Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Phys Condens Matter ; 36(41)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38955338

ABSTRACT

Using all-optical time-resolved magneto-optical Kerr effect measurements we demonstrate an efficient modulation of the spin-wave (SW) dynamics via the bias magnetic field orientation around nanoscale diamond shaped antidots that are arranged on a square lattice within a [Co(0.75 nm)/Pd(0.9 nm)]8multilayer with perpendicular magnetic anisotropy (PMA). Micromagnetic modeling of the experimental results reveals that the SW modes in the lower frequency regime are related to narrow shell regions around the antidots, where in-plane (IP) domain structures are formed due to the reduced PMA, caused by Ga+ion irradiation during the focused ion beam milling process of antidot fabrication. The IP direction of the shell magnetization undergoes a striking change with magnetic field orientation, leading to the sharp variation of the edge localized (shell) SW modes. Nevertheless, the coupling between such edge localized and bulk SWs for different orientations of bias field in PMA systems gives rise to interesting Physics and attests to new prospects for developing energy efficient and hybrid-system-based next-generation nanoscale magnonic devices.

2.
ACS Nano ; 18(26): 16914-16922, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38905311

ABSTRACT

Femtosecond laser-induced ultrafast magnetization dynamics are all-optically probed for different remanent magnetic domain states of a [Co/Pt]22 multilayer sample, thus revealing the tunability of the direct transport of spin angular momentum across domain walls. A variety of different magnetic domain configurations (domain wall origami) at remanence achieved by applying different magnetic field histories are investigated by time-resolved magneto-optical Kerr effect magnetometry to probe the ultrafast magnetization dynamics. Depending on the underlying domain landscape, the spin-transport-driven magnetization dynamics show a transition from typical ultrafast demagnetization to being fully dominated by an anomalous transient magnetization enhancement (TME) via a state in which both TME and demagnetization coexist in the system. Thereby, the study reveals an extrinsic channel for the modulation of spin transport, which introduces a route for the development of magnetic spin-texture-driven ultrafast spintronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL