Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nature ; 625(7993): 166-174, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38057662

ABSTRACT

Myeloid cells are known to suppress antitumour immunity1. However, the molecular drivers of immunosuppressive myeloid cell states are not well defined. Here we used single-cell RNA sequencing of human and mouse non-small cell lung cancer (NSCLC) lesions, and found that in both species the type 2 cytokine interleukin-4 (IL-4) was predicted to be the primary driver of the tumour-infiltrating monocyte-derived macrophage phenotype. Using a panel of conditional knockout mice, we found that only deletion of the IL-4 receptor IL-4Rα in early myeloid progenitors in bone marrow reduced tumour burden, whereas deletion of IL-4Rα in downstream mature myeloid cells had no effect. Mechanistically, IL-4 derived from bone marrow basophils and eosinophils acted on granulocyte-monocyte progenitors to transcriptionally programme the development of immunosuppressive tumour-promoting myeloid cells. Consequentially, depletion of basophils profoundly reduced tumour burden and normalized myelopoiesis. We subsequently initiated a clinical trial of the IL-4Rα blocking antibody dupilumab2-5 given in conjunction with PD-1/PD-L1 checkpoint blockade in patients with relapsed or refractory NSCLC who had progressed on PD-1/PD-L1 blockade alone (ClinicalTrials.gov identifier NCT05013450 ). Dupilumab supplementation reduced circulating monocytes, expanded tumour-infiltrating CD8 T cells, and in one out of six patients, drove a near-complete clinical response two months after treatment. Our study defines a central role for IL-4 in controlling immunosuppressive myelopoiesis in cancer, identifies a novel combination therapy for immune checkpoint blockade in humans, and highlights cancer as a systemic malady that requires therapeutic strategies beyond the primary disease site.


Subject(s)
Bone Marrow , Carcinogenesis , Interleukin-4 , Myelopoiesis , Signal Transduction , Animals , Humans , Mice , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Bone Marrow/drug effects , Bone Marrow/metabolism , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Immune Checkpoint Inhibitors/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Interleukin-4/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Monocytes/drug effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Recurrence , Signal Transduction/drug effects
2.
Nat Med ; 29(6): 1389-1399, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37322116

ABSTRACT

Despite no apparent defects in T cell priming and recruitment to tumors, a large subset of T cell rich tumors fail to respond to immune checkpoint blockade (ICB). We leveraged a neoadjuvant anti-PD-1 trial in patients with hepatocellular carcinoma (HCC), as well as additional samples collected from patients treated off-label, to explore correlates of response to ICB within T cell-rich tumors. We show that ICB response correlated with the clonal expansion of intratumoral CXCL13+CH25H+IL-21+PD-1+CD4+ T helper cells ("CXCL13+ TH") and Granzyme K+ PD-1+ effector-like CD8+ T cells, whereas terminally exhausted CD39hiTOXhiPD-1hiCD8+ T cells dominated in nonresponders. CD4+ and CD8+ T cell clones that expanded post-treatment were found in pretreatment biopsies. Notably, PD-1+TCF-1+ (Progenitor-exhausted) CD8+ T cells shared clones mainly with effector-like cells in responders or terminally exhausted cells in nonresponders, suggesting that local CD8+ T cell differentiation occurs upon ICB. We found that these Progenitor CD8+ T cells interact with CXCL13+ TH within cellular triads around dendritic cells enriched in maturation and regulatory molecules, or "mregDC". These results suggest that discrete intratumoral niches that include mregDC and CXCL13+ TH control the differentiation of tumor-specific Progenitor exhasuted CD8+ T cells following ICB.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , CD8-Positive T-Lymphocytes , Liver Neoplasms/pathology , Programmed Cell Death 1 Receptor , T-Lymphocytes, Helper-Inducer , Cell Differentiation , Dendritic Cells/pathology
3.
Lancet Gastroenterol Hepatol ; 7(3): 219-229, 2022 03.
Article in English | MEDLINE | ID: mdl-35065058

ABSTRACT

BACKGROUND: Surgical resection of early stage hepatocellular carcinoma is standard clinical practice; however, most tumours recur despite surgery, and no perioperative intervention has shown a survival benefit. Neoadjuvant immunotherapy has induced pathological responses in multiple tumour types and might decrease the risk of postoperative recurrence in hepatocellular carcinoma. We aimed to evaluate the clinical activity of neoadjuvant cemiplimab (an anti-PD-1) in patients with resectable hepatocellular carcinoma. METHODS: For this single-arm, open-label, phase 2 trial, patients with resectable hepatocellular carcinoma (stage Ib, II, and IIIb) were enrolled and received two cycles of neoadjuvant cemiplimab 350 mg intravenously every 3 weeks followed by surgical resection. Eligible patients were aged 18 years or older, had confirmed resectable hepatocellular carcinoma, an Eastern Cooperative Oncology Group performance status of 0 or 1, and adequate liver function. Patients were excluded if they had metastatic disease, if the surgery was not expected to be curative, if they had a known additional malignancy requiring active treatment, or if they required systemic steroid treatment or any other immunosuppressive therapy. After resection, patients received an additional eight cycles of cemiplimab 350 mg intravenously every 3 weeks in the adjuvant setting. The primary endpoint was significant tumour necrosis on pathological examination (defined as >70% necrosis of the resected tumour). Secondary endpoints included delay of surgery, the proportion of patients with an overall response, change in CD8+ T-cell density, and adverse events. Tumour necrosis and response were analysed in all patients who received at least one dose of cemiplimab and completed surgical resection; safety and other endpoints were analysed in the intention-to-treat population. Patients underwent pre-treatment biopsies and blood collection throughout treatment. This trial is registered with ClinicalTrials.gov (NCT03916627, Cohort B) and is ongoing. FINDINGS: Between Aug 5, 2019, and Nov 25, 2020, 21 patients were enrolled. All patients received neoadjuvant cemiplimab, and 20 patients underwent successful resection. Of the 20 patients with resected tumours, four (20%) had significant tumour necrosis. Three (15%) of 20 patients had a partial response, and all other patients maintained stable disease. 20 (95%) patients had a treatment-emergent adverse event of any grade during the neoadjuvant treatment period. The most common adverse events of any grade were increased aspartate aminotransferase (in four patients), increased blood creatine phosphokinase (in three), constipation (in three), and fatigue (in three). Seven patients had grade 3 adverse events, including increased blood creatine phosphokinase (in two patients) and hypoalbuminaemia (in one). No grade 4 or 5 events were observed. One patient developed pneumonitis, which led to a delay in surgery by 2 weeks. INTERPRETATION: This report is, to our knowledge, the largest clinical trial of a neoadjuvant anti-PD-1 monotherapy reported to date in hepatocellular carcinoma. The observed pathological responses to cemiplimab in this cohort support the design of larger trials to identify the optimal treatment duration and definitively establish the clinical benefit of preoperative PD-1 blockade in patients with hepatocellular carcinoma. FUNDING: Regeneron Pharmaceuticals.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Agents, Immunological/administration & dosage , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Agents, Immunological/adverse effects , Aspartate Aminotransferases/blood , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/surgery , Creatine Kinase/blood , Female , Humans , Liver Neoplasms/pathology , Liver Neoplasms/surgery , Male , Middle Aged , Neoadjuvant Therapy
4.
Methods Mol Biol ; 1559: 21-36, 2017.
Article in English | MEDLINE | ID: mdl-28063034

ABSTRACT

Hapten-specific T cell-mediated skin inflammation also known as contact hypersensitivity (CHS) is characterized by a strong influx of CD8+ cytotoxic T cells within the skin upon reexposure of sensitized individuals to the same hapten. As many other leukocytes are also recruited during this elicitation phase, we attempted to revisit the skin infiltrate and characterize the inflammatory pattern. Recent improvement in the isolation in conventional as well as inflammatory dendritic cell and macrophage subsets from tissues and in the use of appropriate surface markers unraveling their heterogeneity should allow to determinate their specific functions in the CHS model. Here, we describe procedures to extract those cells from the skin and to analyze them by flow cytometry using a combination of appropriate surface markers allowing further transcriptomic analysis and functional assays.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Dermatitis, Contact/immunology , Flow Cytometry/methods , Neutrophils/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Antigens, CD/genetics , Antigens, CD/immunology , CD4-Positive T-Lymphocytes/drug effects , Cell Movement , Dendritic Cells/drug effects , Dermatitis, Contact/etiology , Dermatitis, Contact/pathology , Dinitrofluorobenzene/toxicity , Ear , Haptens/toxicity , Mice , Mice, Inbred C57BL , Neutrophils/drug effects , Skin/drug effects , Skin/immunology , Skin/pathology , T-Lymphocytes, Cytotoxic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL