ABSTRACT
The use of soiled-bedded sentinels (SBSs) has historically been the standard for colony health surveillance monitoring at our institution. With the advent of newer technologies in which dust collected from filters is tested by PCR, we compared traditional SBS with PCR testing of both exhaust air dust collected from a filter in the downstream vertical plenum (exhaust dust test [EDT]) and the SBS cage-level exhaust filter (SCEF). Our hypothesis was that both methods of filter testing would identify more pathogens than SBS testing. Twenty-five individually ventilated mouse racks that used disposable caging were sanitized and placed into rotation. Rack plenums were tested by PCR to verify negative results before the study start. Exhaust dust collection media were placed in the exhaust plenum (n = 25). SBS cages were placed on each side of the rack with 2 mice per cage (n = 42 mice), with the remaining cage slots occupied by research animals. At each triweekly cage change, the exhaust air filters were carefully removed from the cage top, placed in sterile 50-mL conical tubes, and pooled for submission. After 3mo, the SBS mice were tested via serology for bacterial and viral agents and by PCR for Helicobacter species, pinworms, and ectoparasites. In addition, the EDT filter and SCEF were collected for PCR to evaluate for the same agents. Our results indicate that the SCEF consistently detected agents more frequently than the EDT filter placed in the plenum and that the EDT filter media detected agents more frequently than did the SBS mice. Our data suggest that both PCR methods of detection are superior to SBS for individually ventilated disposable rodent cages and that the SCEF is superior to EDT. These data supported our movement of institution toward environmental monitoring as a method of rodent colony health surveillance.
Subject(s)
Dust , Housing, Animal , Polymerase Chain Reaction , Animals , Mice , Dust/analysis , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/veterinary , Environmental Monitoring/methods , Air Microbiology , Air Filters/microbiology , Sentinel Surveillance/veterinary , Filtration/instrumentation , Filtration/methodsABSTRACT
Improved diagnostic capabilities and a desire to reduce or refine the use of animals as soiled bedding sentinels (SBS) have driven interest in developing the use of PCR-based testing methods, such as exhaust dust testing (EDT), for routine rodent health surveillance. We compared the absolute and quantitative PCR results from EDT filters with SBS mice by routine screening via a panel of 19 infectious agents including agents known to be excluded or present in the colony. In this study, EDT and SBS were compared at days 0, 90, and 180 in 3 facilities (n = 12 rooms) with animals housed on IVC racks (n = 19 double-sided and 23 single-sided racks). All racks were negative for excluded agents (n = 15 agents) during the study. The bacterial agent Helicobacter spp. was consistently detected on EDT filters while less consistently detected via SBS. EDT filters detected Corynebacterium bovis better than SBS in areas where the agent was present. EDT filters and SBS mice tested for murine norovirus (MNV) demonstrated agreement for positive tests by both PCR and serology. For rodent chaphamaparvovirus-1 (RCHPV-1) we compared EDT to urine and feces from SBS. Six cages of SBS were positive for RCHPV-1 by fecal PCR with 5 out of 6 testing positive on urine, while only 3 out of 6 EDT filters tested positive. Since real-time fluorogenic PCR was used for testing, relative PCR copy numbers for each positive finding were evaluated to estimate organism load at the rack level. Copy numbers allowed for further characterization of agent presence within a colony. Furthermore, we compared copy numbers with cage census for MNV and Helicobacter spp., which was positively correlated for EDT testing but not for SBS. Overall, our results demonstrate that EDT's ability to detect many commonly excluded agents is comparable to or better than SBS.
ABSTRACT
The search for alternatives to live animal sentinels in rodent health monitoring programs is fundamental to the 3Rs (Reduction, Replacement, and Refinement) of animal research. We evaluated the efficacy of a novel battery-operated tumbler device that rotates soiled bedding in direct contact with sample media against the use of exhaust sample media and soiled bedding sentinel (SBS) mice. Four rodent racks were used, each with 3 test cages: a cage with a tumbler device that rotated for 10min twice a week (TUM10), a cage with a tumbler device that rotated for 60min twice a week (TUM60), and a cage housing 2 female Crl:CD1(ICR) mice. Every 2 wk, each test cage received soiled bedding collected from all cages on each respective rack. In addition to soiled bedding, the tumbler device contained various sample collection media: a contact Reemay filter (3mo-cRF) that remained in the tumbler for the duration of the study, a contact Reemay filter (1mo-cRF) that was replaced monthly, adhesive swabs (AS) that were added at every biweekly cage change, and an exhaust Reemay filter located at the exhaust outlet of the cage. All analyses were performed by direct PCR for both sample media in the animal-free methods, and fecal pellet, body swab, and oral swabs were collected from sentinel mice. Out of 16 total pathogens detected, assessment of 1mo-Crf from both TUM10 and TUM60 cages detected 84% and 79% of pathogens, respectively, while SBS samples detected only 47% of pathogens. AS in TUM60 and TUM10 cages detected the fewest pathogens (24% and 13%, respectively). These results indicate that the novel tumbler device is an effective and reliable tool for rodent health monitoring programs and a suitable replacement for live animal sentinels. In this study, 1mo-cRF in TUM10 cages detected the highest number of pathogens.
Subject(s)
Housing, Animal , Animals , Mice , Female , Mice, Inbred ICR , Rodent Diseases/diagnosis , Electric Power Supplies , Sentinel Surveillance/veterinaryABSTRACT
From July 2020 to June 2021, 248 wild house mice (Mus musculus), deer mice (Peromyscus maniculatus), brown rats (Rattus norvegicus), and black rats (Rattus rattus) from Texas and Washington, USA, and British Columbia, Canada, were tested for SARS-CoV-2 exposure and infection. Two brown rats and 11 house mice were positive for neutralizing antibodies using a surrogate virus neutralization test, but negative or indeterminate with the Multiplexed Fluorometric ImmunoAssay COVID-Plex, which targets full-length spike and nuclear proteins. Oro-nasopharyngeal swabs and fecal samples tested negative by RT-qPCR, with an indeterminate fecal sample in one house mouse. Continued surveillance of SARS-CoV-2 in wild rodents is warranted.
Subject(s)
Animals, Wild , COVID-19 , Cities , Animals , Mice , Rats/virology , COVID-19/epidemiology , Animals, Wild/virology , SARS-CoV-2 , Peromyscus/virology , Feces/virology , Rodent Diseases/virology , Rodent Diseases/epidemiology , Antibodies, Neutralizing/bloodABSTRACT
There is no consensus regarding the best practice for detecting murine pinworm infections. Initially, we evaluated 7 fecal concentration methods by using feces containing Aspiculuris tetraptera (AT) eggs (n = 20 samples per method). Sodium nitrate flotation, sodium nitrate centrifugation, Sheather sugar centrifugation, and zinc sulfate centrifugation detected eggs in 100% of samples; zinc sulfate flotation and water sedimentation detected eggs in 90%. All had better detection rates than Sheather sugar flotation (50%). To determine optimal detection methods, Swiss Webster mice were exposed to Syphacia obvelata (SO; n = 60) or AT (n = 60). We compared the following methods at days 0, 30, and 90, beginning 21 or 28 d after SO and AT exposure, respectively: fecal concentration (AT only), anal tape test (SO only), direct examination of intestinal contents (cecum and colon), Swiss roll histology (cecum and colon), and PCR analysis (pooled fur swab and feces). Detection rates for SO-exposed mice were: PCR analysis, 45%; Swiss roll histology, 30%; intestinal content exam, 27%; and tape test, 27%. The SO detection rate for PCR analysis was significantly greater than that for the tape test. Detection rates for AT-exposed mice were: intestinal content exam, 53%; PCR analysis, 33%; fecal flotation, 22%; and Swiss roll histology, 17%. The AT detection rate of PCR analysis combined with intestinal content examination was greater than for PCR analysis only and the AT detection rate of intestinal content examination was greater than for Swiss roll histology. Combining PCR analysis with intestinal content examination detected 100% of infected animals. No single test detected all positive animals. We recommend combining PCR analysis with intestinal content examination for optimal pinworm detection.