Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Biol Inorg Chem ; 28(3): 317-328, 2023 04.
Article in English | MEDLINE | ID: mdl-36828975

ABSTRACT

The lytic polysaccharide monooxygenases (LPMOs) comprise a super-family of copper enzymes that boost the depolymerisation of polysaccharides by oxidatively disrupting the glycosidic bonds connecting the sugar units. Industrial use of LPMOs for cellulose depolymerisation has already begun but is still far from reaching its full potential. One issue is that the LPMOs self-oxidise and thereby deactivate. The mechanism of this self-oxidation is unknown, but histidine residues coordinating to the copper atom are the most susceptible. An unusual methyl modification of the NE2 atom in one of the coordinating histidine residues has been proposed to have a protective role. Furthermore, substrate binding is also known to reduce oxidative damage. We here for the first time investigate the mechanism of histidine oxidation with combined quantum and molecular mechanical (QM/MM) calculations, with outset in intermediates previously shown to form from a reaction with peroxide and a reduced LPMO. We show that an intermediate with a [Cu-O]+ moiety is sufficiently potent to oxidise the nearest C-H bond on both histidine residues, but methylation of the NE2 atom of His-1 increases the reaction barrier of this reaction. The substrate further increases the activation barrier. We also investigate a [Cu-OH]2+ intermediate with a deprotonated tyrosine radical. This intermediate was previously proposed to have a protective role, and we also find it to have higher barriers than the corresponding a [Cu-O]+ intermediate.


Subject(s)
Histidine , Mixed Function Oxygenases , Mixed Function Oxygenases/chemistry , Histidine/chemistry , Copper/chemistry , Oxidation-Reduction , Polysaccharides/chemistry , Polysaccharides/metabolism
2.
Phys Chem Chem Phys ; 25(8): 6153-6163, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36752122

ABSTRACT

We have recently developed a method based on relativistic time-dependent density functional theory (TD-DFT) that allows the calculation of electronic spectra in solution (Creutzberg, Hedegård, J. Chem. Theory Comput.18, 2022, 3671). This method treats the solvent explicitly with a classical, polarizable embedding (PE) description. Furthermore, it employs the complex polarization propagator (CPP) formalism which allows calculations on complexes with a dense population of electronic states (such complexes are known to be problematic for conventional TD-DFT). Here, we employ this method to investigate both the dynamic and electronic effects of the solvent for the excited electronic states of trans-trans-trans-[Pt(N3)2(OH)2(NH3)2] in aqueous solution. This complex decomposes into species harmful to cancer cells under light irradiation. Thus, understanding its photo-physical properties may lead to a more efficient method to battle cancer. We quantify the effect of the underlying structure and dynamics by classical molecular mechanics simulations, refined with a subsequent DFT or semi-empirical optimization on a cluster. Moreover, we quantify the effect of employing different methods to set up the solvated system, e.g., how sensitive the results are to the method used for the refinement, and how large a solvent shell that is required. The electronic solvent effect is always included through a PE potential.

3.
J Chem Phys ; 157(16): 164106, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36319425

ABSTRACT

In this paper, we present the theory and implementation of nuclear magnetic resonance shielding constants with gauge-including atomic orbitals for the hybrid multiconfigurational short-range density functional theory model. As a special case, this implementation also includes Hartree-Fock srDFT (HF-srDFT). Choosing a complete-active space (CAS) wave function as the multiconfigurational parameterization of the wave function, we investigate how well CAS-srDFT reproduces experimental trends of nuclear shielding constants compared to DFT and complete active space self-consistent field (CASSCF). Calculations on the nucleobases adenine and thymine show that CAS-srDFT performs on average the best of the tested methods, much better than CASSCF but only marginally better than HF-srDFT. The performance, compared to regular DFT, is similar when functionals containing exact exchange are used. We generally find that the inclusion of exact exchange is important for an accurate description of the shielding constants. In cases where no exact exchange is included, we observe that the HF- and CAS-srDFT often outperform regular DFT. For calculations on transition metal nuclei in organometallic compounds with significant static correlation, the CAS-srDFT method again outperforms CASSCF compared to experimental shielding constants, and the change from HF-srDFT is substantial. In conclusion, the static correlation posed by the metal complexes seems to be captured by CAS-srDFT, which is promising since this type of correlation is not well described by regular DFT.


Subject(s)
Organometallic Compounds , Quantum Theory , Density Functional Theory , Magnetic Resonance Spectroscopy , Magnetic Resonance Imaging
4.
J Am Chem Soc ; 143(37): 15400-15412, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34491045

ABSTRACT

Aqueous solutions of the iron(III) complex of N,N,N'-tris(2-pyridylmethyl)ethylenediamine-N'-acetate (tpena) react with hypochlorite (ClO-) to produce the reactive high-valent [FeIV(O)(tpena)]+. Under catalytic conditions, in bicarbonate-buffered media (pH 8) with a set ionic strength (10 mM NaCl), kinetic analysis shows that two equivalents of [FeIV(O)(tpena)]+ per one ClO- are produced, with benign chloride ions the only byproduct. An unprecedented supramolecular activation of ClO- by {(HCO3)⊂[(tpena)FeIII(µ-O)FeIII(Htpena)]}2+ is proposed. This mode of activation has great advantage for use in the catalytic oxidation of C-H bonds in water since: (i) the catalyst scaffold is protected from oxidative degradation and (ii) undesirable radical side reactions which produce toxic chlorinated compounds are circumvented by this novel coactivation of water and ClO-. The unique activation mechanism by the Fe-tpena system makes possible the destruction of organic contaminants as an add-on technology to water disinfection by chlorination, demonstrated here through (i) the catalytic oxidation of micropollutant metaldehyde, and (ii) mineralization of the model substrate formate. The resting-state speciation at pH 3, 5, 7, and 9, as well as the catalytically active iron speciation are characterized with Mössbauer and EPR spectroscopy and supported by DFT calculations. Our study provides fundamentally new insights into the design and activation mode of iron-based catalysts relevant to applications in water remediation.

5.
Phys Chem Chem Phys ; 22(46): 27013-27023, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33210700

ABSTRACT

We report the first systematic investigation of relativistic effects on the UV-vis spectra of two prototype complexes for so-called photo-activated chemotherapy (PACT), trans-trans-trans-[Pt(N3)2(OH)2(NH3)2] and cis-trans-cis-[Pt(N3)2(OH)2(NH3)2]. In PACT, design of new drugs requires in-depth understanding of the photo-activation mechanisms. A first step is usually to rationalize their UV-vis spectra for which time-dependent density functional theory (TD-DFT) is an indispensable tool. We carried out TD-DFT calculations with a systematic series of non-relativistic (NR), scalar-relativistic (SR), and four-component (4c) Hamiltonians. As expected, large differences are found between spectra calculated within 4c and NR frameworks, while the most intense features (found at higher energies below 300 nm) can be reasonably well reproduced within a SR framework. It is also shown that effective core potentials (ECPs) yield essentially similar results as all-electron SR calculations. Yet the underlying transitions can be strongly influenced by spin-orbit coupling, which is only present in the 4c framework: while this can affect both intense and less intense transitions in the spectra, the effect is most pronounced for weaker transitions at lower energies, above 300 nm. Since the investigated complexes are activated with light of wavelengths above 300 nm, employing a method with explicit inclusion of spin-orbit coupling may be crucial to rationalize the activation mechanism.


Subject(s)
Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Antineoplastic Agents/radiation effects , Coordination Complexes/radiation effects , Density Functional Theory , Light , Models, Chemical , Platinum/chemistry , Platinum/radiation effects , Spectrophotometry , Stereoisomerism
6.
J Chem Phys ; 152(20): 204104, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32486677

ABSTRACT

DIRAC is a freely distributed general-purpose program system for one-, two-, and four-component relativistic molecular calculations at the level of Hartree-Fock, Kohn-Sham (including range-separated theory), multiconfigurational self-consistent-field, multireference configuration interaction, electron propagator, and various flavors of coupled cluster theory. At the self-consistent-field level, a highly original scheme, based on quaternion algebra, is implemented for the treatment of both spatial and time reversal symmetry. DIRAC features a very general module for the calculation of molecular properties that to a large extent may be defined by the user and further analyzed through a powerful visualization module. It allows for the inclusion of environmental effects through three different classes of increasingly sophisticated embedding approaches: the implicit solvation polarizable continuum model, the explicit polarizable embedding model, and the frozen density embedding model.

7.
J Chem Phys ; 151(12): 124113, 2019 Sep 28.
Article in English | MEDLINE | ID: mdl-31575161

ABSTRACT

Linear response theory for the multiconfigurational short-range density functional theory (MC-srDFT) model is extended to triplet response with a singlet reference wave function. The triplet linear response equations for MC-srDFT are derived for a general hybrid srGGA functional and implemented in the Dalton program. Triplet excitation energies are benchmarked against the CC3 model of coupled cluster theory and the complete-active-space second-order perturbation theory using three different short-range functionals (srLDA, srPBE, and srPBE0), both with full linear response and employing the generalized Tamm-Dancoff approximation (gTDA). We find that using gTDA is required for obtaining reliable triplet excitations; for the CAS-srPBE model, the mean absolute deviation decreases from 0.40 eV to 0.26 eV, and for the CAS-srLDA model, it decreases from 0.29 eV to 0.21 eV. As expected, the CAS-srDFT model is found to be superior to the HF-srDFT model when analyzing the calculated triplet excitations for molecules in the benchmark set where increased static correlation is expected.

8.
J Chem Phys ; 148(21): 214103, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29884047

ABSTRACT

Many chemical systems cannot be described by quantum chemistry methods based on a single-reference wave function. Accurate predictions of energetic and spectroscopic properties require a delicate balance between describing the most important configurations (static correlation) and obtaining dynamical correlation efficiently. The former is most naturally done through a multiconfigurational (MC) wave function, whereas the latter can be done by, e.g., perturbation theory. We have employed a different strategy, namely, a hybrid between multiconfigurational wave functions and density-functional theory (DFT) based on range separation. The method is denoted by MC short-range DFT (MC-srDFT) and is more efficient than perturbative approaches as it capitalizes on the efficient treatment of the (short-range) dynamical correlation by DFT approximations. In turn, the method also improves DFT with standard approximations through the ability of multiconfigurational wave functions to recover large parts of the static correlation. Until now, our implementation was restricted to closed-shell systems, and to lift this restriction, we present here the generalization of MC-srDFT to open-shell cases. The additional terms required to treat open-shell systems are derived and implemented in the DALTON program. This new method for open-shell systems is illustrated on dioxygen and [Fe(H2O)6]3+.

9.
Phys Chem Chem Phys ; 19(24): 15870-15875, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28589192

ABSTRACT

The absorption spectrum of the MnO4- ion has been a test-bed for quantum-chemical methods over the last decades. Its correct description requires highly-correlated multiconfigurational methods, which are incompatible with the inclusion of finite-temperature and solvent effects due to their high computational demands. Therefore, implicit solvent models are usually employed. Here we show that implicit solvent models are not sufficiently accurate to model the solvent shift of MnO4-, and we analyze the origins of their failure. We obtain the correct solvent shift for MnO4- in aqueous solution by employing the polarizable embedding (PE) model combined with a range-separated complete active space short-range density functional theory method (CAS-srDFT). Finite-temperature effects are taken into account by averaging over structures obtained from ab initio molecular dynamics simulations. The explicit treatment of finite-temperature and solvent effects facilitates the interpretation of the bands in the low-energy region of the MnO4- absorption spectrum, whose assignment has been elusive.

10.
Chimia (Aarau) ; 70(4): 244-51, 2016.
Article in English | MEDLINE | ID: mdl-27131108

ABSTRACT

Reliable quantum chemical methods for the description of molecules with dense-lying frontier orbitals are needed in the context of many chemical compounds and reactions. Here, we review developments that led to our new computational toolbox which implements the quantum chemical density matrix renormalization group in a second-generation algorithm. We present an overview of the different components of this toolbox.

11.
J Chem Phys ; 142(22): 224108, 2015 Jun 14.
Article in English | MEDLINE | ID: mdl-26071702

ABSTRACT

We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.

12.
J Chem Phys ; 142(11): 114113, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25796237

ABSTRACT

We present here the coupling of a polarizable embedding (PE) model to the recently developed multiconfiguration short-range density functional theory method (MC-srDFT), which can treat multiconfigurational systems with a simultaneous account for dynamical and static correlation effects. PE-MC-srDFT is designed to combine efficient treatment of complicated electronic structures with inclusion of effects from the surrounding environment. The environmental effects encompass classical electrostatic interactions as well as polarization of both the quantum region and the environment. Using response theory, molecular properties such as excitation energies and oscillator strengths can be obtained. The PE-MC-srDFT method and the additional terms required for linear response have been implemented in a development version of Dalton. To benchmark the PE-MC-srDFT approach against the literature data, we have investigated the low-lying electronic excitations of acetone and uracil, both immersed in water solution. The PE-MC-srDFT results are consistent and accurate, both in terms of the calculated solvent shift and, unlike regular PE-MCSCF, also with respect to the individual absolute excitation energies. To demonstrate the capabilities of PE-MC-srDFT, we also investigated the retinylidene Schiff base chromophore embedded in the channelrhodopsin protein. While using a much more compact reference wave function in terms of active space, our PE-MC-srDFT approach yields excitation energies comparable in quality to CASSCF/CASPT2 benchmarks.


Subject(s)
Models, Molecular , Acetone/chemistry , Linear Models , Quantum Theory , Retinoids/chemistry , Rhodopsin/chemistry , Software , Solutions , Solvents/chemistry , Static Electricity , Uracil/chemistry , Water/chemistry
13.
Angew Chem Int Ed Engl ; 54(21): 6246-50, 2015 May 18.
Article in English | MEDLINE | ID: mdl-25867218

ABSTRACT

A series of QM/MM optimizations of the full protein of [Fe] hydrogenase were performed. The FeGP cofactor has been optimized in the water-bound resting state (1), with a side-on bound dihydrogen (2), or as a hydride intermediate (3). For inclusion of H4MPT in the closed structure, advanced multiscale modeling appears to be necessary, especially to obtain reliable distances between CH-H4MPT(+) and the dihydrogen (H2) or hydride (H(-)) ligand in the FeGP cofactor. Inclusion of the full protein is further important for the relative energies of the two intermediates 2 and 3. We finally find that hydride transfer from 3 has a significantly higher barrier than found in previous studies neglecting the full protein environment.


Subject(s)
Hydrogen/metabolism , Hydrogenase/chemistry , Hydrogenase/metabolism , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Methanocaldococcus/enzymology , Binding Sites , Catalytic Domain , Methanocaldococcus/chemistry , Methanocaldococcus/metabolism , Models, Molecular , Protein Conformation , Quantum Theory
14.
Phys Chem Chem Phys ; 16(10): 4853-63, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24468665

ABSTRACT

Mössbauer spectroscopy is an indispensable spectroscopic technique and analytical tool in iron coordination chemistry. The linear correlation between the electron density at the nucleus ("contact density") and experimental isomer shifts has been used to link calculated contact densities to experimental isomer shifts. Here we have investigated relativistic methods of systematically increasing sophistication, including the eXact 2-Component (X2C) Hamiltonian and a finite-nucleus model, for the calculation of isomer shifts of iron compounds. While being of similar accuracy as the full four-component treatment, X2C calculations are far more efficient. We find that effects of spin-orbit coupling can safely be neglected, leading to further speedup. Linear correlation plots using effective densities rather than contact densities versus experimental isomer shift lead to a correlation constant a = -0.294 a0(-3) mm s(-1) (PBE functional) which is close to an experimentally derived value. Isomer shifts of similar quality can thus be obtained both with and without fitting, which is not the case if one pursues a priori a non-relativistic model approach. As an application for a biologically relevant system, we have studied three recently proposed [Fe]-hydrogenase intermediates. The structures of these intermediates were extracted from QM/MM calculations using large QM regions surrounded by the full enzyme and a solvation shell of water molecules. We show that a comparison between calculated and experimentally observed isomer shifts can be used to discriminate between different intermediates, whereas calculated atomic charges do not necessarily correlate with Mössbauer isomer shifts. Detailed analysis reveals that the difference in isomer shifts between two intermediates is due to an overlap effect.


Subject(s)
Archaea/enzymology , Hydrogenase/chemistry , Iron-Sulfur Proteins/chemistry , Spectroscopy, Mossbauer/methods , Archaea/chemistry , Iron , Isomerism
15.
Dalton Trans ; 53(13): 5796-5807, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38445349

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes that oxidatively cleave the strong C-H bonds in recalcitrant polysaccharide substrates, thereby playing a crucial role in biomass degradation. Recently, LPMOs have also been shown to be important for several pathogens. It is well established that the Cu(II) resting state of LPMOs is inactive, and the electronic structure of the active site needs to be altered to transform the enzyme into an active form. Whether this transformation occurs due to substrate binding or due to a unique priming reduction has remained speculative. Starting from four different crystal structures of the LPMO LsAA9A with well-defined oxidation states, we use a frontier molecular orbital approach to elucidate the initial steps of the LPMO reaction. We give an explanation for the requirement of the unique priming reduction and analyse electronic structure changes upon substrate binding. We further investigate how the presence of the substrate could facilitate an electron transfer from the copper active site to an H2O2 co-substrate. Our findings could help to control experimental LPMO reactions.


Subject(s)
Hydrogen Peroxide , Mixed Function Oxygenases , Mixed Function Oxygenases/chemistry , Copper/chemistry , Polysaccharides/metabolism , Oxidation-Reduction
16.
J Chem Theory Comput ; 20(9): 3406-3412, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38687240

ABSTRACT

Core-electron excitations in solvated systems, influenced by solvent geometry and hydrogen bonding, make X-ray absorption spectroscopy (XAS) a valuable tool for assessing solvent-solute interactions. However, calculating XAS spectra with electronic-structure methods has proven challenging due to a delicate interplay between correlation and solvation effects. This study provides a computational procedure for XAS modeling in solvated systems, with water-solvated ammonia and ammonium systems serving as probes. Exploring methodological challenges, we investigate explicit embedding models, specifically the polarizable embedding family, including polarizable density embedding and extended polarizable density embedding. Our linear-response time-dependent density functional theory (LR-TDDFT) XAS calculations reveal the efficiency of this approach, with extended polarizable density embedding emerging as a robust improvement over polarizable density embedding. Contrary to some recent literature, our study challenges the belief that LR-TDDFT cannot accurately describe XAS spectra of ammonia and ammonium solvated in water.

17.
J Chem Phys ; 139(4): 044101, 2013 Jul 28.
Article in English | MEDLINE | ID: mdl-23901954

ABSTRACT

We present a detailed derivation of Multi-Configuration Self-Consistent Field (MCSCF) optimization and linear response equations within the polarizable embedding scheme: PE-MCSCF. The MCSCF model enables a proper description of multiconfigurational effects in reaction paths, spin systems, excited states, and other properties which cannot be described adequately with current implementations of polarizable embedding in density functional or coupled cluster theories. In the PE-MCSCF scheme the environment surrounding the central quantum mechanical system is represented by distributed multipole moments and anisotropic dipole-dipole polarizabilities. The PE-MCSCF model has been implemented in DALTON. As a preliminary application, the low lying valence states of acetone and uracil in water has been calculated using Complete Active Space Self-Consistent Field (CASSCF) wave functions. The dynamics of the water environment have been simulated using a series of snapshots generated from classical Molecular Dynamics. The calculated shifts from gas-phase to water display between good and excellent correlation with experiment and previous calculations. As an illustration of another area of potential applications we present calculations of electronic transitions in the transition metal complex, [Fe(NO)(CN)5](2-) in a micro-solvated environment. This system is highly multiconfigurational and the influence of solvation is significant.

18.
J Chem Phys ; 139(18): 184308, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24320275

ABSTRACT

Charge transfer excitations can be described within Time-Dependent Density Functional Theory (TD-DFT), not only by means of the Coulomb Attenuated Method (CAM) but also with a combination of wave function theory and TD-DFT based on range separation. The latter approach enables a rigorous formulation of multi-determinantal TD-DFT schemes where excitation classes, which are absent in conventional TD-DFT spectra (like for example double excitations), can be addressed. This paper investigates the combination of both the long-range Multi-Configuration Self-Consistent Field (MCSCF) and Second Order Polarization Propagator Approximation (SOPPA) ansätze with a short-range DFT (srDFT) description. We find that the combinations of SOPPA or MCSCF with TD-DFT yield better results than could be expected from the pure wave function schemes. For the Time-Dependent MCSCF short-range DFT ansatz (TD-MC-srDFT) excitation energies calculated over a larger benchmark set of molecules with predominantly single reference character yield good agreement with their reference values, and are in general comparable to the CAM-B3LYP functional. The SOPPA-srDFT scheme is tested for a subset of molecules used for benchmarking TD-MC-srDFT and performs slightly better against the reference data for this small subset. Beyond the proof-of-principle calculations comprising the first part of this contribution, we additionally studied the low-lying singlet excited states (S1 and S2) of the retinal chromophore. The chromophore displays multireference character in the ground state and both excited states exhibit considerable double excitation character, which in turn cannot be described within standard TD-DFT, due to the adiabatic approximation. However, a TD-MC-srDFT approach can account for the multireference character, and excitation energies are obtained with accuracy comparable to CASPT2, although using a much smaller active space.


Subject(s)
Quantum Theory , Molecular Structure , Proteins/chemistry , Solvents/chemistry , Time Factors
19.
J Phys Chem B ; 127(46): 9905-9914, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37948667

ABSTRACT

The recently developed extended polarizable density embedding (PDE-X) model is evaluated for the spectroscopic properties of organic chromophores solvated in water, including both one- and two-photon absorption properties. The PDE-X embedding model systematically improves vertical excitation energies over the preceding polarizable density embedding model (PDE). PDE-X shows more modest improvements over existing embedding models for oscillator strengths and two-photon absorption cross-sections, which are more sensitive properties. We argue that the origin of these discrepancies is related to the description of polarization effects, suggesting directions for future development of the embedding model.

20.
Dalton Trans ; 51(42): 16055-16064, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36214101

ABSTRACT

The inorganic platinum complexes currently in clinical use for cancer treatment have severe side effects, and complexes with fewer side effects are required. One option is to use complexes that are inactive until they are light-activated. Theoretical chemistry can contribute to the design of these complexes, but most current theoretical methods lack explicit treatment of relativistic effects (since the target complexes often contain heavy elements). In particular, spin-orbit coupling is required for accurate predictions of the complexes' photo-physical properties. In this perspective, we summarize relativistic methods developed in recent years that can contribute to our understanding of light-induced reactivity and thereby help predict new, suitable complexes.


Subject(s)
Platinum , Quantum Theory , Platinum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL