Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Environ Sci Technol ; 58(20): 8771-8782, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38728551

ABSTRACT

This randomized crossover study investigated the metabolic and mRNA alterations associated with exposure to high and low traffic-related air pollution (TRAP) in 50 participants who were either healthy or were diagnosed with chronic pulmonary obstructive disease (COPD) or ischemic heart disease (IHD). For the first time, this study combined transcriptomics and serum metabolomics measured in the same participants over multiple time points (2 h before, and 2 and 24 h after exposure) and over two contrasted exposure regimes to identify potential multiomic modifications linked to TRAP exposure. With a multivariate normal model, we identified 78 metabolic features and 53 mRNA features associated with at least one TRAP exposure. Nitrogen dioxide (NO2) emerged as the dominant pollutant, with 67 unique associated metabolomic features. Pathway analysis and annotation of metabolic features consistently indicated perturbations in the tryptophan metabolism associated with NO2 exposure, particularly in the gut-microbiome-associated indole pathway. Conditional multiomics networks revealed complex and intricate mechanisms associated with TRAP exposure, with some effects persisting 24 h after exposure. Our findings indicate that exposure to TRAP can alter important physiological mechanisms even after a short-term exposure of a 2 h walk. We describe for the first time a potential link between NO2 exposure and perturbation of the microbiome-related pathways.


Subject(s)
Air Pollutants , Air Pollution , Gastrointestinal Microbiome , Humans , Male , London , Female , Middle Aged , Cross-Over Studies , Traffic-Related Pollution , Nitrogen Dioxide
2.
Environ Res ; 195: 110736, 2021 04.
Article in English | MEDLINE | ID: mdl-33484720

ABSTRACT

Nitrogen dioxide (NO2) and black carbon (BC) concentrations were measured inside London taxicabs across 40 work shifts in a real-world occupational study. The shifts were measured across five plug-in hybrid range-extender electric taxicabs (TXe City) and five diesel taxicabs (TX4 Diesel). The aim of this study was to characterise the impact of fuel and cabin design on professional drivers' air pollution exposures. Personal exposure was monitored using portable BC, NO2 and GPS devices. A controlled study replicating a typical taxi drivers' route in central London was conducted. Simultaneous inside and outside BC concentrations were measured to assess infiltration rates. The drivers were instructed to keep the BC devices with them at all times, providing a comparison of exposures at work and outside of work. The driver's average BC and NO2 exposure while working was nearly twice as high for diesel taxicab drivers (6.8 ± 7.0 µg/m³, 101.9 ± 87.8 µg/m³) compared with electric drivers (3.6 ± 4.9 µg/m³, 55.3 ± 53.0 µg/m³, respectively). The exposure to BC while not working was 1.6 µg/m³ for diesel drivers and 1.1 µg/m³ for electric drivers, highlighting the very high exposures experienced by this occupational sector. The analysis of vehicle type on BC concentrations showed that the airtight cabin design and presence of an in-built filter in the electric TXe City reduced the exposure to BC substantially; indoor to outdoor ratios being 0.63 on the electric taxi compared to 0.99 on the diesel taxi with recirculate ventilation mode off and 0.07 to 0.44 with recirculate on. These findings provide important evidence for occupational health of professional drivers through exposure reduction measures in vehicle design.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Carbon , Cities , Environmental Monitoring , London , Nitrogen Dioxide/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis
3.
Am J Physiol Regul Integr Comp Physiol ; 318(5): R972-R980, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32233925

ABSTRACT

Mitochondria utilize the majority of oxygen (O2) consumed by aerobic organisms as the final electron acceptor for oxidative phosphorylation (OXPHOS) but also to generate reactive oxygen species (mtROS) that participate in cell signaling, physiological hormesis, and disease pathogenesis. Simultaneous monitoring of mtROS production and oxygen consumption (Jo2) from tissue mitochondrial preparations is an attractive investigative approach, but it introduces dynamic changes in media O2 concentration ([O2]) that can confound experimental results and interpretation. We utilized high-resolution fluorespirometry to evaluate Jo2 and hydrogen peroxide release (Jh2o2) from isolated mitochondria (Mt), permeabilized fibers (Pf), and tissue homogenates (Hm) prepared from murine heart and skeletal muscle across a range of experimental [O2]s typically encountered during respirometry protocols (400-50 µM). Results demonstrate notable variations in Jh2o2 across tissues and sample preparations during nonphosphorylating (LEAK) and OXPHOS-linked respiration states at 250 µM [O2] but a linear decline in Jh2o2 of 5-15% per 50-µM decrease in chamber [O2] in all samples. Jo2 was generally stable in Mt and Hm across [O2]s above 50 µM but tended to decline below 250 µM in Pf, leading to wide variations in assayed rates of Jh2o2/O2 across chamber [O2]s and sample preparations. Development of chemical background fluorescence from the H2O2 probe (Amplex Red) was also O2 sensitive, emphasizing relevant calibration considerations. This study highlights the importance of monitoring and reporting the chamber [O2] at which Jo2 and Jh2o2 are recorded during fluorespirometry experiments and provides a basis for selecting sample preparations for studies addressing the role of mtROS in physiology and disease.


Subject(s)
Hydrogen Peroxide/metabolism , Mitochondria, Heart/metabolism , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Myocardium/metabolism , Oxygen Consumption , Oxygen/metabolism , Adenosine Diphosphate/metabolism , Animals , Cell Respiration , Fluorometry , Kinetics , Male , Mice , Models, Biological , Oxidative Phosphorylation
5.
Sci Rep ; 14(1): 22870, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39354048

ABSTRACT

Epitaxial quantum dot (QD) scintillator crystals with picosecond-scale timing and high light yield have been created for medical imaging, high energy physics and national security applications. Monolithic photodetector (PD) integration enables the sensing of photons generated within the waveguiding crystal and allows a wide range of scintillator-photodetector coupling geometries. Until recently, these doubly novel devices have suffered from complex, high variance responses to monoenergetic sources which significantly reduces their precision and accuracy. The principles governing the overall device response have now been discerned and embodied by an expression derived within a geometrical optics framework which considers optical properties, surface roughness and photodetector coupling geometry. Response variation due to these factors was sufficiently reduced to obtain material-related energy resolution values of 2.4% with alpha particles. These findings place energy resolution alongside luminescence timescale, photon yield, and radiation hardness as outstanding properties of these engineered materials.

6.
Environ Int ; 187: 108682, 2024 May.
Article in English | MEDLINE | ID: mdl-38669721

ABSTRACT

Concentrations of particulate matter (PM10, PM2.5), ultrafine (UFP), particle number (PNC), black carbon (BC), nitrogen dioxide (NO2) and nitrogen oxides (NOX) were measured in train carriages on diesel and bi-mode trains on inter-city and long-distance journeys in the United Kingdom (UK) using a high-quality mobile measurement system. Air quality on 15 different routes was measured using highly-time resolved data on a total of 119 journeys during three campaigns in winter 2020 and summer 2021; this included 13 different train classes. Each journey was sampled 4-10 times with approximatively 11,000 min of in-train concentrations in total. Mean-journey concentrations were 7.552 µg m-3 (PM10); 3.936 µg m-3 (PM2.5); 333-11,300 # cm-3 (PNC); 225-9,131 # cm-3 (UFP); 0.6-11 µg m-3 (BC); 28-201 µg m-3 (NO2); and 130-3,456 µg m-3 (NOX). The impact of different factors on in-train concentrations was evaluated. The presence of tunnels was the factor with the largest impact on the in-train particle concentrations with enhancements by a factor of 40 greater than baseline for BC, and a factor 6 to 7 for PM and PNC. The engine fuel mode was the factor with the largest impact on NO2 with enhancements of up to 14-times larger when the train run on diesel compared to the times running on electric on hybrid trains. Train classes with an age < 10 years observed the lowest in-train PM, BC and NOX concentrations reflecting improvements in aspects of rail technology in recent years. Air quality on UK diesel trains is higher than ambient concentrations but has lower PM2.5 and PNC than most other transport modes, including subway systems, diesel and petrol cars. This paper adds significantly to the evidence on exposure to poor air quality in transport micro-environments and provides the industry and regulatory bodies with reference-grade measurements on which to establish in-train air quality guidelines.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Particulate Matter , Vehicle Emissions , United Kingdom , Air Pollutants/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis , Air Pollution/statistics & numerical data , Air Pollution/analysis , Environmental Monitoring/methods , Railroads , Nitrogen Oxides/analysis , Nitrogen Dioxide/analysis , Gasoline/analysis
SELECTION OF CITATIONS
SEARCH DETAIL