Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Nature ; 538(7625): 336-343, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27762356

ABSTRACT

To explore the origins and consequences of tetraploidy in the African clawed frog, we sequenced the Xenopus laevis genome and compared it to the related diploid X. tropicalis genome. We characterize the allotetraploid origin of X. laevis by partitioning its genome into two homoeologous subgenomes, marked by distinct families of 'fossil' transposable elements. On the basis of the activity of these elements and the age of hundreds of unitary pseudogenes, we estimate that the two diploid progenitor species diverged around 34 million years ago (Ma) and combined to form an allotetraploid around 17-18 Ma. More than 56% of all genes were retained in two homoeologous copies. Protein function, gene expression, and the amount of conserved flanking sequence all correlate with retention rates. The subgenomes have evolved asymmetrically, with one chromosome set more often preserving the ancestral state and the other experiencing more gene loss, deletion, rearrangement, and reduced gene expression.


Subject(s)
Evolution, Molecular , Genome/genetics , Phylogeny , Tetraploidy , Xenopus laevis/genetics , Animals , Chromosomes/genetics , Conserved Sequence/genetics , DNA Transposable Elements/genetics , Diploidy , Female , Gene Deletion , Gene Expression Profiling , Karyotype , Molecular Sequence Annotation , Mutagenesis/genetics , Pseudogenes , Xenopus/genetics
2.
Nature ; 510(7505): 356-62, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24919147

ABSTRACT

Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.


Subject(s)
Eucalyptus/genetics , Genome, Plant , Eucalyptus/classification , Evolution, Molecular , Genetic Variation , Inbreeding , Phylogeny
3.
Nature ; 493(7433): 526-31, 2013 Jan 24.
Article in English | MEDLINE | ID: mdl-23254933

ABSTRACT

Current genomic perspectives on animal diversity neglect two prominent phyla, the molluscs and annelids, that together account for nearly one-third of known marine species and are important both ecologically and as experimental systems in classical embryology. Here we describe the draft genomes of the owl limpet (Lottia gigantea), a marine polychaete (Capitella teleta) and a freshwater leech (Helobdella robusta), and compare them with other animal genomes to investigate the origin and diversification of bilaterians from a genomic perspective. We find that the genome organization, gene structure and functional content of these species are more similar to those of some invertebrate deuterostome genomes (for example, amphioxus and sea urchin) than those of other protostomes that have been sequenced to date (flies, nematodes and flatworms). The conservation of these genomic features enables us to expand the inventory of genes present in the last common bilaterian ancestor, establish the tripartite diversification of bilaterians using multiple genomic characteristics and identify ancient conserved long- and short-range genetic linkages across metazoans. Superimposed on this broadly conserved pan-bilaterian background we find examples of lineage-specific genome evolution, including varying rates of rearrangement, intron gain and loss, expansions and contractions of gene families, and the evolution of clade-specific genes that produce the unique content of each genome.


Subject(s)
Body Patterning/genetics , Evolution, Molecular , Genome/genetics , Leeches/genetics , Mollusca/genetics , Phylogeny , Polychaeta/genetics , Animals , Conserved Sequence/genetics , Genes, Homeobox/genetics , Genetic Linkage , Genetic Speciation , Humans , INDEL Mutation/genetics , Introns/genetics , Leeches/anatomy & histology , Mollusca/anatomy & histology , Multigene Family/genetics , Polychaeta/anatomy & histology , Synteny/genetics
4.
New Phytol ; 209(2): 600-11, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26356869

ABSTRACT

The genome-wide heterozygosity at 9590 genes, all heterozygous in a single Eucalyptus grandis parent tree, was examined in a group of 28 S1 offspring. Heterozygosity ranged from 52-79%, averaging 65.5%, much higher than the 50% expected under random segregation, supporting the occurrence of strong (47%) selection against homozygosity. The expected pattern of heterozygosity from theoretical calculations and simulations for recessive detrimentals (pseudo-overdominance) and intrinsic heterozygote advantage was examined and compared with that observed. The observed patterns are consistent with at least several detrimental loci with large effects on both parental chromosomes of the 11 pairs. It is likely that 100 or more genes, many with substantial effects on viability, are contributing to this inbreeding depression. Although our genome-wide analysis of nearly 10 000 genes strongly suggested that pseudo-overdominance was responsible for the observed high inbreeding depression, heterozygote advantage could not be excluded. Finding inconvertible evidence of the cause of inbreeding depression still presents a difficult challenge. This study is the first theoretical examination of the genomic effect of inbreeding in a forest tree and provides an approach to analyze these data to determine the extent and cause of inbreeding depression across other plant genomes.


Subject(s)
Eucalyptus/genetics , Inbreeding Depression , Chromosomes, Plant , Computer Simulation , Genome, Plant , Heterozygote , Models, Genetic , Pollination , Polymorphism, Single Nucleotide , Self-Fertilization
5.
Nature ; 466(7307): 720-6, 2010 Aug 05.
Article in English | MEDLINE | ID: mdl-20686567

ABSTRACT

Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sequencing of the sponge genome reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion and diversification of pan-metazoan transcription factor, signalling pathway and structural genes. This diverse 'toolkit' of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic- and germ-cell specification, cell adhesion, innate immunity and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity.


Subject(s)
Evolution, Molecular , Genome/genetics , Porifera/genetics , Animals , Apoptosis/genetics , Cell Adhesion/genetics , Cell Cycle/genetics , Cell Polarity/genetics , Cell Proliferation , Genes/genetics , Genomics , Humans , Immunity, Innate/genetics , Models, Biological , Neurons/metabolism , Phosphotransferases/chemistry , Phosphotransferases/genetics , Phylogeny , Porifera/anatomy & histology , Porifera/cytology , Porifera/immunology , Sequence Analysis, DNA , Signal Transduction/genetics
6.
Nature ; 463(7278): 178-83, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-20075913

ABSTRACT

Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70% more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78% of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75% of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.


Subject(s)
Genome, Plant/genetics , Genomics , Glycine max/genetics , Polyploidy , Arabidopsis/genetics , Breeding , Chromosomes, Plant/genetics , Evolution, Molecular , Gene Duplication , Genes, Duplicate/genetics , Genes, Plant/genetics , Molecular Sequence Data , Multigene Family/genetics , Phylogeny , Plant Root Nodulation/genetics , Quantitative Trait Loci/genetics , Recombination, Genetic , Repetitive Sequences, Nucleic Acid/genetics , Soybean Oil/biosynthesis , Synteny/genetics , Transcription Factors/genetics
7.
Nature ; 464(7288): 592-6, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-20228792

ABSTRACT

The freshwater cnidarian Hydra was first described in 1702 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals. Today, Hydra is an important model for studies of axial patterning, stem cell biology and regeneration. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann-Mangold organizer, pluripotency genes and the neuromuscular junction.


Subject(s)
Genome/genetics , Hydra/genetics , Animals , Anthozoa/genetics , Comamonadaceae/genetics , DNA Transposable Elements/genetics , Gene Transfer, Horizontal/genetics , Genome, Bacterial/genetics , Hydra/microbiology , Hydra/ultrastructure , Molecular Sequence Data , Neuromuscular Junction/ultrastructure
8.
Proc Natl Acad Sci U S A ; 110(48): 19478-82, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24225854

ABSTRACT

Meiotic recombination rates can vary widely across genomes, with hotspots of intense activity interspersed among cold regions. In yeast, hotspots tend to occur in promoter regions of genes, whereas in humans and mice, hotspots are largely defined by binding sites of the positive-regulatory domain zinc finger protein 9. To investigate the detailed recombination pattern in a flowering plant, we use shotgun resequencing of a wild population of the monkeyflower Mimulus guttatus to precisely locate over 400,000 boundaries of historic crossovers or gene conversion tracts. Their distribution defines some 13,000 hotspots of varying strengths, interspersed with cold regions of undetectably low recombination. Average recombination rates peak near starts of genes and fall off sharply, exhibiting polarity. Within genes, recombination tracts are more likely to terminate in exons than in introns. The general pattern is similar to that observed in yeast, as well as in positive-regulatory domain zinc finger protein 9-knockout mice, suggesting that recombination initiation described here in Mimulus may reflect ancient and conserved eukaryotic mechanisms.


Subject(s)
Genetic Variation , Genetics, Population , Meiosis/genetics , Mimulus/genetics , Recombination, Genetic/genetics , Base Sequence , Computational Biology , Molecular Sequence Data , Sequence Analysis, DNA
9.
Nature ; 457(7229): 551-6, 2009 Jan 29.
Article in English | MEDLINE | ID: mdl-19189423

ABSTRACT

Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the approximately 730-megabase Sorghum bicolor (L.) Moench genome, placing approximately 98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the approximately 75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization approximately 70 million years ago, most duplicated gene sets lost one member before the sorghum-rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance.


Subject(s)
Evolution, Molecular , Genome, Plant/genetics , Poaceae/genetics , Sorghum/genetics , Arabidopsis/genetics , Chromosomes, Plant/genetics , Gene Duplication , Genes, Plant , Oryza/genetics , Populus/genetics , Recombination, Genetic/genetics , Sequence Alignment , Sequence Analysis, DNA , Sequence Deletion/genetics , Zea mays/genetics
10.
Nature ; 454(7207): 955-60, 2008 Aug 21.
Article in English | MEDLINE | ID: mdl-18719581

ABSTRACT

As arguably the simplest free-living animals, placozoans may represent a primitive metazoan form, yet their biology is poorly understood. Here we report the sequencing and analysis of the approximately 98 million base pair nuclear genome of the placozoan Trichoplax adhaerens. Whole-genome phylogenetic analysis suggests that placozoans belong to a 'eumetazoan' clade that includes cnidarians and bilaterians, with sponges as the earliest diverging animals. The compact genome shows conserved gene content, gene structure and synteny in relation to the human and other complex eumetazoan genomes. Despite the apparent cellular and organismal simplicity of Trichoplax, its genome encodes a rich array of transcription factor and signalling pathway genes that are typically associated with diverse cell types and developmental processes in eumetazoans, motivating further searches for cryptic cellular complexity and/or as yet unobserved life history stages.


Subject(s)
Genome/genetics , Invertebrates/genetics , Invertebrates/physiology , Animals , Cell Adhesion , Conserved Sequence , Extracellular Matrix/genetics , Gene Expression Regulation, Developmental , Germ Cells , Humans , Invertebrates/anatomy & histology , Invertebrates/classification , Phylogeny , Reproduction/genetics , Sequence Analysis, DNA , Sex , Signal Transduction , Synteny , Transcription Factors/genetics
11.
Nature ; 451(7180): 783-8, 2008 Feb 14.
Article in English | MEDLINE | ID: mdl-18273011

ABSTRACT

Choanoflagellates are the closest known relatives of metazoans. To discover potential molecular mechanisms underlying the evolution of metazoan multicellularity, we sequenced and analysed the genome of the unicellular choanoflagellate Monosiga brevicollis. The genome contains approximately 9,200 intron-rich genes, including a number that encode cell adhesion and signalling protein domains that are otherwise restricted to metazoans. Here we show that the physical linkages among protein domains often differ between M. brevicollis and metazoans, suggesting that abundant domain shuffling followed the separation of the choanoflagellate and metazoan lineages. The completion of the M. brevicollis genome allows us to reconstruct with increasing resolution the genomic changes that accompanied the origin of metazoans.


Subject(s)
Eukaryotic Cells/metabolism , Genome/genetics , Phylogeny , Animals , Cell Adhesion , Conserved Sequence , Eukaryotic Cells/classification , Eukaryotic Cells/cytology , Evolution, Molecular , Extracellular Matrix/metabolism , Gene Expression Regulation , Genetic Speciation , Hedgehog Proteins/chemistry , Hedgehog Proteins/genetics , Humans , Introns/genetics , Phosphotyrosine/metabolism , Protein Structure, Tertiary/genetics , Receptors, Notch/chemistry , Receptors, Notch/genetics , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
12.
Nature ; 453(7198): 1064-71, 2008 Jun 19.
Article in English | MEDLINE | ID: mdl-18563158

ABSTRACT

Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.


Subject(s)
Chordata/genetics , Evolution, Molecular , Genome/genetics , Animals , Chordata/classification , Conserved Sequence , DNA Transposable Elements/genetics , Gene Duplication , Genes/genetics , Genetic Linkage , Humans , Introns/genetics , Karyotyping , Multigene Family , Phylogeny , Polymorphism, Genetic/genetics , Proteins/genetics , Synteny , Time Factors , Vertebrates/classification , Vertebrates/genetics
13.
Nucleic Acids Res ; 40(Database issue): D1178-86, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22110026

ABSTRACT

The number of sequenced plant genomes and associated genomic resources is growing rapidly with the advent of both an increased focus on plant genomics from funding agencies, and the application of inexpensive next generation sequencing. To interact with this increasing body of data, we have developed Phytozome (http://www.phytozome.net), a comparative hub for plant genome and gene family data and analysis. Phytozome provides a view of the evolutionary history of every plant gene at the level of sequence, gene structure, gene family and genome organization, while at the same time providing access to the sequences and functional annotations of a growing number (currently 25) of complete plant genomes, including all the land plants and selected algae sequenced at the Joint Genome Institute, as well as selected species sequenced elsewhere. Through a comprehensive plant genome database and web portal, these data and analyses are available to the broader plant science research community, providing powerful comparative genomics tools that help to link model systems with other plants of economic and ecological importance.


Subject(s)
Databases, Nucleic Acid , Genes, Plant , Genome, Plant , Genomics , Multigene Family , Software
14.
New Phytol ; 196(3): 713-725, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22861491

ABSTRACT

• Plant population genomics informs evolutionary biology, breeding, conservation and bioenergy feedstock development. For example, the detection of reliable phenotype-genotype associations and molecular signatures of selection requires a detailed knowledge about genome-wide patterns of allele frequency variation, linkage disequilibrium and recombination. • We resequenced 16 genomes of the model tree Populus trichocarpa and genotyped 120 trees from 10 subpopulations using 29,213 single-nucleotide polymorphisms. • Significant geographic differentiation was present at multiple spatial scales, and range-wide latitudinal allele frequency gradients were strikingly common across the genome. The decay of linkage disequilibrium with physical distance was slower than expected from previous studies in Populus, with r(2) dropping below 0.2 within 3-6 kb. Consistent with this, estimates of recent effective population size from linkage disequilibrium (N(e) ≈ 4000-6000) were remarkably low relative to the large census sizes of P. trichocarpa stands. Fine-scale rates of recombination varied widely across the genome, but were largely predictable on the basis of DNA sequence and methylation features. • Our results suggest that genetic drift has played a significant role in the recent evolutionary history of P. trichocarpa. Most importantly, the extensive linkage disequilibrium detected suggests that genome-wide association studies and genomic selection in undomesticated populations may be more feasible in Populus than previously assumed.


Subject(s)
Genome, Plant , Genomics/methods , Linkage Disequilibrium , Populus/genetics , DNA Methylation , DNA, Plant/genetics , Evolution, Molecular , Gene Frequency , Genetic Association Studies/methods , Genetic Drift , Genotyping Techniques , Geography , Polymorphism, Single Nucleotide , Principal Component Analysis , Recombination, Genetic , Selection, Genetic , Sensitivity and Specificity , Sequence Analysis, DNA/methods
15.
Nature ; 432(7020): 988-94, 2004 Dec 23.
Article in English | MEDLINE | ID: mdl-15616553

ABSTRACT

Human chromosome 16 features one of the highest levels of segmentally duplicated sequence among the human autosomes. We report here the 78,884,754 base pairs of finished chromosome 16 sequence, representing over 99.9% of its euchromatin. Manual annotation revealed 880 protein-coding genes confirmed by 1,670 aligned transcripts, 19 transfer RNA genes, 341 pseudogenes and three RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukaemia. Several large-scale structural polymorphisms spanning hundreds of kilobase pairs were identified and result in gene content differences among humans. Whereas the segmental duplications of chromosome 16 are enriched in the relatively gene-poor pericentromere of the p arm, some are involved in recent gene duplication and conversion events that are likely to have had an impact on the evolution of primates and human disease susceptibility.


Subject(s)
Chromosomes, Human, Pair 16/genetics , Gene Duplication , Physical Chromosome Mapping , Animals , Genes/genetics , Genomics , Heterochromatin/genetics , Humans , Molecular Sequence Data , Polymorphism, Genetic/genetics , Sequence Analysis, DNA , Synteny/genetics
16.
Nature ; 431(7006): 268-74, 2004 Sep 16.
Article in English | MEDLINE | ID: mdl-15372022

ABSTRACT

Chromosome 5 is one of the largest human chromosomes and contains numerous intrachromosomal duplications, yet it has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding conservation with non-mammalian vertebrates, suggesting that they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-coding genes including the protocadherin and interleukin gene families. We also completely sequenced versions of the large chromosome-5-specific internal duplications. These duplications are very recent evolutionary events and probably have a mechanistic role in human physiological variation, as deletions in these regions are the cause of debilitating disorders including spinal muscular atrophy.


Subject(s)
Chromosomes, Human, Pair 5/genetics , Sequence Analysis, DNA , Animals , Base Composition , Cadherins/genetics , Conserved Sequence/genetics , Gene Duplication , Genes/genetics , Genetic Diseases, Inborn/genetics , Genomics , Humans , Interleukins/genetics , Molecular Sequence Data , Muscular Atrophy, Spinal/genetics , Pan troglodytes/genetics , Physical Chromosome Mapping , Pseudogenes/genetics , Synteny/genetics , Vertebrates/genetics
17.
Nature ; 428(6982): 529-35, 2004 Apr 01.
Article in English | MEDLINE | ID: mdl-15057824

ABSTRACT

Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high G + C content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in mendelian disorders, including familial hypercholesterolaemia and insulin-resistant diabetes. Nearly one-quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.


Subject(s)
Chromosomes, Human, Pair 19/genetics , Genes/genetics , Physical Chromosome Mapping , Alternative Splicing/genetics , Animals , Base Composition , Conserved Sequence/genetics , CpG Islands/genetics , Evolution, Molecular , Gene Duplication , Genetics, Medical , Humans , Mice , Molecular Sequence Data , Multigene Family/genetics , Pseudogenes/genetics , Sequence Analysis, DNA
18.
BMC Biol ; 5: 31, 2007 Jul 25.
Article in English | MEDLINE | ID: mdl-17651506

ABSTRACT

BACKGROUND: Ancient whole genome duplications have been implicated in the vertebrate and teleost radiations, and in the emergence of diverse angiosperm lineages, but the evolutionary response to such a perturbation is still poorly understood. The African clawed frog Xenopus laevis experienced a relatively recent tetraploidization ~40 million years ago. Analysis of the considerable amount of EST sequence available for this species together with the genome sequence of the related diploid Xenopus tropicalis provides a unique opportunity to study the genomic response to whole genome duplication. RESULTS: We identified 2218 gene triplets in which a single gene in X. tropicalis corresponds to precisely two co-orthologous genes in X. laevis--the largest such collection published from any duplication event in animals. Analysis of these triplets reveals accelerated evolution or relaxation of constraint in the peptides of the X. laevis pairs compared with the orthologous sequences in X. tropicalis and other vertebrates. In contrast, single-copy X. laevis genes do not show this acceleration. Duplicated genes can differ substantially in expression levels and patterns. We find no significant difference in gene content in the duplicated set, versus the single-copy set based on molecular and biological function ontologies. CONCLUSION: These results support a scenario in which duplicate genes are retained through a process of subfunctionalization and/or relaxation of constraint on both copies of an ancestral gene.


Subject(s)
Evolution, Molecular , Genes/physiology , Polyploidy , Xenopus laevis/genetics , Animals , Chromosome Mapping , Embryo, Nonmammalian , Expressed Sequence Tags , Gene Duplication , Gene Expression Regulation, Developmental , Sequence Homology, Amino Acid , Time Factors , Xenopus/genetics
19.
Elife ; 72018 10 16.
Article in English | MEDLINE | ID: mdl-30325307

ABSTRACT

The columbine genus Aquilegia is a classic example of an adaptive radiation, involving a wide variety of pollinators and habitats. Here we present the genome assembly of A. coerulea 'Goldsmith', complemented by high-coverage sequencing data from 10 wild species covering the world-wide distribution. Our analyses reveal extensive allele sharing among species and demonstrate that introgression and selection played a role in the Aquilegia radiation. We also present the remarkable discovery that the evolutionary history of an entire chromosome differs from that of the rest of the genome - a phenomenon that we do not fully understand, but which highlights the need to consider chromosomes in an evolutionary context.


Subject(s)
Adaptation, Biological , Aquilegia/genetics , Chromosomes, Plant , Evolution, Molecular , Genome, Plant , Gene Flow , Plant Dispersal , Selection, Genetic , Sequence Analysis, DNA
20.
Nat Ecol Evol ; 1(10): 1585, 2017 10.
Article in English | MEDLINE | ID: mdl-29185503

ABSTRACT

In Fig. 5 of the version of this Article originally published, the final number on the x axes of each panel was incorrectly written as 1.5; it should have read 7.5. This has now been corrected in all versions of the Article.

SELECTION OF CITATIONS
SEARCH DETAIL