Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Circ Res ; 133(12): 1040-1055, 2023 12 08.
Article in English | MEDLINE | ID: mdl-37961889

ABSTRACT

BACKGROUND: Nitric oxide (NO) has been identified as a signaling molecule generated during ß-adrenergic receptor stimulation in the heart. Furthermore, a role for NO in triggering spontaneous Ca2+ release via S-nitrosylation of CaMKIIδ (Ca2+/calmodulin kinase II delta) is emerging. NO donors are routinely used clinically for their cardioprotective effects on the heart, but it is unknown how NO donors modulate the proarrhythmic CaMKII to alter cardiac arrhythmia incidence. We test the role of S-nitrosylation of CaMKIIδ at the Cysteine-273 inhibitory site and cysteine-290 activating site in cardiac Ca2+ handling and arrhythmogenesis before and during ß-adrenergic receptor stimulation. METHODS: We measured Ca2+-handling in isolated cardiomyocytes from C57BL/6J wild-type (WT) mice and mice lacking CaMKIIδ expression (CaMKIIδ-KO) or with deletion of the S-nitrosylation site on CaMKIIδ at cysteine-273 or cysteine-290 (CaMKIIδ-C273S and -C290A knock-in mice). Cardiomyocytes were exposed to NO donors, S-nitrosoglutathione (GSNO; 150 µM), sodium nitroprusside (200 µM), and ß-adrenergic agonist isoproterenol (100 nmol/L). RESULTS: Both WT and CaMKIIδ-KO cardiomyocytes responded to isoproterenol with a full inotropic and lusitropic Ca2+ transient response as well as increased Ca2+ spark frequency. However, the increase in Ca2+ spark frequency was significantly attenuated in CaMKIIδ-KO cardiomyocytes. The protection from isoproterenol-induced Ca2+ sparks and waves was mimicked by GSNO pretreatment in WT cardiomyocytes but lost in CaMKIIδ-C273S cardiomyocytes. When GSNO was applied after isoproterenol, this protection was not observed in WT or CaMKIIδ-C273S but was apparent in CaMKIIδ-C290A. In Langendorff-perfused isolated hearts, GSNO pretreatment limited isoproterenol-induced arrhythmias in WT but not CaMKIIδ-C273S hearts, while GSNO exposure after isoproterenol sustained or exacerbated arrhythmic events. CONCLUSIONS: We conclude that prior S-nitrosylation of CaMKIIδ at cysteine-273 can limit subsequent ß-adrenergic receptor-induced arrhythmias, but that S-nitrosylation at cysteine-290 might worsen or sustain ß-adrenergic receptor-induced arrhythmias. This has important implications for the administration of NO donors in the clinical setting.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Nitric Oxide , Mice , Animals , Isoproterenol/pharmacology , Nitric Oxide/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cysteine/metabolism , Mice, Inbred C57BL , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/metabolism , Myocytes, Cardiac/metabolism , Phosphorylation , Receptors, Adrenergic, beta/metabolism , Calcium/metabolism , Sarcoplasmic Reticulum/metabolism
2.
PLoS Biol ; 18(9): e3000866, 2020 09.
Article in English | MEDLINE | ID: mdl-32881857

ABSTRACT

The small GTPase RhoA is a central signaling enzyme that is involved in various cellular processes such as cytoskeletal dynamics, transcription, and cell cycle progression. Many signal transduction pathways activate RhoA-for instance, Gαq-coupled Histamine 1 Receptor signaling via Gαq-dependent activation of RhoGEFs such as p63. Although multiple upstream regulators of RhoA have been identified, the temporal regulation of RhoA and the coordination of different upstream components in its regulation have not been well characterized. In this study, live-cell measurement of RhoA activation revealed a biphasic increase of RhoA activity upon histamine stimulation. We showed that the first and second phase of RhoA activity are dependent on p63 and Ca2+/PKC, respectively, and further identified phosphorylation of serine 240 on p115 RhoGEF by PKC to be the mechanistic link between PKC and RhoA. Combined approaches of computational modeling and quantitative measurement revealed that the second phase of RhoA activation is insensitive to rapid turning off of the receptor and is required for maintaining RhoA-mediated transcription after the termination of the receptor signaling. Thus, two divergent pathways enable both rapid activation and persistent signaling in receptor-mediated RhoA signaling via intricate temporal regulation.


Subject(s)
Histamine/pharmacology , rhoA GTP-Binding Protein/metabolism , Animals , Calcium Signaling/drug effects , Cells, Cultured , Enzyme Activation/drug effects , HeLa Cells , Humans , Mice , Phosphorylation/drug effects , Protein Kinase C/metabolism , Receptors, Histamine/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction/drug effects
3.
Circ Res ; 126(10): e80-e96, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32134364

ABSTRACT

RATIONALE: Diabetes mellitus is a complex, multisystem disease, affecting large populations worldwide. Chronic CaMKII (Ca2+/calmodulin-dependent kinase II) activation may occur in diabetes mellitus and be arrhythmogenic. Diabetic hyperglycemia was shown to activate CaMKII by (1) O-linked attachment of N-acetylglucosamine (O-GlcNAc) at S280 leading to arrhythmia and (2) a reactive oxygen species (ROS)-mediated oxidation of CaMKII that can increase postinfarction mortality. OBJECTIVE: To test whether high extracellular glucose (Hi-Glu) promotes ventricular myocyte ROS generation and the role played by CaMKII. METHODS AND RESULTS: We tested how extracellular Hi-Glu influences ROS production in adult ventricular myocytes, using DCF (2',7'-dichlorodihydrofluorescein diacetate) and genetically targeted Grx-roGFP2 redox sensors. Hi-Glu (30 mmol/L) significantly increased the rate of ROS generation-an effect prevented in myocytes pretreated with CaMKII inhibitor KN-93 or from either global or cardiac-specific CaMKIIδ KO (knockout) mice. CaMKII KO or inhibition also prevented Hi-Glu-induced sarcoplasmic reticulum Ca2+ release events (Ca2+ sparks). Thus, CaMKII activation is required for Hi-Glu-induced ROS generation and sarcoplasmic reticulum Ca2+ leak in cardiomyocytes. To test the involvement of O-GlcNAc-CaMKII pathway, we inhibited GlcNAcylation removal by Thiamet G (ThmG), which mimicked the Hi-Glu-induced ROS production. Conversely, inhibition of GlcNAcylation (OSMI-1 [(αR)-α-[[(1,2-dihydro-2-oxo-6-quinolinyl)sulfonyl]amino]-N-(2-furanylmethyl)-2-methoxy-N-(2-thienylmethyl)-benzeneacetamide]) prevented ROS induction in response to either Hi-Glu or ThmG. Moreover, in a CRSPR-based knock-in mouse in which the functional GlcNAcylation site on CaMKIIδ was ablated (S280A), neither Hi-Glu nor ThmG induced myocyte ROS generation. So CaMKIIδ-S280 is required for the Hi-Glu-induced (and GlcNAc dependent) ROS production. To identify the ROS source(s), we used different inhibitors of NOX (NADPH oxidase) 2 (Gp91ds-tat peptide), NOX4 (GKT137831), mitochondrial ROS (MitoTempo), and NOS (NO synthase) pathway inhibitors (L-NAME, L-NIO, and L-NPA). Only NOX2 inhibition or KO prevented Hi-Glu/ThmG-induced ROS generation. CONCLUSIONS: Diabetic hyperglycemia induces acute cardiac myocyte ROS production by NOX2 that requires O-GlcNAcylation of CaMKIIδ at S280. This novel ROS induction may exacerbate pathological consequences of diabetic hyperglycemia.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Diabetic Cardiomyopathies/etiology , Glucose/toxicity , Hyperglycemia/complications , Myocytes, Cardiac/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Animals , Calcium Signaling , Calcium-Calmodulin-Dependent Protein Kinase Type 2/deficiency , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cells, Cultured , Diabetic Cardiomyopathies/enzymology , Diabetic Cardiomyopathies/physiopathology , Enzyme Activation , Glutaredoxins/genetics , Glutaredoxins/metabolism , Glycosylation , Humans , Hyperglycemia/enzymology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/enzymology , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/enzymology , NADPH Oxidase 2/deficiency , NADPH Oxidase 2/genetics , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/enzymology
4.
Int J Mol Sci ; 22(9)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922643

ABSTRACT

ATPase inhibitory factor-1 (IF1) preserves cellular ATP under conditions of respiratory collapse, yet the function of IF1 under normal respiring conditions is unresolved. We tested the hypothesis that IF1 promotes mitochondrial dysfunction and pathological cardiomyocyte hypertrophy in the context of heart failure (HF). Methods and results: Cardiac expression of IF1 was increased in mice and in humans with HF, downstream of neurohumoral signaling pathways and in patterns that resembled the fetal-like gene program. Adenoviral expression of wild-type IF1 in primary cardiomyocytes resulted in pathological hypertrophy and metabolic remodeling as evidenced by enhanced mitochondrial oxidative stress, reduced mitochondrial respiratory capacity, and the augmentation of extramitochondrial glycolysis. Similar perturbations were observed with an IF1 mutant incapable of binding to ATP synthase (E55A mutation), an indication that these effects occurred independent of binding to ATP synthase. Instead, IF1 promoted mitochondrial fragmentation and compromised mitochondrial Ca2+ handling, which resulted in sarcoplasmic reticulum Ca2+ overloading. The effects of IF1 on Ca2+ handling were associated with the cytosolic activation of calcium-calmodulin kinase II (CaMKII) and inhibition of CaMKII or co-expression of catalytically dead CaMKIIδC was sufficient to prevent IF1 induced pathological hypertrophy. Conclusions: IF1 represents a novel member of the fetal-like gene program that contributes to mitochondrial dysfunction and pathological cardiac remodeling in HF. Furthermore, we present evidence for a novel, ATP-synthase-independent, role for IF1 in mitochondrial Ca2+ handling and mitochondrial-to-nuclear crosstalk involving CaMKII.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium/metabolism , Cardiomegaly/pathology , Mitochondria/pathology , Myocardial Ischemia/pathology , Myocytes, Cardiac/pathology , Proteins/metabolism , Animals , Animals, Newborn , Apoptosis , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cardiomegaly/genetics , Cardiomegaly/metabolism , Humans , Mice , Mice, Transgenic , Mitochondria/metabolism , Myocardial Ischemia/genetics , Myocardial Ischemia/metabolism , Myocytes, Cardiac/metabolism , Proteins/genetics , Rats , Sarcoplasmic Reticulum/metabolism , Signal Transduction , ATPase Inhibitory Protein
5.
J Physiol ; 595(19): 6249-6262, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28737214

ABSTRACT

KEY POINTS: While autologous stem cell-based therapies are currently being tested on elderly patients, there are limited data on the function of aged stem cells and in particular c-kit+ cardiac progenitor cells (CPCs). We isolated c-kit+ cells from young (3 months) and aged (24 months) C57BL/6 mice to compare their biological properties. Aged CPCs have increased senescence, decreased stemness and reduced capacity to proliferate or to differentiate following dexamethasone (Dex) treatment in vitro, as evidenced by lack of cardiac lineage gene upregulation. Aged CPCs fail to activate mitochondrial biogenesis and increase proteins involved in mitochondrial oxidative phosphorylation in response to Dex. Aged CPCs fail to upregulate paracrine factors that are potentially important for proliferation, survival and angiogenesis in response to Dex. The results highlight marked differences between young and aged CPCs, which may impact future design of autologous stem cell-based therapies. ABSTRACT: Therapeutic use of c-kit+ cardiac progenitor cells (CPCs) is being evaluated for regenerative therapy in older patients with ischaemic heart failure. Our understanding of the biology of these CPCs has, however, largely come from studies of young cells and animal models. In the present study we examined characteristics of CPCs isolated from young (3 months) and aged (24 months) mice that could underlie the diverse outcomes reported for CPC-based therapeutics. We observed morphological differences and altered senescence indicated by increased senescence-associated markers ß-galactosidase and p16 mRNA in aged CPCs. The aged CPCs also proliferated more slowly than their young counterparts and expressed lower levels of the stemness marker LIN28. We subsequently treated the cells with dexamethasone (Dex), routinely used to induce commitment in CPCs, for 7 days and analysed expression of cardiac lineage marker genes. While MEF2C, GATA4, GATA6 and PECAM mRNAs were significantly upregulated in response to Dex treatment in young CPCs, their expression was not increased in aged CPCs. Interestingly, Dex treatment of aged CPCs also failed to increase mitochondrial biogenesis and expression of the mitochondrial proteins Complex III and IV, consistent with a defect in mitochondria complex assembly in the aged CPCs. Dex-treated aged CPCs also had impaired ability to upregulate expression of paracrine factor genes and the conditioned media from these cells had reduced ability to induce angiogenesis in vitro. These findings could impact the design of future CPC-based therapeutic approaches for the treatment of older patients suffering from cardiac injury.


Subject(s)
Adult Stem Cells/metabolism , Aging/metabolism , Cellular Senescence , Myocytes, Cardiac/metabolism , Adult Stem Cells/cytology , Adult Stem Cells/drug effects , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Dexamethasone/pharmacology , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , GATA Transcription Factors/genetics , GATA Transcription Factors/metabolism , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Organelle Biogenesis , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Proto-Oncogene Proteins c-kit/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
6.
Circ Res ; 116(5): e28-39, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25605649

ABSTRACT

RATIONALE: Sustained activation of Gαq transgenic (Gq) signaling during pressure overload causes cardiac hypertrophy that ultimately progresses to dilated cardiomyopathy. The molecular events that drive hypertrophy decompensation are incompletely understood. Ca(2+)/calmodulin-dependent protein kinase II δ (CaMKIIδ) is activated downstream of Gq, and overexpression of Gq and CaMKIIδ recapitulates hypertrophy decompensation. OBJECTIVE: To determine whether CaMKIIδ contributes to hypertrophy decompensation provoked by Gq. METHODS AND RESULTS: Compared with Gq mice, compound Gq/CaMKIIδ knockout mice developed a similar degree of cardiac hypertrophy but exhibited significantly improved left ventricular function, less cardiac fibrosis and cardiomyocyte apoptosis, and fewer ventricular arrhythmias. Markers of oxidative stress were elevated in mitochondria from Gq versus wild-type mice and respiratory rates were lower; these changes in mitochondrial function were restored by CaMKIIδ deletion. Gq-mediated increases in mitochondrial oxidative stress, compromised membrane potential, and cell death were recapitulated in neonatal rat ventricular myocytes infected with constitutively active Gq and attenuated by CaMKII inhibition. Deep RNA sequencing revealed altered expression of 41 mitochondrial genes in Gq hearts, with normalization of ≈40% of these genes by CaMKIIδ deletion. Uncoupling protein 3 was markedly downregulated in Gq or by Gq expression in neonatal rat ventricular myocytes and reversed by CaMKIIδ deletion or inhibition, as was peroxisome proliferator-activated receptor α. The protective effects of CaMKIIδ inhibition on reactive oxygen species generation and cell death were abrogated by knock down of uncoupling protein 3. Conversely, restoration of uncoupling protein 3 expression attenuated reactive oxygen species generation and cell death induced by CaMKIIδ. Our in vivo studies further demonstrated that pressure overload induced decreases in peroxisome proliferator-activated receptor α and uncoupling protein 3, increases in mitochondrial protein oxidation, and hypertrophy decompensation, which were attenuated by CaMKIIδ deletion. CONCLUSIONS: Mitochondrial gene reprogramming induced by CaMKIIδ emerges as an important mechanism contributing to mitotoxicity in decompensating hypertrophy.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/physiology , Cardiomegaly/enzymology , Cardiomyopathy, Dilated/etiology , Heart Failure/etiology , Mitochondria, Heart/physiology , Acetylcysteine/pharmacology , Animals , Apoptosis , Benzylamines/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/deficiency , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cardiomegaly/physiopathology , Cardiomyopathy, Dilated/physiopathology , Cardiomyopathy, Dilated/prevention & control , Cells, Cultured , Disease Progression , GTP-Binding Protein alpha Subunits, Gq-G11/deficiency , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/physiology , Gene Expression Profiling , Heart Failure/physiopathology , Ion Channels/biosynthesis , Ion Channels/genetics , Ion Channels/physiology , Male , Mice , Mice, Knockout , Mice, Transgenic , Mitochondrial Proteins/biosynthesis , Mitochondrial Proteins/genetics , Mitochondrial Proteins/physiology , Myocytes, Cardiac/metabolism , Oxidative Stress , PPAR alpha/biosynthesis , PPAR alpha/genetics , Point Mutation , Pressure , RNA Interference , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Small Interfering/pharmacology , Rats , Reactive Oxygen Species , Sequence Analysis, RNA , Sulfonamides/pharmacology , Transfection , Uncoupling Protein 3
7.
Eur Heart J ; 32(17): 2179-88, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21228009

ABSTRACT

AIMS: The cascade of events leading to compromised mitochondrial integrity in response to stress is mediated by various combinatorial interactions of pro- and anti-apoptotic molecules. Nur77, an immediate early gene that encodes a nuclear orphan receptor, translocates from the nucleus to mitochondria to induce cytochrome c release and apoptosis in cancer cells in response to various pro-apoptotic treatments. However, the role of Nur77 in the cardiac setting is still unclear. The objective of this study is to determine the physiological relevance and pathophysiological importance of Nur77 in cardiomyocytes. METHODS AND RESULTS: Myocardial Nur77 is upregulated following cardiomyopathic injury and, while expressed in the postnatal myocardium, declines in level within weeks after birth. Nur77 is localized predominantly in cardiomyocyte nuclei under normal conditions where it is not apoptotic, but translocates to mitochondria in response to oxidative stress both in vitro and in vivo. Mitochondrial localization of Nur77 induces cytochrome c release and typical morphological features of apoptosis, including chromatin condensation and DNA fragmentation. Knockdown of Nur77 rescued hydrogen peroxide-induced cardiomyocyte apoptosis. CONCLUSION: Translocation of Nur77 from the nucleus to the mitochondria in cardiomyocytes results in the loss of mitochondrial integrity and subsequent apoptosis in response to ischaemia/reperfusion injury. Our findings identify Nur77 as a novel mediator of cardiomyocyte apoptosis and warrants further investigation of mitochondrial Nur77 translocation as a mechanism to control cell death in the treatment of ischaemic heart diseases.


Subject(s)
Apoptosis/physiology , Mitochondria, Heart/physiology , Myocardial Ischemia/pathology , Myocytes, Cardiac/pathology , Nuclear Receptor Subfamily 4, Group A, Member 1/physiology , Animals , Constriction , Female , Male , Mice , Myocardial Reperfusion Injury/pathology , Rats , Rats, Sprague-Dawley , Transfection , Up-Regulation
8.
Elife ; 112022 04 12.
Article in English | MEDLINE | ID: mdl-35411847

ABSTRACT

While health effects of conventional tobacco are well defined, data on vaping devices, including one of the most popular e-cigarettes which have high nicotine levels, are less established. Prior acute e-cigarette studies have demonstrated inflammatory and cardiopulmonary physiology changes while chronic studies have demonstrated extra-pulmonary effects, including neurotransmitter alterations in reward pathways. In this study we investigated the impact of inhalation of aerosols produced from pod-based, flavored e-cigarettes (JUUL) aerosols three times daily for 3 months on inflammatory markers in the brain, lung, heart, and colon. JUUL aerosol exposure induced upregulation of cytokine and chemokine gene expression and increased HMGB1 and RAGE in the nucleus accumbens in the central nervous system. Inflammatory gene expression increased in the colon, while gene expression was more broadly altered by e-cigarette aerosol inhalation in the lung. Cardiopulmonary inflammatory responses to acute lung injury with lipopolysaccharide were exacerbated in the heart. Flavor-specific findings were detected across these studies. Our findings suggest that daily e-cigarette use may cause neuroinflammation, which may contribute to behavioral changes and mood disorders. In addition, e-cigarette use may cause gut inflammation, which has been tied to poor systemic health, and cardiac inflammation, which leads to cardiovascular disease.


The use of e-cigarettes or 'vaping' has become widespread, particularly among young people and smokers trying to quit. One of the most popular e-cigarette brands is JUUL, which offers appealing flavors and a discrete design. Many e-cigarette users believe these products are healthier than traditional tobacco products. And while the harms of conventional tobacco products have been extensively researched, the short- and long-term health effects of e-cigarettes have not been well studied. There is even less information about the health impacts of newer products like JUUL. E-cigarettes made by JUUL are different relative to prior generations of e-cigarettes. The JUUL device uses disposable pods filled with nicotinic salts instead of nicotine. One JUUL pod contains as much nicotine as an entire pack of cigarettes (41.3 mg). These differences make studying the health effects of this product particularly important. Moshensky, Brand, Alhaddad et al. show that daily exposure to JUUL aerosols increases the expression of genes encoding inflammatory molecules in the brain, lung, heart and colon of mice. In the experiments, mice were exposed to JUUL mint and JUUL mango flavored aerosols for 20 minutes, 3 times a day, and for 4 and 12 weeks. The changes in inflammatory gene expression varied depending on the flavor. This suggests that the flavorings themselves contribute to the observed changes. The findings suggest that daily use of pod-based e-cigarettes or e-cigarettes containing high levels of nicotinic salts over months to years, may cause inflammation in various organs, increasing the risk of disease and poor health. This information may help individuals, clinicians and policymakers make more informed decisions about e-cigarettes. Further studies assessing the impact of these changes on long-term physical and mental health in humans are desperately needed. These should assess health effects across different e-cigarette types, flavors and duration of use.


Subject(s)
Electronic Nicotine Delivery Systems , Mangifera , Mentha , Aerosols , Animals , Brain , Colon , Inflammation , Lung , Mice
9.
J Clin Invest ; 118(12): 3870-80, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19033658

ABSTRACT

The response of cardiomyocytes to biomechanical stress can determine the pathophysiology of hypertrophic cardiac disease, and targeting the pathways regulating these responses is a therapeutic goal. However, little is known about how biomechanical stress is sensed by the cardiomyocyte sarcomere to transduce intracellular hypertrophic signals or how the dysfunction of these pathways may lead to disease. Here, we found that four-and-a-half LIM domains 1 (FHL1) is part of a complex within the cardiomyocyte sarcomere that senses the biomechanical stress-induced responses important for cardiac hypertrophy. Mice lacking Fhl1 displayed a blunted hypertrophic response and a beneficial functional response to pressure overload induced by transverse aortic constriction. A link to the Galphaq (Gq) signaling pathway was also observed, as Fhl1 deficiency prevented the cardiomyopathy observed in Gq transgenic mice. Mechanistic studies demonstrated that FHL1 plays an important role in the mechanism of pathological hypertrophy by sensing biomechanical stress responses via the N2B stretch sensor domain of titin and initiating changes in the titin- and MAPK-mediated responses important for sarcomere extensibility and intracellular signaling. These studies shed light on the physiological regulation of the sarcomere in response to hypertrophic stress.


Subject(s)
Mechanotransduction, Cellular , Muscle Proteins/metabolism , Myocytes, Cardiac/metabolism , Sarcomeres/metabolism , Stress, Physiological , Animals , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Intracellular Signaling Peptides and Proteins , LIM Domain Proteins , MAP Kinase Signaling System/genetics , Mechanotransduction, Cellular/genetics , Mice , Mice, Knockout , Muscle Proteins/genetics , Stress, Physiological/genetics
10.
J Am Heart Assoc ; 10(4): e019019, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33525909

ABSTRACT

Background Neutrophils are thought to be short-lived first responders to tissue injuries such as myocardial infarction (MI), but little is known about their diversification or dynamics. Methods and Results We permanently ligated the left anterior descending coronary arteries of mice and performed single-cell RNA sequencing and analysis of >28 000 neutrophil transcriptomes isolated from the heart, peripheral blood, and bone marrow of mice on days 1 to 4 after MI or at steady-state. Unsupervised clustering of cardiac neutrophils revealed 5 major subsets, 3 of which originated in the bone marrow, including a late-emerging granulocyte expressing SiglecF, a marker classically used to define eosinophils. SiglecFHI neutrophils represented ≈25% of neutrophils on day 1 and grew to account for >50% of neutrophils by day 4 post-MI. Validation studies using quantitative polymerase chain reaction of fluorescent-activated cell sorter sorted Ly6G+SiglecFHI and Ly6G+SiglecFLO neutrophils confirmed the distinct nature of these populations. To confirm that the cells were neutrophils rather than eosinophils, we infarcted GATA-deficient mice (∆dblGATA) and observed similar quantities of infiltrating Ly6G+SiglecFHI cells despite marked reductions of conventional eosinophils. In contrast to other neutrophil subsets, Ly6G+SiglecFHI neutrophils expressed high levels of Myc-regulated genes, which are associated with longevity and are consistent with the persistence of this population on day 4 after MI. Conclusions Overall, our data provide a spatial and temporal atlas of neutrophil specialization in response to MI and reveal a dynamic proinflammatory cardiac Ly6G+SigF+(Myc+NFÏ°B+) neutrophil that has been overlooked because of negative selection.


Subject(s)
Myocardial Infarction/genetics , Myocardium/metabolism , Neutrophils/pathology , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Single-Cell Analysis/methods , Transcriptome , Animals , Disease Models, Animal , Mice , Mice, Inbred C57BL , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardium/pathology , Neutrophils/metabolism , Sequence Analysis, RNA , Sialic Acid Binding Immunoglobulin-like Lectins/genetics
11.
J Exp Med ; 218(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-32970800

ABSTRACT

Endothelial cell calcium flux is critical for leukocyte transendothelial migration (TEM), which in turn is essential for the inflammatory response. Intravital microscopy of endothelial cell calcium dynamics reveals that calcium increases locally and transiently around the transmigration pore during TEM. Endothelial calmodulin (CaM), a key calcium signaling protein, interacts with the IQ domain of IQGAP1, which is localized to endothelial junctions and is required for TEM. In the presence of calcium, CaM binds endothelial calcium/calmodulin kinase IIδ (CaMKIIδ). Disrupting the function of CaM or CaMKII with small-molecule inhibitors, expression of a CaMKII inhibitory peptide, or expression of dominant negative CaMKIIδ significantly reduces TEM by interfering with the delivery of the lateral border recycling compartment (LBRC) to the site of TEM. Endothelial CaMKII is also required for TEM in vivo as shown in two independent mouse models. These findings highlight novel roles for endothelial CaM and CaMKIIδ in transducing the spatiotemporally restricted calcium signaling required for TEM.


Subject(s)
Calcium Signaling , Endothelial Cells/metabolism , Leukocytes/metabolism , Transendothelial and Transepithelial Migration , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calmodulin/genetics , Calmodulin/metabolism , Mice , Mice, Transgenic
12.
JCI Insight ; 3(12)2018 06 21.
Article in English | MEDLINE | ID: mdl-29925681

ABSTRACT

Inflammation accompanies heart failure and is a mediator of cardiac fibrosis. CaMKIIδ plays an essential role in adverse remodeling and decompensation to heart failure. We postulated that inflammation is the mechanism by which CaMKIIδ contributes to adverse remodeling in response to nonischemic interventions. We demonstrate that deletion of CaMKIIδ in the cardiomyocyte (CKO) significantly attenuates activation of NF-κB, expression of inflammatory chemokines and cytokines, and macrophage accumulation induced by angiotensin II (Ang II) infusion. The inflammasome was activated by Ang II, and this response was also diminished in CKO mice. These events occurred prior to any evidence of Ang II-induced cell death. In addition, CaMKII-dependent inflammatory gene expression and inflammasome priming were observed as early as the third hour of infusion, a time point at which macrophage recruitment was not evident. Inhibition of either the inflammasome or monocyte chemoattractant protein 1 (MCP1) signaling attenuated macrophage accumulation, and these interventions, like cardiomyocyte CaMKIIδ deletion, diminished the fibrotic response to Ang II. Thus, activation of CaMKIIδ in the cardiomyocyte represents what we believe to be a novel mechanism for initiating inflammasome activation and an inflammatory gene program that leads to macrophage recruitment and ultimately to development of fibrosis.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Gene Expression , Inflammasomes/metabolism , Inflammation/metabolism , Myocytes, Cardiac/metabolism , Angiotensin II/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cell Death , Chemokine CCL2/metabolism , Chemokines/metabolism , Cytokines/metabolism , Fibrosis/metabolism , Fibrosis/pathology , Gene Deletion , Inflammation/pathology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Cells/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RNA, Messenger/metabolism , Signal Transduction
13.
Elife ; 72018 12 06.
Article in English | MEDLINE | ID: mdl-30520731

ABSTRACT

Ca2+ signaling is important for many cellular and physiological processes, including cardiac function. Although sarcoplasmic reticulum (SR) proteins involved in Ca2+ signaling have been shown to be phosphorylated, the biochemical and physiological roles of protein phosphorylation within the lumen of the SR remain essentially uncharacterized. Our laboratory recently identified an atypical protein kinase, Fam20C, which is uniquely localized to the secretory pathway lumen. Here, we show that Fam20C phosphorylates several SR proteins involved in Ca2+ signaling, including calsequestrin2 and Stim1, whose biochemical activities are dramatically regulated by Fam20C mediated phosphorylation. Notably, phosphorylation of Stim1 by Fam20C enhances Stim1 activation and store-operated Ca2+ entry. Physiologically, mice with Fam20c ablated in cardiomyocytes develop heart failure following either aging or induced pressure overload. We extended these observations to show that non-muscle cells lacking Fam20C display altered ER Ca2+ signaling. Overall, we show that Fam20C plays an overarching role in ER/SR Ca2+ homeostasis and cardiac pathophysiology.


Subject(s)
Calcium-Binding Proteins/genetics , Calsequestrin/genetics , Extracellular Matrix Proteins/genetics , Heart Failure/genetics , Stromal Interaction Molecule 1/genetics , Animals , Calcium/chemistry , Calcium/metabolism , Calcium Signaling/genetics , Calcium-Binding Proteins/chemistry , Calsequestrin/chemistry , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/genetics , Extracellular Matrix Proteins/chemistry , Heart Failure/pathology , Homeostasis , Humans , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phosphorylation , Phosphotransferases/genetics , Sarcoplasmic Reticulum/chemistry , Sarcoplasmic Reticulum/genetics , Secretory Pathway/genetics , Stromal Interaction Molecule 1/chemistry
14.
Front Pharmacol ; 5: 15, 2014.
Article in English | MEDLINE | ID: mdl-24575042

ABSTRACT

In this review we discuss the localization and function of the known subtypes of calcium/calmodulin dependent protein kinase IIδ (CaMKIIδ) and their role in cardiac physiology and pathophysiology. The CaMKII holoenzyme is comprised of multiple subunits that are encoded by four different genes called CaMKIIα, ß, γ, and δ. While these four genes have a high degree of sequence homology, they are expressed in different tissues. CaMKIIα and ß are expressed in neuronal tissue while γ and δ are present throughout the body, including in the heart. Both CaMKIIγ and δ are alternatively spliced in the heart to generate multiple subtypes. CaMKIIδ is the predominant cardiac isoform and is alternatively spliced in the heart to generate the CaMKIIδB subtype or the slightly less abundant δC subtype. The CaMKIIδB mRNA sequence contains a 33bp insert not present in δC that codes for an 11-amino acid nuclear localization sequence. This review focuses on the localization and function of the CaMKIIδ subtypes δB and δC and the role of these subtypes in arrhythmias, contractile dysfunction, gene transcription, and the regulation of Ca(2+) handling.

15.
Circ Arrhythm Electrophysiol ; 7(6): 1205-13, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25236710

ABSTRACT

BACKGROUND: Early afterdepolarizations (EADs) are triggers of cardiac arrhythmia driven by L-type Ca(2+) current (ICaL) reactivation or sarcoplasmic reticulum Ca(2+) release and Na(+)/Ca(2+) exchange. In large mammals the positive action potential plateau promotes ICaL reactivation, and the current paradigm holds that cardiac EAD dynamics are dominated by interaction between ICaL and the repolarizing K(+) currents. However, EADs are also frequent in the rapidly repolarizing mouse action potential, which should not readily permit ICaL reactivation. This suggests that murine EADs exhibit unique dynamics, which are key for interpreting arrhythmia mechanisms in this ubiquitous model organism. We investigated these dynamics in myocytes from arrhythmia-susceptible calcium calmodulin-dependent protein kinase II delta C (CaMKIIδC)-overexpressing mice (Tg), and via computational simulations. METHODS AND RESULTS: In Tg myocytes, ß-adrenergic challenge slowed late repolarization, potentiated sarcoplasmic reticulum Ca(2+) release, and initiated EADs below the ICaL activation range (-47 ± 0.7 mV). These EADs were abolished by caffeine and tetrodotoxin (but not ranolazine), suggesting that sarcoplasmic reticulum Ca(2+) release and Na(+) current (INa), but not late INa, are required for EAD initiation. Simulations suggest that potentiated sarcoplasmic reticulum Ca(2+) release and Na(+)/Ca(2+) exchange shape late action potential repolarization to favor nonequilibrium reactivation of INa and thereby drive the EAD upstroke. Action potential clamp experiments suggest that lidocaine eliminates virtually all inward current elicited by EADs, and that this effect occurs at concentrations (40-60 µmol/L) for which lidocaine remains specific for inactivated Na(+) channels. This strongly suggests that previously inactive channels are recruited during the EAD upstroke, and that nonequilibrium INa dynamics underlie murine EADs. CONCLUSIONS: Nonequilibrium reactivation of INa drives murine EADs.


Subject(s)
Heart Ventricles/metabolism , Myocytes, Cardiac/metabolism , Sodium/metabolism , Ventricular Function , Action Potentials , Adrenergic beta-Antagonists/pharmacology , Animals , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Computer Simulation , Female , Heart Ventricles/drug effects , Male , Mice, Transgenic , Models, Cardiovascular , Myocytes, Cardiac/drug effects , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium Channel Blockers/pharmacology , Sodium-Calcium Exchanger/metabolism , Time Factors
16.
Sci Signal ; 6(306): ra108, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24345679

ABSTRACT

Activation of the small guanosine triphosphatase RhoA can promote cell survival in cultured cardiomyocytes and in the heart. We showed that the circulating lysophospholipid sphingosine 1-phosphate (S1P), a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) agonist, signaled through RhoA and phospholipase Cε (PLCε) to increase the phosphorylation and activation of protein kinase D1 (PKD1). Genetic deletion of either PKD1 or its upstream regulator PLCε inhibited S1P-mediated cardioprotection against ischemia/reperfusion injury. Cardioprotection involved PKD1-mediated phosphorylation and inhibition of the cofilin phosphatase Slingshot 1L (SSH1L). Cofilin 2 translocates to mitochondria in response to oxidative stress or ischemia/reperfusion injury, and both S1P pretreatment and SSH1L knockdown attenuated translocation of cofilin 2 to mitochondria. Cofilin 2 associates with the proapoptotic protein Bax, and the mitochondrial translocation of Bax in response to oxidative stress was also attenuated by S1P treatment in isolated hearts or by knockdown of SSH1L or cofilin 2 in cardiomyocytes. Furthermore, SSH1L knockdown, like S1P treatment, increased cardiomyocyte survival and preserved mitochondrial integrity after oxidative stress. These findings reveal a pathway initiated by GPCR agonist-induced RhoA activation, in which PLCε signals to PKD1-mediated phosphorylation of cytoskeletal proteins to prevent the mitochondrial translocation and proapoptotic function of cofilin 2 and Bax and thereby promote cell survival.


Subject(s)
Mitochondria, Heart/metabolism , Oxidative Stress , Phosphoinositide Phospholipase C/metabolism , Phosphoprotein Phosphatases/metabolism , Protein Kinase C/metabolism , Signal Transduction , rhoA GTP-Binding Protein/metabolism , Animals , Cofilin 2/metabolism , Hydrogen Peroxide/pharmacology , Lysophospholipids/metabolism , Mice , Protein Transport , Sphingosine/analogs & derivatives , Sphingosine/metabolism , bcl-2-Associated X Protein/metabolism
17.
J Clin Invest ; 119(5): 1230-40, 2009 May.
Article in English | MEDLINE | ID: mdl-19381018

ABSTRACT

Ca2+/calmodulin-dependent kinase II (CaMKII) has been implicated in cardiac hypertrophy and heart failure. We generated mice in which the predominant cardiac isoform, CaMKIIdelta, was genetically deleted (KO mice), and found that these mice showed no gross baseline changes in ventricular structure or function. In WT and KO mice, transverse aortic constriction (TAC) induced comparable increases in relative heart weight, cell size, HDAC5 phosphorylation, and hypertrophic gene expression. Strikingly, while KO mice showed preserved hypertrophy after 6-week TAC, CaMKIIdelta deficiency significantly ameliorated phenotypic changes associated with the transition to heart failure, such as chamber dilation, ventricular dysfunction, lung edema, cardiac fibrosis, and apoptosis. The ratio of IP3R2 to ryanodine receptor 2 (RyR2) and the fraction of RyR2 phosphorylated at the CaMKII site increased significantly during development of heart failure in WT mice, but not KO mice, and this was associated with enhanced Ca2+ spark frequency only in WT mice. We suggest that CaMKIIdelta contributes to cardiac decompensation by enhancing RyR2-mediated sarcoplasmic reticulum Ca2+ leak and that attenuating CaMKIIdelta activation can limit the progression to heart failure.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/physiology , Cardiomegaly/complications , Heart Failure/etiology , Heart Failure/metabolism , Ventricular Pressure/physiology , Animals , Aorta/surgery , Calcium Signaling/physiology , Calcium-Binding Proteins/metabolism , Cardiomegaly/etiology , Cardiomegaly/metabolism , Cardiomegaly/pathology , Constriction, Pathologic/complications , Female , Gene Expression/genetics , Heart/anatomy & histology , Heart/physiology , Heart Failure/pathology , Heart Failure/physiopathology , Histone Deacetylases/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myocardium/metabolism , Myocardium/pathology , Phosphorylation , Protein Kinase C/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Up-Regulation/physiology
18.
J Mol Cell Cardiol ; 35(10): 1217-27, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14519432

ABSTRACT

During hypertrophy the heart increases its utilization of glucose and decreases that of fatty acids, resuming a fetal pattern of substrate metabolism. As demonstrated here, GLUT1 protein expression is increased in association with in vivo pressure-overload-induced hypertrophy. The relationship of changes in GLUT1 to enhanced glucose uptake and to cardiomyocyte hypertrophy and survival is not known. To explore this question we first examined the effect of prostaglandin F2alpha (PGF2alpha), an established hypertrophic agonist, on GLUT1 expression and glucose uptake in neonatal rat ventricular myocytes (NRVMs). PGF2alpha treatment for 24 h led to a fivefold increase in GLUT1 expression and a sixfold increase in glucose uptake. However, NRVMs cultured in the absence of glucose or with 3-O-methyl glucose, a competitive inhibitor of glucose uptake, still exhibited PGF2alpha-induced hypertrophic growth. In addition, we determined that overexpression of GLUT1 using adenovirus was insufficient to cause an increase in cell size, myofibrillar organization, or atrial natriuretic factor (ANF) expression. On the other hand, adenoviral overexpression of antisense GLUT1 (which blocked PGF2alpha-induced increases in GLUT1 protein) prevented PGF2alpha-stimulated cell enlargement and increases in ANF transcription. Overexpression of GLUT1 or addition of PGF2alpha also protected cells against serum deprivation-induced apoptosis; this effect was blocked by antisense GLUT1 but, surprisingly, was not dependent on glucose. Together, these data suggest that upregulation of GLUT1 serves a role in agonist-induced hypertrophy and survival which can be dissociated from its role in glucose transport.


Subject(s)
Monosaccharide Transport Proteins/biosynthesis , Myocytes, Cardiac/cytology , Up-Regulation , Adenoviridae/genetics , Animals , Aorta/pathology , Apoptosis , Atrial Natriuretic Factor/biosynthesis , Biological Transport , Blotting, Western , Cell Survival , Cells, Cultured , Dinoprost/metabolism , Enzyme-Linked Immunosorbent Assay , Glucose/metabolism , Glucose/pharmacokinetics , Glucose Transporter Type 1 , Hypertrophy , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Monosaccharide Transport Proteins/metabolism , Muscle Cells/cytology , Oligonucleotides, Antisense/pharmacology , Pressure , Rats , Rats, Sprague-Dawley , Subcellular Fractions , Time Factors
19.
J Mol Cell Cardiol ; 35(9): 1121-33, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12967635

ABSTRACT

Proline-rich tyrosine kinase 2 (PYK2) is a nonreceptor protein tyrosine kinase that links G-protein-coupled receptors to activation of MAPK cascades and cellular growth. In smooth muscle and other cell types, PYK2 activation is dependent on either Ca(2+) or protein kinase C (PKC), and we have previously shown that endothelin-1 (ET) activates PYK2 in adult and neonatal rat ventricular myocytes (NRVM). However, ET both alters intracellular Ca(2+) ([Ca(2+)](i)), and activates the novel, Ca(2+)-independent PKCs. Therefore, immunoprecipitation and western blotting experiments were used to examine the PKC and Ca(2+) dependence of PYK2 activation in NRVM. PYK2 was activated by ET (100 nM; 2-30 min) and phenylephrine (50 microM; 2-30 min), which are both hypertrophic agonists that activate Gq-coupled receptors. Moreover, adenoviral (Adv)-mediated overexpression of constitutively active (ca) Galphaq increased PYK2-Y(402) phosphorylation as early as 8 h post-infection, as compared to NRVM infected with a control Adv encoding beta-galactosidase. caGalphaq overexpression also induced PKC epsilon and PKCdelta (but not PKCalpha) translocation, followed by downregulation of both novel PKC isoenzymes. Phorbol myristate acetate (PMA; 200 nM), a direct activator of Ca(2+)-dependent and Ca(2+)-independent PKCs, activated PYK2 within 10 min, and PYK2 phosphorylation remained elevated after 30 min of stimulation. Adv-mediated overexpression of caPKC epsilon increased PYK2 phosphorylation, whereas Adv-mediated overexpression of a kinase-inactive mutant of PKC epsilon markedly inhibited ET-induced, but not basal PYK2 phosphorylation. In contrast, both basal and ET-induced PYK2 phosphorylation were blocked by treatment with the Src-family protein kinase inhibitor PP2. Although reducing [Ca(2+)](i) with either nifedipine (10 microM) or BAPTA-AM (50 microM) decreased basal PYK2 phosphorylation, it did not prevent ET-induced PYK2 activation. Furthermore, increasing [Ca(2+)](i) with ionomycin (10 microM), K(+) depolarization, or BayK8644 (1 microM) was not sufficient to further activate PYK2. These data demonstrate that ET-induced PYK2 activation is Gq, PKC epsilon, and Src dependent, describing a distinct signaling pathway leading to agonist-induced PYK2 activation in cardiomyocytes.


Subject(s)
Heart Ventricles/cytology , Myocytes, Cardiac/enzymology , Proline/chemistry , Protein Kinase C/metabolism , Protein-Tyrosine Kinases/metabolism , Adenoviridae/genetics , Animals , Animals, Newborn , Blotting, Western , Cardiotonic Agents/pharmacology , Endothelin-1/metabolism , Enzyme Activation , Mutation , Phenylephrine/pharmacology , Phosphorylation , Precipitin Tests , Protein Kinase C/genetics , Protein Kinase C-epsilon , Protein-Tyrosine Kinases/chemistry , Rats , Rats, Sprague-Dawley , Tetradecanoylphorbol Acetate/pharmacology
20.
J Mol Cell Cardiol ; 36(4): 481-93, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15081308

ABSTRACT

The effect of the lysophospholipid, lysophosphatidic acid (LPA), on signaling and hypertrophy of neonatal rat ventricular cardiomyocytes was examined. Myocytes express mRNA for all three G-protein-coupled LPA receptor subtypes (LPA(1)/Edg-2, LPA(2)/Edg-4, and LPA(3)/Edg-7) as indicated by RT-PCR analysis. LPA inhibits isoproterenol-stimulated cyclic AMP accumulation with an IC(50) approximately 40 nM and promotes phosphorylation of ERK-1/2. LPA also elicits a small, slow onset, and activation of phosphoinositide hydrolysis with EC(50) approximately 400 nM, and stimulates a marked increase in the extent of Rho activation. Longer-term treatment with LPA induces a hypertrophic response in myocytes as indicated by increases in cell size, actin organization, ANF staining of the perinuclear region and activation of ANF promoter-luciferase gene expression. Pretreatment of myocytes with pertussis toxin (PTX) not only blocks the capacity of LPA to inhibit cyclic AMP formation and stimulate ERK phosphorylation, but also inhibits hypertrophic changes in cell morphology and ANF-luciferase gene expression. Neither phospholipase C nor Rho activation is PTX sensitive. The hypertrophic effects of LPA on myocytes are also inhibited by treatment with C3 exoenzyme or by transfection of plasmids expressing either C3 exoenzyme or dominant-negative Rho to block Rho function. Inhibition of ERK activation with PD98059 blocks LPA-induced hypertrophy while inhibitors of phospholipase C (U73122), PKC (GF109203X), or p38MAPK (SB203580) do not. These data suggest that LPA induces cardiomyocyte hypertrophy via a pathway different from the conventional G(q) pathway utilized by phenylephrine, endothelin, and PGF2 alpha and involving activation of a PTX-sensitive G(i)/ERK pathway in conjunction with activation of Rho-mediated signals.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Lysophospholipids/metabolism , Lysophospholipids/pharmacology , Myocytes, Cardiac/pathology , rho GTP-Binding Proteins/metabolism , Adenylyl Cyclases/metabolism , Animals , Animals, Newborn , Blotting, Western , Cyclic AMP/metabolism , Dose-Response Relationship, Drug , Enzyme Activation , Enzyme Inhibitors/pharmacology , Estrenes/pharmacology , Flavonoids/pharmacology , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Hydrolysis , Inhibitory Concentration 50 , Luciferases/metabolism , Lysophospholipids/chemistry , Microscopy, Fluorescence , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Models, Biological , Pertussis Toxin/pharmacology , Phosphatidylinositols/chemistry , Protein Biosynthesis , Protein Kinase C/antagonists & inhibitors , Proteins/chemistry , Pyrrolidinones/pharmacology , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Transfection , Type C Phospholipases/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL