Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Cell ; 176(4): 831-843.e22, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30735634

ABSTRACT

The cancer transcriptome is remarkably complex, including low-abundance transcripts, many not polyadenylated. To fully characterize the transcriptome of localized prostate cancer, we performed ultra-deep total RNA-seq on 144 tumors with rich clinical annotation. This revealed a linear transcriptomic subtype associated with the aggressive intraductal carcinoma sub-histology and a fusion profile that differentiates localized from metastatic disease. Analysis of back-splicing events showed widespread RNA circularization, with the average tumor expressing 7,232 circular RNAs (circRNAs). The degree of circRNA production was correlated to disease progression in multiple patient cohorts. Loss-of-function screening identified 11.3% of highly abundant circRNAs as essential for cell proliferation; for ∼90% of these, their parental linear transcripts were not essential. Individual circRNAs can have distinct functions, with circCSNK1G3 promoting cell growth by interacting with miR-181. These data advocate for adoption of ultra-deep RNA-seq without poly-A selection to interrogate both linear and circular transcriptomes.


Subject(s)
Prostatic Neoplasms/genetics , RNA/genetics , RNA/metabolism , Gene Expression Profiling/methods , Genetic Profile , HEK293 Cells , Humans , Male , MicroRNAs/metabolism , Prostate/metabolism , RNA Splicing/genetics , RNA, Circular , RNA, Untranslated/genetics , Sequence Analysis, RNA/methods , Transcriptome
2.
Cell ; 173(4): 1003-1013.e15, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29681457

ABSTRACT

The majority of newly diagnosed prostate cancers are slow growing, with a long natural life history. Yet a subset can metastasize with lethal consequences. We reconstructed the phylogenies of 293 localized prostate tumors linked to clinical outcome data. Multiple subclones were detected in 59% of patients, and specific subclonal architectures associate with adverse clinicopathological features. Early tumor development is characterized by point mutations and deletions followed by later subclonal amplifications and changes in trinucleotide mutational signatures. Specific genes are selectively mutated prior to or following subclonal diversification, including MTOR, NKX3-1, and RB1. Patients with low-risk monoclonal tumors rarely relapse after primary therapy (7%), while those with high-risk polyclonal tumors frequently do (61%). The presence of multiple subclones in an index biopsy may be necessary, but not sufficient, for relapse of localized prostate cancer, suggesting that evolution-aware biomarkers should be studied in prospective studies of low-risk tumors suitable for active surveillance.


Subject(s)
Prostatic Neoplasms/pathology , Biomarkers, Tumor/blood , High-Throughput Nucleotide Sequencing , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Male , Neoplasm Grading , Neoplasm Recurrence, Local , Polymorphism, Single Nucleotide , Proportional Hazards Models , Prospective Studies , Prostatic Neoplasms/classification , Prostatic Neoplasms/genetics , Retinoblastoma Binding Proteins/genetics , Retinoblastoma Binding Proteins/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
3.
Nature ; 541(7637): 359-364, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28068672

ABSTRACT

Prostate tumours are highly variable in their response to therapies, but clinically available prognostic factors can explain only a fraction of this heterogeneity. Here we analysed 200 whole-genome sequences and 277 additional whole-exome sequences from localized, non-indolent prostate tumours with similar clinical risk profiles, and carried out RNA and methylation analyses in a subset. These tumours had a paucity of clinically actionable single nucleotide variants, unlike those seen in metastatic disease. Rather, a significant proportion of tumours harboured recurrent non-coding aberrations, large-scale genomic rearrangements, and alterations in which an inversion repressed transcription within its boundaries. Local hypermutation events were frequent, and correlated with specific genomic profiles. Numerous molecular aberrations were prognostic for disease recurrence, including several DNA methylation events, and a signature comprised of these aberrations outperformed well-described prognostic biomarkers. We suggest that intensified treatment of genomically aggressive localized prostate cancer may improve cure rates.


Subject(s)
Genome, Human/genetics , Genomics , Mutation , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Chromothripsis , DNA Copy Number Variations , DNA Methylation , Exome/genetics , Humans , Male , Neoplasm Metastasis/genetics , Prognosis , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Recurrence
4.
Biochem Biophys Res Commun ; 445(4): 746-56, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24561123

ABSTRACT

G-protein coupled receptors (GPCRs) are involved in a variety of disease processes and comprise major drug targets. However, the complexity of integral membrane proteins such as GPCRs makes the identification of their interacting partners and subsequent drug development challenging. A comprehensive understanding of GPCR protein interaction networks is needed to design effective therapeutic strategies to inhibit these drug targets. Here, we developed a novel split-ubiquitin membrane yeast two-hybrid (MYTH) technology called CHIP-MYTH, which allows the unbiased characterization of interaction partners of full-length GPCRs in a drug-dependent manner. This was achieved by coupling DNA microarray technology to the MYTH approach, which allows a quantitative evaluation of interacting partners of a given integral membrane protein in the presence or absence of drug. As a proof of principle, we applied the CHIP-MYTH approach to the human ß2-adrenergic receptor (ß2AR), a target of interest in the treatment of asthma, chronic obstructive pulmonary disease (COPD), neurological disease, cardiovascular disease, and obesity. A CHIP-MYTH screen was performed in the presence or absence of salmeterol, a long-acting ß2AR-agonist. Our results suggest that ß2AR activation with salmeterol can induce the dissociation of heterotrimeric G-proteins, Gαßγ, into Gα and Gßγ subunits, which in turn activates downstream signaling cascades. Using CHIP-MYTH, we confirmed previously known and identified novel ß2AR interactors involved in GPCR-mediated signaling cascades. Several of these interactions were confirmed in mammalian cells using LUminescence-based Mammalian IntERactome (LUMIER) and co-immunoprecipitation assays. In summary, the CHIP-MYTH approach is ideal for conducting comprehensive protein-protein interactions (PPI) screenings of full-length GPCRs in the presence or absence of drugs, thus providing a valuable tool to further our understanding of GPCR-mediated signaling.


Subject(s)
Adrenergic beta-2 Receptor Agonists/pharmacology , Albuterol/analogs & derivatives , Protein Interaction Mapping/methods , Protein Interaction Maps/drug effects , Proteomics/methods , Receptors, Adrenergic, beta-2/metabolism , Albuterol/pharmacology , Animals , HEK293 Cells , Humans , Models, Molecular , Receptors, G-Protein-Coupled/metabolism , Salmeterol Xinafoate , Signal Transduction/drug effects , Two-Hybrid System Techniques , Ubiquitin/metabolism
5.
PLoS Genet ; 7(11): e1002353, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22102822

ABSTRACT

In nature, stressful environments often occur in combination or close succession, and thus the ability to prepare for impending stress likely provides a significant fitness advantage. Organisms exposed to a mild dose of stress can become tolerant to what would otherwise be a lethal dose of subsequent stress; however, the mechanism of this acquired stress tolerance is poorly understood. To explore this, we exposed the yeast gene-deletion libraries, which interrogate all essential and non-essential genes, to successive stress treatments and identified genes necessary for acquiring subsequent stress resistance. Cells were exposed to one of three different mild stress pretreatments (salt, DTT, or heat shock) and then challenged with a severe dose of hydrogen peroxide (H(2)O(2)). Surprisingly, there was little overlap in the genes required for acquisition of H(2)O(2) tolerance after different mild-stress pretreatments, revealing distinct mechanisms of surviving H(2)O(2) in each case. Integrative network analysis of these results with respect to protein-protein interactions, synthetic-genetic interactions, and functional annotations identified many processes not previously linked to H(2)O(2) tolerance. We tested and present several models that explain the lack of overlap in genes required for H(2)O(2) tolerance after each of the three pretreatments. Together, this work shows that acquired tolerance to the same severe stress occurs by different mechanisms depending on prior cellular experiences, underscoring the context-dependent nature of stress tolerance.


Subject(s)
Gene Expression/drug effects , Gene Regulatory Networks/genetics , Heat-Shock Response/genetics , Hydrogen Peroxide/toxicity , Oxidative Stress/genetics , Saccharomyces cerevisiae/genetics , Stress, Physiological/genetics , Genetic Fitness/genetics , Heat-Shock Proteins/genetics , Heat-Shock Response/physiology , Hot Temperature , Hydrogen Peroxide/pharmacology , Multilocus Sequence Typing , Oligonucleotide Array Sequence Analysis/methods , Saccharomyces cerevisiae/physiology , Sodium Chloride/pharmacology
6.
J Clin Invest ; 134(9)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530366

ABSTRACT

Aberrant expression of the E26 transformation-specific (ETS) transcription factors characterizes numerous human malignancies. Many of these proteins, including EWS:FLI1 and EWS:ERG fusions in Ewing sarcoma (EwS) and TMPRSS2:ERG in prostate cancer (PCa), drive oncogenic programs via binding to GGAA repeats. We report here that both EWS:FLI1 and ERG bind and transcriptionally activate GGAA-rich pericentromeric heterochromatin. The respective pathogen-like HSAT2 and HSAT3 RNAs, together with LINE, SINE, ERV, and other repeat transcripts, are expressed in EwS and PCa tumors, secreted in extracellular vesicles (EVs), and are highly elevated in plasma of patients with EwS with metastatic disease. High human satellite 2 and 3 (HSAT2,3) levels in EWS:FLI1- or ERG-expressing cells and tumors were associated with induction of G2/M checkpoint, mitotic spindle, and DNA damage programs. These programs were also activated in EwS EV-treated fibroblasts, coincident with accumulation of HSAT2,3 RNAs, proinflammatory responses, mitotic defects, and senescence. Mechanistically, HSAT2,3-enriched cancer EVs induced cGAS-TBK1 innate immune signaling and formation of cytosolic granules positive for double-strand RNAs, RNA-DNA, and cGAS. Hence, aberrantly expressed ETS proteins derepress pericentromeric heterochromatin, yielding pathogenic RNAs that transmit genotoxic stress and inflammation to local and distant sites. Monitoring HSAT2,3 plasma levels and preventing their dissemination may thus improve therapeutic strategies and blood-based diagnostics.


Subject(s)
DNA Damage , Extracellular Vesicles , Oncogene Proteins, Fusion , Proto-Oncogene Protein c-fli-1 , RNA-Binding Protein EWS , Transcriptional Regulator ERG , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/metabolism , Male , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/immunology , Cell Line, Tumor , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Mice , Animals , Heterochromatin/metabolism , Heterochromatin/genetics
7.
Cancer Discov ; 14(1): 104-119, 2024 01 12.
Article in English | MEDLINE | ID: mdl-37874259

ABSTRACT

People with Li-Fraumeni syndrome (LFS) harbor a germline pathogenic variant in the TP53 tumor suppressor gene, face a near 100% lifetime risk of cancer, and routinely undergo intensive surveillance protocols. Liquid biopsy has become an attractive tool for a range of clinical applications, including early cancer detection. Here, we provide a proof-of-principle for a multimodal liquid biopsy assay that integrates a targeted gene panel, shallow whole-genome, and cell-free methylated DNA immunoprecipitation sequencing for the early detection of cancer in a longitudinal cohort of 89 LFS patients. Multimodal analysis increased our detection rate in patients with an active cancer diagnosis over uni-modal analysis and was able to detect cancer-associated signal(s) in carriers prior to diagnosis with conventional screening (positive predictive value = 67.6%, negative predictive value = 96.5%). Although adoption of liquid biopsy into current surveillance will require further clinical validation, this study provides a framework for individuals with LFS. SIGNIFICANCE: By utilizing an integrated cell-free DNA approach, liquid biopsy shows earlier detection of cancer in patients with LFS compared with current clinical surveillance methods such as imaging. Liquid biopsy provides improved accessibility and sensitivity, complementing current clinical surveillance methods to provide better care for these patients. See related commentary by Latham et al., p. 23. This article is featured in Selected Articles from This Issue, p. 5.


Subject(s)
Cell-Free Nucleic Acids , Li-Fraumeni Syndrome , Humans , Li-Fraumeni Syndrome/diagnosis , Li-Fraumeni Syndrome/genetics , Li-Fraumeni Syndrome/pathology , Tumor Suppressor Protein p53/genetics , Early Detection of Cancer , Cell-Free Nucleic Acids/genetics , Genes, p53 , Germ-Line Mutation , Genetic Predisposition to Disease
8.
J Natl Cancer Inst ; 115(4): 468-472, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36610996

ABSTRACT

Prostate cancer is one of the most heritable cancers. Hundreds of germline polymorphisms have been linked to prostate cancer diagnosis and prognosis. Polygenic risk scores can predict genetic risk of a prostate cancer diagnosis. Although these scores inform the probability of developing a tumor, it remains unknown how germline risk influences the tumor molecular evolution. We cultivated a cohort of 1250 localized European-descent patients with germline and somatic DNA profiling. Men of European descent with higher genetic risk were diagnosed earlier and had less genomic instability and fewer driver genes mutated. Higher genetic risk was associated with better outcome. These data imply a polygenic "two-hit" model where germline risk reduces the number of somatic alterations required for tumorigenesis. These findings support further clinical studies of polygenic risk scores as inexpensive and minimally invasive adjuncts to standard risk stratification. Further studies are required to interrogate generalizability to more ancestrally and clinically diverse populations.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Risk Factors , Prognosis , Genetic Predisposition to Disease
9.
BMC Genomics ; 13: 267, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22727066

ABSTRACT

BACKGROUND: Chitosan oligosaccharide (COS), a deacetylated derivative of chitin, is an abundant, and renewable natural polymer. COS has higher antimicrobial properties than chitosan and is presumed to act by disrupting/permeabilizing the cell membranes of bacteria, yeast and fungi. COS is relatively non-toxic to mammals. By identifying the molecular and genetic targets of COS, we hope to gain a better understanding of the antifungal mode of action of COS. RESULTS: Three different chemogenomic fitness assays, haploinsufficiency (HIP), homozygous deletion (HOP), and multicopy suppression (MSP) profiling were combined with a transcriptomic analysis to gain insight in to the mode of action and mechanisms of resistance to chitosan oligosaccharides. The fitness assays identified 39 yeast deletion strains sensitive to COS and 21 suppressors of COS sensitivity. The genes identified are involved in processes such as RNA biology (transcription, translation and regulatory mechanisms), membrane functions (e.g. signalling, transport and targeting), membrane structural components, cell division, and proteasome processes. The transcriptomes of control wild type and 5 suppressor strains overexpressing ARL1, BCK2, ERG24, MSG5, or RBA50, were analyzed in the presence and absence of COS. Some of the up-regulated transcripts in the suppressor overexpressing strains exposed to COS included genes involved in transcription, cell cycle, stress response and the Ras signal transduction pathway. Down-regulated transcripts included those encoding protein folding components and respiratory chain proteins. The COS-induced transcriptional response is distinct from previously described environmental stress responses (i.e. thermal, salt, osmotic and oxidative stress) and pre-treatment with these well characterized environmental stressors provided little or any resistance to COS. CONCLUSIONS: Overexpression of the ARL1 gene, a member of the Ras superfamily that regulates membrane trafficking, provides protection against COS-induced cell membrane permeability and damage. We found that the ARL1 COS-resistant over-expression strain was as sensitive to Amphotericin B, Fluconazole and Terbinafine as the wild type cells and that when COS and Fluconazole are used in combination they act in a synergistic fashion. The gene targets of COS identified in this study indicate that COS's mechanism of action is different from other commonly studied fungicides that target membranes, suggesting that COS may be an effective fungicide for drug-resistant fungal pathogens.


Subject(s)
Chitosan/pharmacology , Saccharomyces cerevisiae/drug effects , Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Cell Membrane Permeability/drug effects , Drug Resistance, Fungal/drug effects , Fluconazole/pharmacology , Gene Expression Profiling , Gene Expression Regulation, Fungal/drug effects , Haploinsufficiency/drug effects , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Naphthalenes/pharmacology , Oxidative Stress/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Terbinafine , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
10.
Genome Res ; 19(10): 1836-42, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19622793

ABSTRACT

Next-generation DNA sequencing technologies have revolutionized diverse genomics applications, including de novo genome sequencing, SNP detection, chromatin immunoprecipitation, and transcriptome analysis. Here we apply deep sequencing to genome-scale fitness profiling to evaluate yeast strain collections in parallel. This method, Barcode analysis by Sequencing, or "Bar-seq," outperforms the current benchmark barcode microarray assay in terms of both dynamic range and throughput. When applied to a complex chemogenomic assay, Bar-seq quantitatively identifies drug targets, with performance superior to the benchmark microarray assay. We also show that Bar-seq is well-suited for a multiplex format. We completely re-sequenced and re-annotated the yeast deletion collection using deep sequencing, found that approximately 20% of the barcodes and common priming sequences varied from expectation, and used this revised list of barcode sequences to improve data quality. Together, this new assay and analysis routine provide a deep-sequencing-based toolkit for identifying gene-environment interactions on a genome-wide scale.


Subject(s)
Electronic Data Processing/methods , Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , Phenotype , Sequence Analysis, DNA/methods , Anti-Bacterial Agents/pharmacology , Cost-Benefit Analysis , Doxorubicin/pharmacology , Drug Evaluation, Preclinical/methods , Electronic Data Processing/economics , Genomics/methods , Microbial Sensitivity Tests , Oligonucleotide Array Sequence Analysis/economics , Pyridines/pharmacology , Sensitivity and Specificity , Sequence Analysis, DNA/economics , Tunicamycin/pharmacology , Yeasts/drug effects , Yeasts/physiology
11.
Nucleic Acids Res ; 38(13): e142, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20460461

ABSTRACT

Next-generation sequencing has proven an extremely effective technology for molecular counting applications where the number of sequence reads provides a digital readout for RNA-seq, ChIP-seq, Tn-seq and other applications. The extremely large number of sequence reads that can be obtained per run permits the analysis of increasingly complex samples. For lower complexity samples, however, a point of diminishing returns is reached when the number of counts per sequence results in oversampling with no increase in data quality. A solution to making next-generation sequencing as efficient and affordable as possible involves assaying multiple samples in a single run. Here, we report the successful 96-plexing of complex pools of DNA barcoded yeast mutants and show that such 'Bar-seq' assessment of these samples is comparable with data provided by barcode microarrays, the current benchmark for this application. The cost reduction and increased throughput permitted by highly multiplexed sequencing will greatly expand the scope of chemogenomics assays and, equally importantly, the approach is suitable for other sequence counting applications that could benefit from massive parallelization.


Subject(s)
Sequence Analysis, DNA/methods , Mutation , Polymerase Chain Reaction , Saccharomyces cerevisiae/genetics
12.
Cancer Epidemiol Biomarkers Prev ; 31(1): 210-220, 2022 01.
Article in English | MEDLINE | ID: mdl-34737207

ABSTRACT

BACKGROUND: Fusobacterium nucleatum (F. nucleatum) activates oncogenic signaling pathways and induces inflammation to promote colorectal carcinogenesis. METHODS: We characterized F. nucleatum and its subspecies in colorectal tumors and examined associations with tumor characteristics and colorectal cancer-specific survival. We conducted deep sequencing of nusA, nusG, and bacterial 16s rRNA genes in tumors from 1,994 patients with colorectal cancer and assessed associations between F. nucleatum presence and clinical characteristics, colorectal cancer-specific mortality, and somatic mutations. RESULTS: F. nucleatum, which was present in 10.3% of tumors, was detected in a higher proportion of right-sided and advanced-stage tumors, particularly subspecies animalis. Presence of F. nucleatum was associated with higher colorectal cancer-specific mortality (HR, 1.97; P = 0.0004). This association was restricted to nonhypermutated, microsatellite-stable tumors (HR, 2.13; P = 0.0002) and those who received chemotherapy [HR, 1.92; confidence interval (CI), 1.07-3.45; P = 0.029). Only F. nucleatum subspecies animalis, the main subspecies detected (65.8%), was associated with colorectal cancer-specific mortality (HR, 2.16; P = 0.0016), subspecies vincentii and nucleatum were not (HR, 1.07; P = 0.86). Additional adjustment for tumor stage suggests that the effect of F. nucleatum on mortality is partly driven by a stage shift. Presence of F. nucleatum was associated with microsatellite instable tumors, tumors with POLE exonuclease domain mutations, and ERBB3 mutations, and suggestively associated with TP53 mutations. CONCLUSIONS: F. nucleatum, and particularly subspecies animalis, was associated with a higher colorectal cancer-specific mortality and specific somatic mutated genes. IMPACT: Our findings identify the F. nucleatum subspecies animalis as negatively impacting colorectal cancer mortality, which may occur through a stage shift and its effect on chemoresistance.


Subject(s)
Colorectal Neoplasms , Fusobacterium nucleatum , Carcinogenesis , Colorectal Neoplasms/genetics , Humans , RNA, Ribosomal, 16S
13.
BMC Genomics ; 12: 213, 2011 May 06.
Article in English | MEDLINE | ID: mdl-21548937

ABSTRACT

BACKGROUND: Genome-wide screening in human and mouse cells using RNA interference and open reading frame over-expression libraries is rapidly becoming a viable experimental approach for many research labs. There are a variety of gene expression modulation libraries commercially available, however, detailed and validated protocols as well as the reagents necessary for deconvolving genome-scale gene screens using these libraries are lacking. As a solution, we designed a comprehensive platform for highly multiplexed functional genetic screens in human, mouse and yeast cells using popular, commercially available gene modulation libraries. The Gene Modulation Array Platform (GMAP) is a single microarray-based detection solution for deconvolution of loss and gain-of-function pooled screens. RESULTS: Experiments with specially constructed lentiviral-based plasmid pools containing ~78,000 shRNAs demonstrated that the GMAP is capable of deconvolving genome-wide shRNA "dropout" screens. Further experiments with a larger, ~90,000 shRNA pool demonstrate that equivalent results are obtained from plasmid pools and from genomic DNA derived from lentivirus infected cells. Parallel testing of large shRNA pools using GMAP and next-generation sequencing methods revealed that the two methods provide valid and complementary approaches to deconvolution of genome-wide shRNA screens. Additional experiments demonstrated that GMAP is equivalent to similar microarray-based products when used for deconvolution of open reading frame over-expression screens. CONCLUSION: Herein, we demonstrate four major applications for the GMAP resource, including deconvolution of pooled RNAi screens in cells with at least 90,000 distinct shRNAs. We also provide detailed methodologies for pooled shRNA screen readout using GMAP and compare next-generation sequencing to GMAP (i.e. microarray) based deconvolution methods.


Subject(s)
Genetic Testing/methods , Genomics/methods , Animals , Humans , Mice , Oligonucleotide Array Sequence Analysis , Open Reading Frames/genetics , Quality Control , RNA Interference , Saccharomyces cerevisiae/genetics , Software
14.
Nat Methods ; 5(8): 719-25, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18622398

ABSTRACT

The ability to perform complex bioassays in parallel enables experiments that are otherwise impossible because of throughput and cost constraints. For example, highly parallel chemical-genetic screens using pooled collections of thousands of defined Saccharomyces cerevisiae gene deletion strains are feasible because each strain is bar-coded with unique DNA sequences. It is, however, time-consuming and expensive to individually bar-code individual strains. To provide a simple and general method of barcoding yeast collections, we built a set of donor strains, called Barcoders, with unique bar codes that can be systematically transferred to any S. cerevisiae collection. We applied this technology by generating a collection of bar-coded 'decreased abundance by mRNA perturbation' (DAmP) loss-of-function strains comprising 87.1% of all essential yeast genes. These experiments validate both the Barcoders and the DAmP strain collection as useful tools for genome-wide chemical-genetic assays.


Subject(s)
Biological Assay/methods , Electronic Data Processing/methods , Genetic Techniques , Genome, Fungal/genetics , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/genetics , Alleles , Gene Deletion , Heterozygote , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/drug effects , Sensitivity and Specificity
15.
PLoS Genet ; 4(8): e1000151, 2008 Aug 08.
Article in English | MEDLINE | ID: mdl-18688276

ABSTRACT

To better understand off-target effects of widely prescribed psychoactive drugs, we performed a comprehensive series of chemogenomic screens using the budding yeast Saccharomyces cerevisiae as a model system. Because the known human targets of these drugs do not exist in yeast, we could employ the yeast gene deletion collections and parallel fitness profiling to explore potential off-target effects in a genome-wide manner. Among 214 tested, documented psychoactive drugs, we identified 81 compounds that inhibited wild-type yeast growth and were thus selected for genome-wide fitness profiling. Many of these drugs had a propensity to affect multiple cellular functions. The sensitivity profiles of half of the analyzed drugs were enriched for core cellular processes such as secretion, protein folding, RNA processing, and chromatin structure. Interestingly, fluoxetine (Prozac) interfered with establishment of cell polarity, cyproheptadine (Periactin) targeted essential genes with chromatin-remodeling roles, while paroxetine (Paxil) interfered with essential RNA metabolism genes, suggesting potential secondary drug targets. We also found that the more recently developed atypical antipsychotic clozapine (Clozaril) had no fewer off-target effects in yeast than the typical antipsychotics haloperidol (Haldol) and pimozide (Orap). Our results suggest that model organism pharmacogenetic studies provide a rational foundation for understanding the off-target effects of clinically important psychoactive agents and suggest a rational means both for devising compound derivatives with fewer side effects and for tailoring drug treatment to individual patient genotypes.


Subject(s)
Genome, Fungal/drug effects , Psychotropic Drugs/pharmacology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Cell Polarity/drug effects , Drug Evaluation, Preclinical , Drug Resistance , Gene Expression Profiling , Humans , Lipid Metabolism/drug effects , Oligonucleotide Array Sequence Analysis , Protein Biosynthesis/drug effects , Protein Transport/drug effects , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Telomere/drug effects
16.
PLoS Genet ; 4(11): e1000284, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19043571

ABSTRACT

Small molecules have been shown to be potent and selective probes to understand cell physiology. Here, we show that imidazo[1,2-a]pyridines and imidazo[1,2-a]pyrimidines compose a class of compounds that target essential, conserved cellular processes. Using validated chemogenomic assays in Saccharomyces cerevisiae, we discovered that two closely related compounds, an imidazo[1,2-a]pyridine and -pyrimidine that differ by a single atom, have distinctly different mechanisms of action in vivo. 2-phenyl-3-nitroso-imidazo[1,2-a]pyridine was toxic to yeast strains with defects in electron transport and mitochondrial functions and caused mitochondrial fragmentation, suggesting that compound 13 acts by disrupting mitochondria. By contrast, 2-phenyl-3-nitroso-imidazo[1,2-a]pyrimidine acted as a DNA poison, causing damage to the nuclear DNA and inducing mutagenesis. We compared compound 15 to known chemotherapeutics and found resistance required intact DNA repair pathways. Thus, subtle changes in the structure of imidazo-pyridines and -pyrimidines dramatically alter both the intracellular targeting of these compounds and their effects in vivo. Of particular interest, these different modes of action were evident in experiments on human cells, suggesting that chemical-genetic profiles obtained in yeast are recapitulated in cultured cells, indicating that our observations in yeast can: (1) be leveraged to determine mechanism of action in mammalian cells and (2) suggest novel structure-activity relationships.


Subject(s)
Antifungal Agents/chemistry , Pyridines/chemistry , Pyrimidines/chemistry , Saccharomyces cerevisiae/genetics , Antifungal Agents/pharmacology , Cells, Cultured , DNA Damage , DNA Repair , Humans , Mitochondria/metabolism , Pyridines/pharmacology , Pyrimidines/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Signal Transduction
17.
Nat Commun ; 12(1): 6893, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34824250

ABSTRACT

Replicative immortality is a hallmark of cancer, and can be achieved through telomere lengthening and maintenance. Although the role of telomere length in cancer has been well studied, its association to genomic features is less well known. Here, we report the telomere lengths of 392 localized prostate cancer tumours and characterize their relationship to genomic, transcriptomic and proteomic features. Shorter tumour telomere lengths are associated with elevated genomic instability, including single-nucleotide variants, indels and structural variants. Genes involved in cell proliferation and signaling are correlated with tumour telomere length at all levels of the central dogma. Telomere length is also associated with multiple clinical features of a tumour. Longer telomere lengths in non-tumour samples are associated with a lower rate of biochemical relapse. In summary, we describe the multi-level integration of telomere length, genomics, transcriptomics and proteomics in localized prostate cancer.


Subject(s)
Prostatic Neoplasms/genetics , Telomere/genetics , DNA Copy Number Variations , Epigenome , Gene Fusion , Genomics , Humans , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proteome , Telomerase/genetics , Telomerase/metabolism , Transcriptome
18.
PLoS One ; 16(2): e0247258, 2021.
Article in English | MEDLINE | ID: mdl-33592074

ABSTRACT

Health care workers (HCWs) are at higher risk for SARS-CoV-2 infection and may play a role in transmitting the infection to vulnerable patients and members of the community. This is particularly worrisome in the context of asymptomatic infection. We performed a cross-sectional study looking at asymptomatic SARS-CoV-2 infection in HCWs. We screened asymptomatic HCWs for SARS-CoV-2 via PCR. Complementary viral genome sequencing was performed on positive swab specimens. A seroprevalence analysis was also performed using multiple assays. Asymptomatic health care worker cohorts had a combined swab positivity rate of 29/5776 (0.50%, 95%CI 0.32-0.75) relative to a comparative cohort of symptomatic HCWs, where 54/1597 (3.4%) tested positive for SARS-CoV-2 (ratio of symptomatic to asymptomatic 6.8:1). SARS-CoV-2 seroprevalence among 996 asymptomatic HCWs with no prior known exposure to SARS-CoV-2 was 1.4-3.4%, depending on assay. A novel in-house Coronavirus protein microarray showed differing SARS-CoV-2 protein reactivities and helped define likely true positives vs. suspected false positives. Our study demonstrates the utility of routine screening of asymptomatic HCWs, which may help to identify a significant proportion of infections.


Subject(s)
Asymptomatic Infections/epidemiology , COVID-19 Serological Testing/statistics & numerical data , COVID-19/epidemiology , Health Personnel/statistics & numerical data , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing/statistics & numerical data , Canada , Humans , Seroepidemiologic Studies , Tertiary Care Centers/statistics & numerical data
19.
Nat Commun ; 11(1): 3644, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32686686

ABSTRACT

Colorectal cancer (CRC) is a biologically heterogeneous disease. To characterize its mutational profile, we conduct targeted sequencing of 205 genes for 2,105 CRC cases with survival data. Our data shows several findings in addition to enhancing the existing knowledge of CRC. We identify PRKCI, SPZ1, MUTYH, MAP2K4, FETUB, and TGFBR2 as additional genes significantly mutated in CRC. We find that among hypermutated tumors, an increased mutation burden is associated with improved CRC-specific survival (HR = 0.42, 95% CI: 0.21-0.82). Mutations in TP53 are associated with poorer CRC-specific survival, which is most pronounced in cases carrying TP53 mutations with predicted 0% transcriptional activity (HR = 1.53, 95% CI: 1.21-1.94). Furthermore, we observe differences in mutational frequency of several genes and pathways by tumor location, stage, and sex. Overall, this large study provides deep insights into somatic mutations in CRC, and their potential relationships with survival and tumor features.


Subject(s)
Colorectal Neoplasms/genetics , Neoplasm Proteins/genetics , Colonic Neoplasms/genetics , High-Throughput Nucleotide Sequencing , Humans , INDEL Mutation , Mutation , Prognosis , Tumor Suppressor Protein p53/genetics
20.
BMC Genomics ; 10: 471, 2009 Oct 13.
Article in English | MEDLINE | ID: mdl-19825181

ABSTRACT

BACKGROUND: Microarrays are an invaluable tool in many modern genomic studies. It is generally perceived that decreasing the size of microarray features leads to arrays with higher resolution (due to greater feature density), but this increase in resolution can compromise sensitivity. RESULTS: We demonstrate that barcode microarrays with smaller features are equally capable of detecting variation in DNA barcode intensity when compared to larger feature sizes within a specific microarray platform. The barcodes used in this study are the well-characterized set derived from the Yeast KnockOut (YKO) collection used for screens of pooled yeast (Saccharomyces cerevisiae) deletion mutants. We treated these pools with the glycosylation inhibitor tunicamycin as a test compound. Three generations of barcode microarrays at 30, 8 and 5 microm features sizes independently identified the primary target of tunicamycin to be ALG7. CONCLUSION: We show that the data obtained with 5 microm feature size is of comparable quality to the 30 microm size and propose that further shrinking of features could yield barcode microarrays with equal or greater resolving power and, more importantly, higher density.


Subject(s)
Comparative Genomic Hybridization , Genomics/methods , Oligonucleotide Array Sequence Analysis/methods , DNA, Fungal/genetics , Genome, Fungal , Saccharomyces cerevisiae/genetics , Tunicamycin
SELECTION OF CITATIONS
SEARCH DETAIL