Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
FASEB J ; 30(3): 1096-108, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26581599

ABSTRACT

White adipocytes in adults are typically derived from tissue resident mesenchymal progenitors. The recent identification of de novo production of adipocytes from bone marrow progenitor-derived cells in mice challenges this paradigm and indicates an alternative lineage specification that adipocytes exist. We hypothesized that alternative lineage specification of white adipocytes is also present in human adipose tissue. Bone marrow from transgenic mice in which luciferase expression is governed by the adipocyte-restricted adiponectin gene promoter was adoptively transferred to wild-type recipient mice. Light emission was quantitated in recipients by in vivo imaging and direct enzyme assay. Adipocytes were also obtained from human recipients of hematopoietic stem cell transplantation. DNA was isolated, and microsatellite polymorphisms were exploited to quantify donor/recipient chimerism. Luciferase emission was detected from major fat depots of transplanted mice. No light emission was observed from intestines, liver, or lungs. Up to 35% of adipocytes in humans were generated from donor marrow cells in the absence of cell fusion. Nontransplanted mice and stromal-vascular fraction samples were used as negative and positive controls for the mouse and human experiments, respectively. This study provides evidence for a nontissue resident origin of an adipocyte subpopulation in both mice and humans.


Subject(s)
Adipocytes, White/physiology , Adipose Tissue/physiology , Stem Cells/physiology , Animals , Bone Marrow Cells/physiology , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Fusion/methods , Cell Lineage/genetics , Cell Lineage/physiology , Hematopoietic Stem Cells/physiology , Humans , Male , Mice , Mice, Transgenic , Promoter Regions, Genetic/genetics
2.
Stem Cells ; 31(12): 2767-78, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23712882

ABSTRACT

Tissue-specific stem cell (TSC) number is tightly regulated in normal individuals but can change following severe injury. We previously showed that tracheobronchial epithelial TSC number increased after severe naphthalene (NA) injury and then returned to normal. This study focused on the fate of the supernumerary TSC and the signals that regulate TSC pool size. We used the Keratin 5-rTA/Histone 2B:green fluorescent protein (GFP) model to purify basal cells that proliferated infrequently (GFP(bright) ) or frequently (GFP(dim) ) after NA injury. Both populations contained TSC but TSCs were 8.5-fold more abundant in the GFP(bright) population. Interestingly, both populations also contained a unipotential basal progenitor (UPB), a mitotic basal cell subtype whose daughters were terminally differentiated basal cells. The ratio of TSC to UPB was 5:1 in the GFP(bright) population and 1:5 in the GFP(dim) population. These data suggested that TSC proliferation in vivo promoted TSC-to-UPB differentiation. To evaluate this question, we cloned TSC from the GFP(bright) and GFP(dim) populations and passaged the clones seven times. We found that TSC number decreased and UPB number increased at each passage. Reciprocal changes in TSC and UPB frequency were more dramatic in the GFP(dim) lineage. Gene expression analysis showed that ß-catenin and Notch pathway genes were differentially expressed in freshly isolated TSC derived from GFP(bright) and GFP(dim) populations. We conclude that (a) TSC and UPB are members of a single lineage; (b) TSC proliferation in vivo or in vitro promotes TSC-to-UPB differentiation; and (c) an interaction between the ß-catenin and Notch pathways regulates the TSC-to-UPB differentiation process.


Subject(s)
Bronchi/cytology , Stem Cells/cytology , Trachea/cytology , Animals , Bronchi/metabolism , Cell Differentiation/physiology , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Stem Cells/metabolism , Trachea/metabolism
3.
Am J Respir Cell Mol Biol ; 49(6): 1127-34, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23927678

ABSTRACT

Human tracheobronchial epithelial (TBE) basal cells (BCs) function as progenitors in normal tissue. However, mechanistic studies are typically performed in vitro and frequently use BCs recovered from patients who die of nonrespiratory disease. It is not known whether the cadaveric epithelium (1) is undergoing homeostatic remodeling and/or repair, or (2) yields BC clones that represent homeostatic processes identified in tissue. We sought to compare the phenotype of TBE-BCs with that of BCs cultured under optimal clone-forming conditions. TBE pathology was evaluated using quantitative histomorphometry. The cultured BC phenotype was determined by fluorescence-activated cell sorter analysis. Clone organization and cell phenotype were determined by immunostaining. The cadaveric TBE is 20% normal. In these regions, BCs are keratin (K)-5(+) and tetraspanin CD151(+), and demonstrate a low mitotic index. In contrast, 80% of the cadaveric TBE exhibits homeostatic remodeling/repair processes. In these regions, BCs are K5(+)/K14(+), and a subset expresses tissue factor (TF). Passage 1 TBE cells are BCs that are K5(+)/TF(+), and half coexpress CD151. Optimal clone formation conditions use an irradiated NIH3T3 fibroblast feeder layer (American Type Culture Collection, Frederick, MD) and serum-supplemented Epicult-B medium (Stemcell Technologies, La Jolla, CA). The TF(+)/CD151(-) BC subpopulation is the most clonogenic BC subtype, and is enriched with K14(+) cells. TF(+)/CD151(-) BCs generate clones containing BCs that are K5(+)/Trp63(+), but K14(-)/CD151(-). TF(+) cells are limited to the clone edge. In conclusion, clonogenic human TBE BCs (1) exhibit a molecular phenotype that is a composite of the normal and remodeling/reparative BC phenotypes observed in tissue, and (2) generate organoid clones that contain phenotypically distinct BC subpopulations.


Subject(s)
Bronchi/cytology , Bronchi/physiology , Trachea/cytology , Trachea/physiology , Aldehyde Dehydrogenase/metabolism , Cell Differentiation , Cell Proliferation , Cells, Cultured , Clone Cells/cytology , Clone Cells/physiology , Epithelial Cells/classification , Epithelial Cells/cytology , Epithelial Cells/physiology , Homeostasis , Humans , Integrin alpha6/metabolism , Keratins/metabolism , Phenotype , Regeneration/physiology , Tetraspanin 24/metabolism , Thromboplastin/metabolism
4.
Proc Natl Acad Sci U S A ; 107(33): 14781-6, 2010 Aug 17.
Article in English | MEDLINE | ID: mdl-20679227

ABSTRACT

It is generally assumed that white adipocytes arise from resident adipose tissue mesenchymal progenitor cells. We challenge this paradigm by defining a hematopoietic origin for both the de novo development of a subset of white adipocytes in adults and a previously uncharacterized adipose tissue resident mesenchymal progenitor population. Lineage and cytogenetic analysis revealed that bone marrow progenitor (BMP)-derived adipocytes and adipocyte progenitors arise from hematopoietic cells via the myeloid lineage in the absence of cell fusion. Global gene expression analysis indicated that the BMP-derived fat cells are bona fide adipocytes but differ from conventional white or brown adipocytes in decreased expression of genes involved in mitochondrial biogenesis and lipid oxidation, and increased inflammatory gene expression. The BMP-derived adipocytes accumulate with age, occur in higher numbers in visceral than in subcutaneous fat, and in female versus male mice. BMP-derived adipocytes may, therefore, account in part for adipose depot heterogeneity and detrimental changes in adipose metabolism and inflammation with aging and adiposity.


Subject(s)
Adipocytes, White/cytology , Adipose Tissue/cytology , Mesoderm/cytology , Myeloid Cells/cytology , Adipocytes, Brown/cytology , Adipocytes, Brown/metabolism , Adipocytes, White/metabolism , Adipose Tissue/metabolism , Age Factors , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Differentiation , Cell Lineage , Cells, Cultured , Cytogenetic Analysis , Female , Gene Expression Profiling , Male , Mesoderm/metabolism , Mice , Models, Biological , Myeloid Cells/metabolism , Oligonucleotide Array Sequence Analysis , Sex Factors
5.
Am J Respir Cell Mol Biol ; 45(3): 459-69, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21131442

ABSTRACT

Tissue-specific stem cell (TSC) behavior is determined by the stem cell niche. However, delineation of the TSC-niche interaction requires purification of both entities. We reasoned that the niche could be defined by the location of the TSC. We demonstrate that a single CD49f(bright)/Sca1(+)/ALDH(+) basal cell generates rare label-retaining cells and abundant label-diluting cells. Label-retaining and label-diluting cells were located in the rimmed domain of a unique clone type, the rimmed clone. The TSC property of self-renewal was tested by serial passage at clonal density and analysis of clone-forming cell frequency. A single clone could be passaged up to five times and formed only rimmed clones. Thus, rimmed clone formation was a cell-intrinsic property. Differentiation potential was evaluated in air-liquid interface cultures. Homogenous cultures of rimmed clones were highly mitotic but were refractory to standard differentiation signals. However, rimmed clones that were cocultured with unfractionated tracheal cells generated each of the cell types found in the tracheal epithelium. Thus, the default niche is promitotic: Multipotential differentiation requires adaptation of the niche. Because lung TSCs are typically evaluated after injury, the behavior of CD49f(bright)/Sca1(+)/ALDH(+) cells was tested in normal and naphthalene-treated mice. These cells were mitotically active in the normal and repaired epithelium, their proliferation rate increased in response to injury, and they retained label for 34 days. We conclude that the CD49f(bright)/Sca1(+)/ALDH(+) tracheal basal cell is a TSC, that it generates its own niche in vitro, and that it participates in tracheal epithelial homeostasis and repair.


Subject(s)
Stem Cells/cytology , Animals , Bromodeoxyuridine/pharmacology , Cell Differentiation , Cells, Cultured , Epithelial Cells/cytology , Flow Cytometry/methods , Homeostasis , In Vitro Techniques , Integrin alpha6/metabolism , Lung/cytology , Mice , Mice, Inbred C57BL , Mitosis , Naphthalenes/pharmacology , Trachea/cytology
6.
Toxicol Appl Pharmacol ; 242(3): 299-309, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-19896492

ABSTRACT

The capacity of nicotine to affect the behavior of non-neuronal cells through neuronal nicotinic acetylcholine receptors (nAChRs) has been the subject of considerable recent attention. Previously, we showed that exposure to nicotine activates the nuclear factor of activated T cells (NFAT) transcription factor in lymphocytes and endothelial cells, leading to alterations in cellular growth and vascular endothelial growth factor production. Here, we extend these studies to document effects of nicotine on lymphocyte survival. The data show that nicotine induces paradoxical effects that might alternatively enforce survival or trigger apoptosis, suggesting that depending on timing and context, nicotine might act both as a survival factor or as an inducer of apoptosis in normal or transformed lymphocytes, and possibly other non-neuronal cells. In addition, our results show that, while having overlapping functions, low and high affinity nAChRs also transmit signals that promote distinct outcomes in lymphocytes. The sum of our data suggests that selective modulation of nAChRs might be useful to regulate lymphocyte activation and survival in health and disease.


Subject(s)
Apoptosis/drug effects , Cell Survival/drug effects , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , T-Lymphocytes/drug effects , Humans , Jurkat Cells , Leukemia, T-Cell/metabolism , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/metabolism , Signal Transduction/drug effects , T-Lymphocytes/metabolism
7.
Cancer Immunol Immunother ; 58(2): 171-85, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18523772

ABSTRACT

The survival of naive T cells is compromised in the absence of molecules encoded by the major histocompatibility complex (MHC) while antigen-experienced T cells survive. We hypothesized that survival pressures in an in vivo, MHC-deficient environment would permit enrichment of less frequent antigen-experienced autoreactive cells at the expense of the majority of antigen naive T cells. To test this hypothesis, we generated MHC class I- and class II-deficient mice in NOD and C57Bl/6 (B6) backgrounds, and examined the capacity of adoptively transferred autoimmune-prone NOD T cells, or non-autoimmune prone naive B6 T cells, respectively, to reject transplanted wild-type pancreatic islets or transplantable tumors in the MHC-deficient mice. In the MHC-deficient environment, CD4 T cells acquired self-hostile properties (islet rejection and tumor invasion) that were independent from their genetic propensity for autoreactivity, while CD8 T cells required appropriate prior exposure to antigen in order to survive and function (reject tumor) in this environment; however, disengagement of Tob1, a negative regulator of proliferation, led to a reverse phenotype with regard to persistence of CD4 and CD8 T cells in the MHC-deficient environment. Our data suggest that self-peptide/MHC interactions have dual roles to facilitate survival and restrain autoreactivity, thus acting as integral components of an intrinsic network of negative regulation that maintains tolerance.


Subject(s)
Autoimmunity , Desensitization, Immunologic , Major Histocompatibility Complex/genetics , Major Histocompatibility Complex/immunology , Animals , CD4-Positive T-Lymphocytes/physiology , CD8-Positive T-Lymphocytes/physiology , Carrier Proteins/metabolism , Cell Line, Tumor , Cell Survival , Immune Tolerance , Intracellular Signaling Peptides and Proteins , Islets of Langerhans/immunology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID
8.
J Control Release ; 286: 85-93, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30030182

ABSTRACT

Decades of research into improving drug delivery to tumors has documented uptake of particulate delivery systems by resident macrophages in the lung, liver, and spleen, and correlated short circulation times with reduced tumor accumulation. An implicit assumption in these studies is that nanoparticles present in the blood are available for distribution to the tumor. This study documents significant levels of lipoplex uptake by circulating leukocytes, and its effect on distribution to the tumor and other organs. In agreement with previous studies, PEGylation dramatically extends circulation times and enhances tumor delivery. However, our studies suggest that this relationship is not straightforward, and that particle sequestration by leukocytes can significantly alter biodistribution, especially with non-PEGylated nanoparticle formulations. We conclude that leukocyte uptake should be considered in biodistribution studies, and that delivery to these circulating cells may present opportunities for treating viral infections and leukemia.


Subject(s)
Leukocytes/metabolism , Nanoparticles/metabolism , Polyethylene Glycols/metabolism , Animals , DNA/administration & dosage , DNA/pharmacokinetics , Female , Gene Transfer Techniques , Mice, Inbred BALB C , Mice, SCID , Neoplasms/metabolism , Plasmids/administration & dosage , Plasmids/pharmacokinetics , Tissue Distribution
9.
Exp Hematol ; 34(7): 870-8, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16797414

ABSTRACT

OBJECTIVE: Two competing hypotheses can be formulated regarding the origin of canine hemangiosarcoma (HSA). One states HSA originates from differentiated vascular endothelial cells that undergo mutations which endow them with malignant potential. The other states HSA originates from transformed hemangioblastic stem cells. This study was designed to begin to distinguish between these possibilities, as well as to test if flow cytometry was sufficiently sensitive to detect malignant cells in blood samples from dogs with HSA. METHODS: We used multiparameter flow cytometry to examine expression of cell-surface determinants associated with hematopoietic precursors (c-kit, CD34, CD133, CD45) or with lineage-committed cells (CD3, CD11b, CD14, CD21, CD105, CD146, alphavbeta3-integrin) in HSA cell lines and in blood samples from healthy dogs or dogs with HSA. RESULTS: The data show that HSA cells coexpress surface markers associated with hematopoietic precursors and with commitment to endothelial lineage, providing a means to identify their presence in circulation and distinguish them from normal or malignant white blood cells. The percentage of cells that coexpressed these markers ranged from 0.5 to 1.25% for HSA dogs, and was less than 0.3% for unaffected dogs or dogs with HSA that had the tumors removed within 48 hours prior to obtaining samples. CONCLUSIONS: The results place the ontogeny of HSA with multipotential bone marrow-derived stem cells whose progeny arrest differentiation at the hemangioblast or angioblast stage. In addition, these expression patterns may assist to confirm an HSA diagnosis, monitor minimal residual disease, and detect the disease in early stages.


Subject(s)
Cell Differentiation , Hemangiosarcoma/pathology , Animals , Cell Line , Dogs , Flow Cytometry , Fluorescent Antibody Technique , Hemangiosarcoma/immunology , Immunophenotyping
10.
Methods Enzymol ; 537: 281-96, 2014.
Article in English | MEDLINE | ID: mdl-24480352

ABSTRACT

Analysis and isolation of adipocytes via flow cytometry is particularly useful to study their biology. However, the adoption of this technology has often been hampered by the presence of stromal/vascular cells in adipocyte fractions prepared from collagenase-digested adipose tissue. Here, we describe a multistep staining method and gating strategy that effectively excludes stromal contaminants. Initially, we set a gate optimized to the size and internal complexity of adipocytes. Exclusion of cell aggregates is then performed based on fluorescence of a nuclear stain followed by positive selection to collect only those cell events containing lipid droplets. Lastly, negative selection of cells expressing stromal or vascular lineage markers removes any remaining stromal contaminants. These procedures are applicable to simple analysis of adipocytes and their subcellular constituents by flow cytometry as well as isolation of adipocytes by flow sorting.


Subject(s)
Adipocytes/cytology , Cell Lineage/genetics , Cell Separation/methods , Flow Cytometry/methods , Adipose Tissue/cytology , Biomarkers , Cell Differentiation/genetics , Humans
11.
J Vis Exp ; (56): e3159, 2011 Oct 26.
Article in English | MEDLINE | ID: mdl-22064472

ABSTRACT

Tissue resident mesenchymal stem cells (MSC) are important regulators of tissue repair or regeneration, fibrosis, inflammation, angiogenesis and tumor formation. Taken together these studies suggest that resident lung MSC play a role during pulmonary tissue homeostasis, injury and repair during diseases such as pulmonary fibrosis (PF) and arterial hypertension (PAH). Here we describe a technology to define a population of resident lung MSC. The definition of this population in vivo pulmonary tissue using a define set of markers facilitates the repeated isolation of a well-characterized stem cell population by flow cytometry and the study of a specific cell type and function.


Subject(s)
Benzimidazoles/chemistry , Leukocyte Common Antigens/deficiency , Lung/cytology , Mesenchymal Stem Cells/cytology , Animals , Cell Separation/methods , Cytological Techniques/methods , Flow Cytometry/methods , Leukocyte Common Antigens/biosynthesis , Lung/immunology , Mesenchymal Stem Cells/immunology , Mice , Mice, Inbred C57BL
12.
Stem Cells ; 23(8): 1073-81, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15987674

ABSTRACT

Resident lung stem cells function to replace all lineages of pulmonary tissue, including mesenchyme, epithelium, and vasculature. The phenotype of the lung side population (SP) cells is currently under investigation; their function is currently unknown. Recent data suggest lung SP cells are an enriched tissue-specific source of organ-specific pulmonary precursors and, therefore, a source of adult stem cells. The adult lung SP cell population has been isolated and characterized for expression of markers indicative of stem cell, epithelial, and mesenchymal lineages. These studies determined that the adult mouse lung SP has epithelial and mesenchymal potential that resides within a CD45- mesenchymal subpopulation, as well as limited hematopoietic ability, which resides in the bone marrow-derived CD45+ subpopulation. The ability to identify these adult lung precursor cells allows us to further study the potential of these cells and their role in the regulation of tissue homeostasis and response to injury. The identification of this target population will potentially allow earlier treatment and, long term, a functional restoration of injured pulmonary tissue and lung health.


Subject(s)
Lung/cytology , Stem Cells/cytology , Animals , Cell Differentiation , Epithelial Cells/chemistry , Humans , Leukocyte Common Antigens/analysis , Lung/chemistry , Lung/physiology , Lung Diseases/etiology , Lung Diseases/pathology , Mesoderm/chemistry , Mesoderm/cytology , Phenotype , Stem Cells/chemistry , Stem Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL