Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
J Am Chem Soc ; 146(1): 500-513, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38150413

ABSTRACT

The exchange coupling of electron spins can strongly influence the properties of chemical species. The regulation of this type of electronic coupling has been explored within complexes that have multiple metal ions but to a lesser extent in complexes that pair a redox-active ligand with a single metal ion. To bridge this gap, we investigated the interplay among the structural and magnetic properties of mononuclear Cu complexes and exchange coupling between a Cu center and a redox-active ligand over three oxidation states. The computational analysis of the structural properties established a relationship between the complexes' magnetic properties and a bonding interaction involving a dx2-y2 orbital of the Cu ion and π orbital of the redox-active ligand that are close in energy. The additional bonding interaction affects the geometry around the Cu center and was found to be influenced by intramolecular H-bonds introduced by the external ligands. The ability to synthetically tune the d-π interactions using H-bonds illustrates a new type of control over the structural and magnetic properties of metal complexes.

2.
Inorg Chem ; 62(14): 5586-5592, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36967523

ABSTRACT

Fe-TAML/peroxide catalysis provides simple, powerful, ultradilute approaches for removing micropollutants from water. The typically rate-determining interactions of H2O2 with Fe-TAMLs (rate constant kI) are sharply pH-sensitive with rate maxima in the pH 9-10 window. Fe-TAML design or process design that shifts the maximum rates to the pH 6-8 window of most wastewaters would make micropollutant eliminations even more powerful. Here, we show how the different pH dependencies of the interactions of Fe-TAMLs with peroxide or hypochlorite to form active Fe-TAMLs (kI step) illuminate why moving from H2O2 (pKa, ca. 11.6) to hypochlorite (pKa, 7.5) shifts the pH of the fastest catalysis to as low as 8.2. At pH 7, hypochlorite catalysis is 100-1000 times faster than H2O2 catalysis. The pH of maximum catalytic activity is also moderated by the pKa's of the Fe-TAML axial water ligands, 8.8, 9.3, and 10.3, respectively, for [Fe{4-NO2C6H3-1,2-(NCOCMe2NSO2)2CHMe}(H2O)n]- (2) [n = 1-2], [Fe{4-NO2C6H3-1,2-(NCOCMe2NCO)2CF2}(H2O)n]- (1b), and [Fe{C6H4-1,2-(NCOCMe2NCO)2CMe2}(H2O)n]- (1a). The new bis(sulfonamido)-bis(carbonamido)-ligated 2 exhibits the lowest pKa and delivers the largest hypochlorite over peroxide catalytic rate advantage. The fast Fe-TAML/hypochlorite catalysis is accompanied by slow noncatalytic oxidations of Orange II.

3.
J Am Chem Soc ; 144(10): 4559-4571, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35192354

ABSTRACT

Metalloproteins with active sites containing di-Fe cores exhibit diverse chemical reactivity that is linked to the precise transfer of protons and electrons which directly involve the di-Fe units. The redox conversions are commonly corroborated by spectroscopic methods, but the associated structural changes are often difficult to assess, particularly those related to proton movements. This report describes the development of di-Fe complexes in which the movements of protons and electrons are pinpointed during the stepwise oxidation of a di-FeII species to one with an FeIIIFeIV core. Complex formation was promoted using the phosphinic amido tripodal ligand [poat]3- (N,N',N″-[nitrilotris(ethane-2,1-diyl)]tris(P,P-diphenylphosphinic amido)) that provided dynamic coordination spheres that assisted in regulating both electron and proton transfer processes. Oxidation of an [FeII-(µ-OH)-FeIII] complex led to the corresponding di-FeIII species containing a hydroxido bridge that was not stable at room temperature and converted to a species containing an oxido bridging ligand and protonation of one phosphinic amido group to form [Hpoat]2-. Deprotonation led to a new species with an [FeIII-(µ-O)-FeIII] core that could be further oxidized to its FeIIIFeIV analogue. Reactions with phenols suggest homolytic cleavage of the O-H bond to give products that are consistent with the initial formation of a phenoxyl radical─spectroscopic studies indicated that the electron is transferred to the FeIV center, and the proton is initially transferred to the more sterically hindered oxido ligand but then relocates to [poat]3-. These findings offer new mechanistic insights related to the stability of and the reactions performed by di-Fe enzymes.


Subject(s)
Ferric Compounds , Protons , Ferric Compounds/chemistry , Ferrous Compounds , Ligands , Oxidation-Reduction
4.
J Am Chem Soc ; 144(37): 16905-16915, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36083845

ABSTRACT

In this research article, we describe a 4H+/4e- electron-coupled-proton buffer (ECPB) based on Cu and a redox-active ligand. The protonated/reduced ECPB (complex 1: [Cu(8H+/14e-)]1+), consisting of CuI with 2 equiv of the ligand (catLH4: 1,1'-(4,5-dimethoxy-1,2-phenylene)bis(3-(tert-butyl)urea)), reacted with H+/e- acceptors such as O2 to generate the deprotonated/oxidized ECPB. The resulting compound, (complex 5: [Cu(4H+/10e-)]1+), was characterized by X-ray diffraction analysis, nuclear magnetic resonance (1H-NMR), and density functional theory, and it is electronically described as a cuprous bis(benzoquinonediimine) species. The stoichiometric 4H+/4e- reduction of 5 was carried out with H+/e- donors to generate 1 (CuI and 2 equiv of catLH4) and the corresponding oxidation products. The 1/5 ECPB system catalyzed the 4H+/4e- reduction of O2 to H2O and the dehydrogenation of organic substrates in a decoupled (oxidations and reductions are separated in time and space) and a coupled fashion (oxidations and reductions coincide in time and space). Mechanistic analysis revealed that upon reductive protonation of 5 and oxidative deprotonation of 1, fast disproportionation reactions regenerate complexes 5 and 1 in a stoichiometric fashion to maintain the ECPB equilibrium.


Subject(s)
Electrons , Protons , Copper/chemistry , Ligands , Oxidation-Reduction , Urea
6.
J Am Chem Soc ; 143(5): 2384-2393, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33528256

ABSTRACT

Dinuclear iron centers with a bridging hydroxido or oxido ligand form active sites within a variety of metalloproteins. A key feature of these sites is the ability of the protein to control the structures around the Fe centers, which leads to entatic states that are essential for function. To simulate this controlled environment, artificial proteins have been engineered using biotin-streptavidin (Sav) technology in which Fe complexes from adjacent subunits can assemble to form [FeIII-(µ-OH)-FeIII] cores. The assembly process is promoted by the site-specific localization of the Fe complexes within a subunit through the designed mutation of a tyrosinate side chain to coordinate the Fe centers. An important outcome is that the Sav host can regulate the Fe···Fe separation, which is known to be important for function in natural metalloproteins. Spectroscopic and structural studies from X-ray diffraction methods revealed uncommonly long Fe···Fe separations that change by less than 0.3 Å upon the binding of additional bridging ligands. The structural constraints imposed by the protein host on the di-Fe cores are unique and create examples of active sites having entatic states within engineered artificial metalloproteins.


Subject(s)
Biomimetic Materials/chemistry , Iron/chemistry , Metalloproteins/metabolism , Biotin/metabolism , Models, Molecular , Molecular Conformation , Streptavidin/metabolism
7.
Nature ; 527(7579): 539-543, 2015 Nov 26.
Article in English | MEDLINE | ID: mdl-26524521

ABSTRACT

Many peroxy-containing secondary metabolites have been isolated and shown to provide beneficial effects to human health. Yet, the mechanisms of most endoperoxide biosyntheses are not well understood. Although endoperoxides have been suggested as key reaction intermediates in several cases, the only well-characterized endoperoxide biosynthetic enzyme is prostaglandin H synthase, a haem-containing enzyme. Fumitremorgin B endoperoxidase (FtmOx1) from Aspergillus fumigatus is the first reported α-ketoglutarate-dependent mononuclear non-haem iron enzyme that can catalyse an endoperoxide formation reaction. To elucidate the mechanistic details for this unique chemical transformation, we report the X-ray crystal structures of FtmOx1 and the binary complexes it forms with either the co-substrate (α-ketoglutarate) or the substrate (fumitremorgin B). Uniquely, after α-ketoglutarate has bound to the mononuclear iron centre in a bidentate fashion, the remaining open site for oxygen binding and activation is shielded from the substrate or the solvent by a tyrosine residue (Y224). Upon replacing Y224 with alanine or phenylalanine, the FtmOx1 catalysis diverts from endoperoxide formation to the more commonly observed hydroxylation. Subsequent characterizations by a combination of stopped-flow optical absorption spectroscopy and freeze-quench electron paramagnetic resonance spectroscopy support the presence of transient radical species in FtmOx1 catalysis. Our results help to unravel the novel mechanism for this endoperoxide formation reaction.


Subject(s)
Aspergillus fumigatus/enzymology , Biocatalysis , Ketoglutaric Acids/metabolism , Prostaglandin Endoperoxides/biosynthesis , Binding Sites , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Heme , Hydroxylation , Indoles/metabolism , Iron/metabolism , Oxygen/metabolism , Tyrosine/metabolism
8.
Biochemistry ; 59(30): 2813-2822, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32659080

ABSTRACT

The first step of the kynurenine pathway for l-tryptophan (l-Trp) degradation is catalyzed by heme-dependent dioxygenases, tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase. In this work, we employed stopped-flow optical absorption spectroscopy to study the kinetic behavior of the Michaelis complex of Cupriavidus metallidurans TDO (cmTDO) to improve our understanding of oxygen activation and initial oxidation of l-Trp. On the basis of the stopped-flow results, rapid freeze-quench (RFQ) experiments were performed to capture and characterize this intermediate by Mössbauer spectroscopy. By incorporating the chlorite dismutase-chlorite system to produce high concentrations of solubilized O2, we were able to capture the Michaelis complex of cmTDO in a nearly quantitative yield. The RFQ-Mössbauer results confirmed the identity of the Michaelis complex as an O2-bound ferrous species. They revealed remarkable similarities between the electronic properties of the Michaelis complex and those of the O2 adduct of myoglobin. We also found that the decay of this reactive intermediate is the rate-limiting step of the catalytic reaction. An inverse α-secondary substrate kinetic isotope effect was observed with a kH/kD of 0.87 ± 0.03 when (indole-d5)-l-Trp was employed as the substrate. This work provides an important piece of spectroscopic evidence of the chemical identity of the Michaelis complex of bacterial TDO.


Subject(s)
Biocatalysis , Tryptophan Oxygenase/chemistry , Cupriavidus/enzymology , Isotopes , Kinetics , Spectrophotometry, Ultraviolet , Spectroscopy, Mossbauer , Spectrum Analysis , Time Factors , Tryptophan/metabolism
9.
Biochemistry ; 59(5): 704-716, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31887031

ABSTRACT

A defining characteristic of bacterial cytochromes (cyt's) in the P460 family is an unusual cross-link connecting the heme porphyrin to the side chain of a lysyl residue in the protein backbone. Here, via proteomics of the periplasmic fraction of the ammonia-oxidizing bacterium (AOB) Nitrosomonas europaea, we report the identification of a variant member of the P460 family that contains a methionyl residue in place of the cross-linking lysine. We formally designate this protein cytochrome "c'ß-Met" to distinguish it from other members bearing different residues at this position (e.g., cyt c'ß-Phe from the methane-oxidizing Methylococcus capsulatus Bath). As isolated, the monoheme cyt c'ß-Met is high-spin (S = 5/2). Optical spectroscopy suggests that a cross-link is absent. Hydroxylamine, the substrate for the cross-linked cyt P460 from N. europaea, did not appreciably alter the optical spectrum of cyt c'ß with up to 1000-fold excess at pH 7.5. Cyt c'ß-Met did however bind 1 equiv of H2O2, and with a slight excess, Mössbauer spectroscopy indicated the formation of a semistable ferryl (FeIV═O) Compound II-like species. The corresponding electron paramagnetic resonance showed a very low intensity signal indicative of a radical at g = 2.0. Furthermore, cyt c'ß-Met exhibited guaiacol-dependent peroxidase activity (kcat = 20.0 ± 1.2 s-1; KM = 2.6 ± 0.4 mM). Unlike cyt c'ß-Met, cyt P460 showed evidence of heme inactivation in the presence of 2 equiv of H2O2 with no appreciable guaiacol-dependent peroxidase activity. Mutagenesis of the cross-linking lysyl residue to an alanine in cyt P460, however, reversed this lack of activity.


Subject(s)
Cytochromes c/metabolism , Heme/metabolism , Iron Compounds/metabolism , Lysine/metabolism , Nitrosomonas/chemistry , Peroxidase/metabolism , Cytochromes c/chemistry , Cytochromes c/genetics , Electron Spin Resonance Spectroscopy , Heme/chemistry , Iron Compounds/chemistry , Lysine/chemistry , Models, Molecular , Nitrosomonas/cytology , Nitrosomonas/metabolism , Peroxidase/chemistry , Proteomics , Spectroscopy, Mossbauer
10.
J Am Chem Soc ; 142(28): 11978-11982, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32564595

ABSTRACT

BthA is a diheme enzyme that is a member of the bacterial cytochrome c peroxidase superfamily, capable of generating a highly unusual Fe(IV)Fe(IV)═O oxidation state, known to be responsible for long-range oxidative chemistry in the enzyme MauG. Here, we show that installing a canonical Met ligand in lieu of the Tyr found at the heme of MauG associated with electron transfer, results in a construct that yields an unusually stable Fe(IV)═O porphyrin at the peroxidatic heme. This state is spontaneously formed at ambient conditions using either molecular O2 or H2O2. The resulting data illustrate how a ferryl iron, with unforeseen stability, may be achieved in biology.


Subject(s)
Bacterial Proteins/metabolism , Cytochrome-c Peroxidase/metabolism , Iron/metabolism , Porphyrins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Cytochrome-c Peroxidase/chemistry , Cytochrome-c Peroxidase/genetics , Iron/chemistry , Models, Molecular , Mutation , Porphyrins/chemistry
11.
J Am Chem Soc ; 142(27): 11804-11817, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32489096

ABSTRACT

High-valent nonheme FeIV-oxido species are key intermediates in biological oxidation, and their properties are proposed to be influenced by the unique microenvironments present in protein active sites. Microenvironments are regulated by noncovalent interactions, such as hydrogen bonds (H-bonds) and electrostatic interactions; however, there is little quantitative information about how these interactions affect crucial properties of high valent metal-oxido complexes. To address this knowledge gap, we introduced a series of FeIV-oxido complexes that have the same S = 2 spin ground state as those found in nature and then systematically probed the effects of noncovalent interactions on their electronic, structural, and vibrational properties. The key design feature that provides access to these complexes is the new tripodal ligand [poat]3-, which contains phosphinic amido groups. An important structural aspect of [FeIVpoat(O)]- is the inclusion of an auxiliary site capable of binding a Lewis acid (LAII); we used this unique feature to further modulate the electrostatic environment around the Fe-oxido unit. Experimentally, studies confirmed that H-bonds and LAII s can interact directly with the oxido ligand in FeIV-oxido complexes, which weakens the Fe═O bond and has an impact on the electronic structure. We found that relatively large vibrational changes in the Fe-oxido unit correlate with small structural changes that could be difficult to measure, especially within a protein active site. Our work demonstrates the important role of noncovalent interactions on the properties of metal complexes, and that these interactions need to be considered when developing effective oxidants.


Subject(s)
Iron Compounds/chemistry , Oxides/chemistry , Density Functional Theory , Lewis Acids/chemistry , Molecular Conformation
12.
Inorg Chem ; 59(14): 10223-10233, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32602712

ABSTRACT

The BthA protein from the microorganism Burkholderia thailandensis contains two hemes with axial His/OH2 and His/Tyr coordinations separated by the closest interheme distance of 14 Å. BthA has a similar structure and belongs to the same family of multiheme cytochrome c peroxidases as MauG, which performs long-range oxidation of the partner protein methylamine dehydrogenase. Magnetic Mössbauer spectroscopy of the diferric state of BthA corroborates previous structural work identifying a high-spin (His/OH2) peroxidatic heme and a low-spin (His/Tyr) electron transfer heme. Unlike MauG, addition of H2O2 fully converts the diferric form of BthA to a stable 2e- oxidized state, allowing a new assessment of this state. The peroxidatic heme is found to be oxidized to a canonical compound II, S = 1 oxoiron(IV) heme. In contrast, the electronic properties of the oxidized His/Tyr heme are puzzling. The isomer shift of the His/Tyr heme (0.17 mm/s) is close to that of the precursor S = 1/2 Fe3+ heme (0.21 mm/s) which suggests oxidation of the Tyr. However, the spin-dipolar hyperfine coupling constants are found here to be the same as those for the ferryl peroxidatic heme, indicating that the His/Tyr heme is also a compound II, S = 1 Fe4+ heme and ruling out oxidation of the Tyr. DFT calculations indicate that the unusually high isomer shift is not attributable to the rare axial His/Tyr heme coordination. The calculations are only compatible with spectroscopy for an unusually long Fe4+-OTyr distance, which is presumably under the influence of the protein environment of the His/Tyr heme moiety in the H2O2 oxidized state of the protein. The results offer new insights into how high valence intermediates can be tuned by the protein environment for performing long-range oxidation.


Subject(s)
Bacterial Proteins/chemistry , Heme/chemistry , Hemeproteins/chemistry , Histidine/chemistry , Tyrosine/chemistry , Burkholderia/chemistry , Density Functional Theory , Hydrogen Peroxide/chemistry , Iron/chemistry , Models, Chemical , Oxidation-Reduction , Spectroscopy, Mossbauer
13.
Eur J Inorg Chem ; 2020(14): 1278-1285, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-33986626

ABSTRACT

Complexes of copper and 1,10-phenanthroline have been utilized for organic transformations over the last 50 years. In many cases these systems are impacted by reaction conditions and perform best under an inert atmosphere. Here we explore the role the 1,10-phenanthroline ligand plays on the electronic structure and redox properties of copper coordination complexes, and what benefit related ligands may provide to enhance copper-based coupling reactions. Copper(II) triflate complexes bearing 1,10-phenanthroline (phen), ([Cu(phen)2(OTf)]OTf, 1) and oxidized derivatives of phen including [Cu(edhp)2](OTf)2 (2), [Cu(pdo)2](OTf)2 (3), [Cu(dafo)2](OTf)2 (4) were prepared and characterized. X-ray crystallographic data show these related ligands subtly impacted the coordination geometry of the copper(II) ion. Complexes 1-3 had only incremental changes to the redox properties of the copper ions, complex 4 showed a drastically different redox potential affording a remarkably air stable copper(I) complex. These complexes 1-4 were then used to catalyze the C-N bond forming cross coupling between imidazole and various boronic acid substrates, where the increased stability of the copper(I) species in complex 4 appears to better support these CEL cross couplings.

14.
Biochemistry ; 58(51): 5135-5150, 2019 12 24.
Article in English | MEDLINE | ID: mdl-31750652

ABSTRACT

Thiol dioxygenases are non-heme mononuclear iron enzymes that catalyze the O2-dependent oxidation of free thiols (-SH) to produce the corresponding sulfinic acid (-SO2-). Regardless of the phylogenic domain, the active site for this enzyme class is typically comprised of two major features: (1) a mononuclear ferrous iron coordinated by three protein-derived histidines and (2) a conserved sequence of outer Fe-coordination-sphere amino acids (Ser-His-Tyr) spatially adjacent to the iron site (∼3 Å). Here, we utilize a promiscuous 3-mercaptopropionic acid dioxygenase cloned from Azotobacter vinelandii (Av MDO) to explore the function of the conserved S-H-Y motif. This enzyme exhibits activity with 3-mercaptopropionic acid (3mpa), l-cysteine (cys), as well as several other thiol-bearing substrates, thus making it an ideal system to study the influence of residues within the highly conserved S-H-Y motif (H157 and Y159) on substrate specificity and reactivity. The pKa values for these residues were determined by pH-dependent steady-state kinetics, and their assignments verified by comparison to H157N and Y159F variants. Complementary electron paramagnetic resonance and Mössbauer studies demonstrate a network of hydrogen bonds connecting H157-Y159 and Fe-bound ligands within the enzymatic Fe site. Crucially, these experiments suggest that the hydroxyl group of Y159 hydrogen bonds to Fe-bound NO and, by extension, Fe-bound oxygen during native catalysis. This interaction alters both the NO binding affinity and rhombicity of the 3mpa-bound iron-nitrosyl site. In addition, Fe coordination of cys is switched from thiolate only to bidentate (thiolate/amine) for the Y159F variant, indicating that perturbations within the S-H-Y proton relay network also influence cys Fe binding denticity.


Subject(s)
3-Mercaptopropionic Acid/metabolism , Catalytic Domain , Dioxygenases/chemistry , Dioxygenases/metabolism , Iron , Tyrosine , Amino Acid Motifs , Azotobacter/enzymology , Dioxygenases/genetics , Models, Molecular , Mutation
15.
Inorg Chem ; 58(14): 9150-9160, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31241914

ABSTRACT

The exchange-coupling constants (J) in a series of bimetallic complexes with an M2+(µ-OH)Fe3+ core (M = Mn, Fe, Ni, and Cu; series 1), which were reported in a recent study ( Sano et al. Inorg. Chem. 2017 , 56 , 14118 - 14128 ), have been analyzed with the help of density functional theory (DFT) calculations. The experimental J values of series 1 showed the remarkable property that they were virtually independent of metal M. This behavior contrasts with that observed for a related series of complexes with M2+Fe3+ cores reported by Chaudhuri and co-workers ( Biswas et al. Inorg. Chem. 2010 , 49 , 626 - 641 ) (series 2) in which J increases toward the upper end of the series. Broken symmetry DFT calculations for J, which yielded values in good agreement for the MnFe and NiFe complexes of series 1, gave for the CuFe complex a J value that was persistently much larger than that obtained from the experiment. Attempts to bridge the discrepancy by invoking various basis sets and corrections for hydrogen-bonding effects on J were not successful. The J values for series 1 were subsequently analyzed in the context of an exchange pathway model. From this analysis, it emerged that, in addition to the regular 2e-pathways, which contribute antiferromagnetic terms to J, there are also 3e-pathways that contribute ferromagnetic terms and have the propensity to keep J constant along series 1. It is shown that, while DFT evaluates the 2e-pathway terms reliably, this method seriously underestimates the 3e-pathway contributions, resulting in a too high J value for the CuFe complex of series 1. The pathway analysis of series 2 reveals that the 3e-pathway contributions to J are considerably smaller than those in series 1, resulting in J values that increase toward the upper end of the series, in accordance with the experiment.

16.
Inorg Chem ; 58(3): 2099-2108, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30667223

ABSTRACT

High-valent Fe-OH species are important intermediates in hydroxylation chemistry. Such complexes have been implicated in mechanisms of oxygen-activating enzymes and have thus far been observed in Compound II of sulfur-ligated heme enzymes like cytochrome P450. Attempts to synthetically model such species have thus far seen relatively little success. Here, the first synthetic FeIVOH n complex has been generated and spectroscopically characterized as either [LFeIVOH]- or [LFeIVOH2]0, where H4L = Me4C2(NHCOCMe2NHCO)2CMe2 is a variant of a tetra-amido macrocyclic ligand (TAML). The steric bulk provided by the replacement of the aryl group with the -CMe2CMe2- unit in this TAML variant prevents dimerization in all oxidation states over a wide pH range, thus allowing the generation of FeIVOH n in near quantitative yield from oxidation of the [LFeIIIOH2]- precursor.

17.
Inorg Chem ; 57(21): 13341-13350, 2018 Nov 05.
Article in English | MEDLINE | ID: mdl-30299920

ABSTRACT

Hydrogen bonds (H-bonds) within the secondary coordination sphere are often invoked as essential noncovalent interactions that lead to productive chemistry in metalloproteins. Incorporating these types of effects within synthetic systems has proven a challenge in molecular design that often requires the use of rigid organic scaffolds to support H-bond donors or acceptors. We describe the preparation and characterization of a new hybrid tripodal ligand ([H2pout]3-) that contains two monodeprotonated urea groups and one phosphinic amide. The urea groups serve as H-bond donors, while the phosphinic amide group serves as a single H-bond acceptor. The [H2pout]3- ligand was utilized to stabilize a series of Mn-hydroxido complexes in which the oxidation state of the metal center ranges from 2+ to 4+. The molecular structure of the MnIII-OH complex demonstrates that three intramolecular H-bonds involving the hydroxido ligand are formed. Additional evidence for the formation of intramolecular H-bonds was provided by vibrational spectroscopy in which the energy of the O-H vibration supports its assignment as an H-bond donor. The stepwise oxidation of [MnIIH2pout(OH)]2- to its higher oxidized analogs was further substantiated by electrochemical measurements and results from electronic absorbance and electron paramagnetic resonance spectroscopies. Our findings illustrate the utility of controlling both the primary and secondary coordination spheres to achieve structurally similar Mn-OH complexes with varying oxidation states.

18.
Proc Natl Acad Sci U S A ; 112(17): 5319-24, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25852147

ABSTRACT

The structural and electronic properties of a series of manganese complexes with terminal oxido ligands are described. The complexes span three different oxidation states at the manganese center (III-V), have similar molecular structures, and contain intramolecular hydrogen-bonding networks surrounding the Mn-oxo unit. Structural studies using X-ray absorption methods indicated that each complex is mononuclear and that oxidation occurs at the manganese centers, which is also supported by electron paramagnetic resonance (EPR) studies. This gives a high-spin Mn(V)-oxo complex and not a Mn(IV)-oxy radical as the most oxidized species. In addition, the EPR findings demonstrated that the Fermi contact term could experimentally substantiate the oxidation states at the manganese centers and the covalency in the metal-ligand bonding. Oxygen-17-labeled samples were used to determine spin density within the Mn-oxo unit, with the greatest delocalization occurring within the Mn(V)-oxo species (0.45 spins on the oxido ligand). The experimental results coupled with density functional theory studies show a large amount of covalency within the Mn-oxo bonds. Finally, these results are examined within the context of possible mechanisms associated with photosynthetic water oxidation; specifically, the possible identity of the proposed high valent Mn-oxo species that is postulated to form during turnover is discussed.


Subject(s)
Manganese/chemistry , Oxygen/chemistry , Photosystem II Protein Complex/chemistry , Absorptiometry, Photon , Electron Spin Resonance Spectroscopy , Oxidation-Reduction , Water/chemistry
19.
J Coord Chem ; 71(11-13): 1822-1836, 2018.
Article in English | MEDLINE | ID: mdl-31249429

ABSTRACT

The preparation, characterization, and evaluation of a cobalt(III) complex with 13-membered tetraamide macrocyclic ligand (TAML) is described. This is a square-planar (X-ray) S = 1 paramagnetic (1H NMR) compound, which becomes an S = 0 diamagnetic octahedral species in excess d5-pyridine. Its one-electron oxidation at an electrode is fully reversible with the lowest E 1/2 value (0.66 V vs SCE) among all investigated CoIII TAML complexes. The oxidation results in a neutral blue species which is consistent with a CoIII/radical-cation ligand. The ease of oxidation is likely due to the two benzene rings incorporated in the ligand structure (whereas there is just one in many other CoIII TAMLs). The oxidized neutral species are unexpectedly EPR silent, presumably due to the π-stacking aggregation. However, they display eight-line hyperfine patterns in the presence of excess of 4-tert-butylpyridine or 4-tert-butyl isonitrile. The EPR spectra are more consistent with the CoIII/radical-cation ligand formulation rather than with a CoIV complex. Attempts to synthesize a similar vanadium complex under the same conditions as for cobalt using [VVO(OCHMe2)3] were not successful. TAML-free decavanadate was isolated instead.

20.
Angew Chem Int Ed Engl ; 57(49): 16010-16014, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30353620

ABSTRACT

Hydrogen bonds (H-bonds) have been shown to modulate the chemical reactivities of iron centers in iron-containing dioxygen-activating enzymes and model complexes. However, few examples are available that investigate how systematic changes in intramolecular H-bonds within the secondary coordination sphere influence specific properties of iron intermediates, such as iron-oxido/hydroxido species. Here, we used 57 Fe nuclear resonance vibrational spectroscopy (NRVS) to probe the Fe-O/OH vibrations in a series of FeIII -hydroxido and FeIV/III -oxido complexes with varying H-bonding networks but having similar trigonal bipyramidal primary coordination spheres. The data show that even subtle changes in the H-bonds to the Fe-O/OH units result in significant changes in their vibrational frequencies, thus demonstrating the utility of NRVS in studying the effect of the secondary coordination sphere to the reactivities of iron complexes.


Subject(s)
Hydroxides/chemistry , Iron Compounds/chemistry , Oxides/chemistry , Hydrogen Bonding , Iron Isotopes , Magnetic Resonance Spectroscopy , Molecular Conformation , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL