putamen/pathology , Adult , Aged , Aged, 80 and over , Amyloid beta-Protein Precursor/metabolism , Cohort Studies , DNA-Binding Proteins/metabolism , Female , Humans , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Male , Middle Aged , Phosphorylation , Proteostasis Deficiencies/metabolism , Putamen/metabolism , RNA Splicing , RNA, Messenger/metabolism , alpha-Synuclein/metabolism , tau Proteins/metabolism
13.
Mol Ther ; 25(3): 752-764, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28202389

ABSTRACT

Histone deacetylase 2 (HDAC2) plays a major role in the epigenetic regulation of gene expression. Previous studies have shown that HDAC2 expression is strongly increased in Alzheimer's disease (AD), a major neurodegenerative disorder and the most common form of dementia. Moreover, previous studies have linked HDAC2 to Aß overproduction in AD; however, its involvement in tau pathology and other memory-related functions remains unclear. Here, we show that increased HDAC2 levels strongly correlate with phosphorylated tau in a mouse model of AD. HDAC2 overexpression induced AD-like tau hyperphosphorylation and aggregation, which were accompanied by a loss of dendritic complexity and spine density. The ectopic expression of HDAC2 resulted in the deacetylation of the hepatocyte nuclear factor 4α (HNF-4A) transcription factor, which disrupted its binding to the miR-101b promoter. The suppression of miR-101b caused an upregulation of its target, AMP-activated protein kinase (AMPK). The introduction of miR-101b mimics or small interfering RNAs (siRNAs) against AMPK blocked HDAC2-induced tauopathy and dendritic impairments in vitro. Correspondingly, miR-101b mimics or AMPK siRNAs rescued tau pathology, dendritic abnormalities, and memory deficits in AD mice. Taken together, the current findings implicate the HDAC2/miR-101/AMPK pathway as a critical mediator of AD pathogenesis. These studies also highlight the importance of epigenetics in AD and provide novel therapeutic targets.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Hepatocyte Nuclear Factor 4/metabolism , Histone Deacetylase 2/metabolism , MicroRNAs/genetics , Tauopathies/genetics , Tauopathies/metabolism , Alzheimer Disease/pathology , Animals , Binding Sites , Consensus Sequence , Dendrites/metabolism , Dendrites/pathology , Disease Models, Animal , Gene Expression , Gene Expression Regulation , Gene Silencing , Hepatocyte Nuclear Factor 4/genetics , Histone Deacetylase 2/genetics , Memory Disorders/genetics , Mice , Phosphorylation , Promoter Regions, Genetic , Protein Binding , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Tauopathies/pathology , tau Proteins/metabolism
14.
Hum Mol Genet ; 24(23): 6721-35, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26362250

ABSTRACT

Alzheimer's disease (AD) and related tauopathies comprise a large group of neurodegenerative diseases associated with the pathological aggregation of tau protein. While much effort has focused on understanding the function of tau, little is known about the endogenous mechanisms regulating tau metabolism in vivo and how these contribute to disease. Previously, we have shown that the microRNA (miRNA) cluster miR-132/212 is downregulated in tauopathies such as AD. Here, we report that miR-132/212 deficiency in mice leads to increased tau expression, phosphorylation and aggregation. Using reporter assays and cell-based studies, we demonstrate that miR-132 directly targets tau mRNA to regulate its expression. We identified GSK-3ß and PP2B as effectors of abnormal tau phosphorylation in vivo. Deletion of miR-132/212 induced tau aggregation in mice expressing endogenous or human mutant tau, an effect associated with autophagy dysfunction. Conversely, treatment of AD mice with miR-132 mimics restored in part memory function and tau metabolism. Finally, miR-132 and miR-212 levels correlated with insoluble tau and cognitive impairment in humans. These findings support a role for miR-132/212 in the regulation of tau pathology in mice and humans and provide new alternatives for therapeutic development.


Subject(s)
MicroRNAs/genetics , Protein Aggregation, Pathological/genetics , Tauopathies/metabolism , tau Proteins/metabolism , Animals , Cognition Disorders/genetics , Cognition Disorders/metabolism , Cognition Disorders/physiopathology , Disease Models, Animal , Down-Regulation , Gene Expression Regulation , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Mice , Phosphorylation , Tauopathies/physiopathology , tau Proteins/genetics
15.
Hum Mol Genet ; 24(1): 86-99, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25205109

ABSTRACT

Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder caused by polyglutamine expansions in the amino-terminal region of the huntingtin (Htt) protein. At the cellular level, neuronal death is accompanied by the proteolytic cleavage, misfolding and aggregation of huntingtin. Abnormal hyperphosphorylation of tau protein is a characteristic feature of a class of neurodegenerative diseases called tauopathies. As a number of studies have reported tau pathology in HD patients, we investigated whether HD pathology may promote tau hyperphosphorylation and if so tackle some of its underlying mechanisms. For that purpose, we used the R6/2 mouse, a well-characterized model of HD, and analyzed tau phosphorylation before and after the onset of HD-like symptoms. We found a significant increase in tau hyperphosphorylation at the PHF-1 epitope in pre-symptomatic R6/2 mice, whereas symptomatic mice displayed tau hyperphosphorylation at multiple tau phosphoepitopes (AT8, CP13, PT205 and PHF-1). There was no activation of major tau kinases that could explain this observation. However, when we examined tau phosphatases, we found that calcineurin/PP2B was downregulated by 30% in pre-symptomatic and 50% in symptomatic R6/2 mice, respectively. We observed similar changes in tau phosphorylation and calcineurin expression in Q175 mice, another HD model. Calcineurin was also reduced in Q111 compared with Q7 cells. Finally, pharmacological or genetic inhibition of endogenous calcineurin was sufficient to promote tau hyperphosphorylation in neuronal cells. Taken together, our data suggest that mutant huntingtin can induce abnormal tau hyperphosphorylation in vivo, via the deregulation of calcineurin.


Subject(s)
Brain/cytology , Calcineurin/metabolism , Huntington Disease/metabolism , Neurons/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , tau Proteins/metabolism , Animals , Brain/metabolism , Cell Line , Disease Models, Animal , Gene Expression Regulation , Humans , Huntington Disease/genetics , Mice , Mice, Transgenic , Phosphorylation
17.
Mol Cell Proteomics ; 14(4): 1079-92, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25687571

ABSTRACT

Insulin is internalized with its cognate receptor into the endosomal apparatus rapidly after binding to hepatocytes. We performed a bioinformatic screen of Golgi/endosome hepatic protein fractions and found that ATIC, which is a rate-limiting enzyme in the de novo purine biosynthesis pathway, and PTPLAD1 are associated with insulin receptor (IR) internalization. The IR interactome (IRGEN) connects ATIC to AMPK within the Golgi/endosome protein network (GEN). Forty-five percent of the IR Golgi/endosome protein network have common heritable variants associated with type 2 diabetes, including ATIC and AMPK. We show that PTPLAD1 and AMPK are rapidly compartmentalized within the plasma membrane (PM) and Golgi/endosome fractions after insulin stimulation and that ATIC later accumulates in the Golgi/endosome fraction. Using an in vitro reconstitution system and siRNA-mediated partial knockdown of ATIC and PTPLAD1 in HEK293 cells, we show that both ATIC and PTPLAD1 affect IR tyrosine phosphorylation and endocytosis. We further show that insulin stimulation and ATIC knockdown readily increase the level of AMPK-Thr172 phosphorylation in IR complexes. We observed that IR internalization was markedly decreased after AMPKα2 knockdown, and treatment with the ATIC substrate AICAR, which is an allosteric activator of AMPK, increased IR endocytosis in cultured cells and in the liver. These results suggest the presence of a signaling mechanism that senses adenylate synthesis, ATP levels, and IR activation states and that acts in regulating IR autophosphorylation and endocytosis.


Subject(s)
Biosynthetic Pathways , Endosomes/metabolism , Golgi Apparatus/metabolism , Insulin/metabolism , Nucleotide Deaminases/metabolism , Purines/biosynthesis , Signal Transduction , Adenylate Kinase/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Animals , Biosynthetic Pathways/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Computational Biology , Endocytosis/drug effects , Endosomes/drug effects , Female , Gene Knockdown Techniques , Golgi Apparatus/drug effects , HEK293 Cells , Humans , Hydro-Lyases , Intracellular Signaling Peptides and Proteins/metabolism , Kinetics , Liver/drug effects , Liver/metabolism , Mass Spectrometry , Phosphorylation/drug effects , Proteomics , Rats, Sprague-Dawley , Receptor, Insulin/metabolism , Ribonucleotides/pharmacology , Signal Transduction/drug effects , Sus scrofa
18.
Neurobiol Dis ; 88: 55-65, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26777665

ABSTRACT

Accumulating evidence from epidemiological studies suggest that type 2 diabetes is linked to an increased risk of Alzheimer's disease (AD). However, the consequences of type 2 diabetes on AD pathologies, such as tau hyperphosphorylation, are not well understood. Here, we evaluated the impact of type 2 diabetes on tau phosphorylation in db/db diabetic mice aged 4 and 26weeks. We found increased tau phosphorylation at the CP13 epitope correlating with a deregulation of c-Jun. N-terminal kinase (JNK) and Protein Phosphatase 2A (PP2A) in 4-week-old db/db mice. 26-week-old db/db mice displayed tau hyperphosphorylation at multiple epitopes (CP13, AT8, PHF-1), but no obvious change in kinases or phosphatases, no cleavage of tau, and no deregulation of central insulin signaling pathways. In contrast to younger animals, 26-week-old db/db mice were hypothermic and restoration of normothermia rescued phosphorylation at most epitopes. Our results suggest that, at early stages of type 2 diabetes, changes in tau phosphorylation may be due to deregulation of JNK and PP2A, while at later stages hyperphosphorylation is mostly a consequence of hypothermia. These results provide a novel link between diabetes and tau pathology, and underlie the importance of recording body temperature to better understand the relationship between diabetes and AD.


Subject(s)
Aging/physiology , Diabetes Mellitus, Type 2/therapy , Hypothermia, Induced , tau Proteins/metabolism , Analysis of Variance , Animals , Blood Glucose , Body Weight/genetics , Body Weight/physiology , Brain/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Disease Models, Animal , Gene Expression Regulation/genetics , Glycemic Index , Insulin Resistance/genetics , Leptin/deficiency , Leptin/genetics , MAP Kinase Kinase 4/metabolism , Male , Mice , Mice, Mutant Strains , Phosphorylation/genetics , Signal Transduction/genetics
19.
Org Biomol Chem ; 14(14): 3544-57, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-26976802

ABSTRACT

The cyclopentane core is ubiquitous among a large number of biologically relevant natural products. Cyclopentenones have been shown to be versatile intermediates for the stereoselective preparation of highly substituted cyclopentane derivatives. Allene oxides are oxygenated fatty acids which are involved in the pathways of cyclopentenone biosynthesis in plants and marine invertebrates; however, their cyclization behavior is not well understood. Recent work by Brash and co-workers (J. Biol. Chem., 2013, 288, 20797) revealed an unusual cyclization property of the 9(S)-HPODE-derived allene oxides: the previously unreported 10Z-isomer cyclizes to a cis-dialkylcyclopentenone in hexane/isopropyl alcohol (100 : 3, v/v), but the known 10E-isomer does not yield cis-cyclopentenone under the same conditions. The mechanism for cyclization has been investigated for unsubstituted and methyl substituted vinyl allene oxide using a variety of methods including CASSCF, ωB97xD, and CCSD(T) and basis sets up to cc-pVTZ. The lowest energy pathway proceeds via homolytic cleavage of the epoxide ring, formation of an oxyallyl diradical, which closes readily to a cyclopropanone intermediate. The cyclopropanone opens to the requisite oxyallyl which closes to the experimentally observed product, cis-cyclopentenone. The calculations show that the open shell, diradical pathway is lower in energy than the closed shell reactions of allene oxide to cyclopropanone, and cyclopropanone to cyclopentenone.


Subject(s)
Cyclopentanes/chemistry , Linoleic Acids/chemistry , Oxides/chemistry , Cyclization , Free Radicals/chemistry , Thermodynamics
20.
Neurobiol Dis ; 73: 275-88, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25315682

ABSTRACT

miR-29 is expressed strongly in the brain and alterations in expression have been linked to several neurological disorders. To further explore the function of this miRNA in the brain, we generated miR-29a/b-1 knockout animals. Knockout mice develop a progressive disorder characterized by locomotor impairment and ataxia. The different members of the miR-29 family are strongly expressed in neurons of the olfactory bulb, the hippocampus and in the Purkinje cells of the cerebellum. Morphological analysis showed that Purkinje cells are smaller and display less dendritic arborisation compared to their wildtype littermates. In addition, a decreased number of parallel fibers form synapses on the Purkinje cells. We identified several mRNAs significantly up-regulated in the absence of the miR-29a/b-1 cluster. At the protein level, however, the voltage-gated potassium channel Kcnc3 (Kv3.3) was significantly up-regulated in the cerebella of the miR-29a/b knockout mice. Dysregulation of KCNC3 expression may contribute to the ataxic phenotype.


Subject(s)
Ataxia/metabolism , Cerebellum/metabolism , MicroRNAs/metabolism , Purkinje Cells/metabolism , Shaw Potassium Channels/metabolism , Animals , Behavior, Animal , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity
SELECTION OF CITATIONS
SEARCH DETAIL