Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nature ; 609(7928): 793-800, 2022 09.
Article in English | MEDLINE | ID: mdl-35944563

ABSTRACT

The RNA genome of SARS-CoV-2 contains a 5' cap that facilitates the translation of viral proteins, protection from exonucleases and evasion of the host immune response1-4. How this cap is made in SARS-CoV-2 is not completely understood. Here we reconstitute the N7- and 2'-O-methylated SARS-CoV-2 RNA cap (7MeGpppA2'-O-Me) using virally encoded non-structural proteins (nsps). We show that the kinase-like nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain5 of nsp12 transfers the RNA to the amino terminus of nsp9, forming a covalent RNA-protein intermediate (a process termed RNAylation). Subsequently, the NiRAN domain transfers the RNA to GDP, forming the core cap structure GpppA-RNA. The nsp146 and nsp167 methyltransferases then add methyl groups to form functional cap structures. Structural analyses of the replication-transcription complex bound to nsp9 identified key interactions that mediate the capping reaction. Furthermore, we demonstrate in a reverse genetics system8 that the N terminus of nsp9 and the kinase-like active-site residues in the NiRAN domain are required for successful SARS-CoV-2 replication. Collectively, our results reveal an unconventional mechanism by which SARS-CoV-2 caps its RNA genome, thus exposing a new target in the development of antivirals to treat COVID-19.


Subject(s)
RNA Caps , RNA, Viral , SARS-CoV-2 , Viral Proteins , Antiviral Agents , COVID-19/virology , Catalytic Domain , Guanosine Diphosphate/metabolism , Humans , Methyltransferases/metabolism , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/metabolism , Protein Domains , RNA Caps/chemistry , RNA Caps/genetics , RNA Caps/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , COVID-19 Drug Treatment
2.
Nature ; 485(7396): 133-6, 2012 May 03.
Article in English | MEDLINE | ID: mdl-22522931

ABSTRACT

A number of functionally important actions of proteins are mediated by short, intrinsically disordered peptide segments, but the molecular interactions that allow disordered domains to mediate their effects remain a topic of active investigation. Many K+ channel proteins, after initial channel opening, show a time-dependent reduction in current flux, termed 'inactivation', which involves movement of mobile cytosolic peptide segments (approximately 20-30 residues) into a position that physically occludes ion permeation. Peptide segments that produce inactivation show little amino-acid identity and tolerate appreciable mutational substitutions without disrupting the inactivation process. Solution nuclear magnetic resonance of several isolated inactivation domains reveals substantial conformational heterogeneity with only minimal tendency to ordered structures. Channel inactivation mechanisms may therefore help us to decipher how intrinsically disordered regions mediate functional effects. Whereas many aspects of inactivation of voltage-dependent K+ channels (Kv) can be described by a simple one-step occlusion mechanism, inactivation of the voltage-dependent large-conductance Ca2+-gated K+ (BK) channel mediated by peptide segments of auxiliary ß-subunits involves two distinguishable kinetic steps. Here we show that two-step inactivation mediated by an intrinsically disordered BK ß-subunit peptide involves a stereospecific binding interaction that precedes blockade. In contrast, blocking mediated by a Shaker Kv inactivation peptide is consistent with direct, simple occlusion by a hydrophobic segment without substantial steric requirement. The results indicate that two distinct types of molecular interaction between disordered peptide segments and their binding sites produce qualitatively similar functions.


Subject(s)
Ion Channel Gating/drug effects , Large-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Peptides/metabolism , Peptides/pharmacology , Amino Acids/metabolism , Animals , Binding, Competitive , Humans , Large-Conductance Calcium-Activated Potassium Channels/chemistry , Mice , Oocytes/metabolism , Peptides/chemistry , Potassium/metabolism , Protein Binding , Protein Subunits/antagonists & inhibitors , Protein Subunits/metabolism , Shaker Superfamily of Potassium Channels/antagonists & inhibitors , Shaker Superfamily of Potassium Channels/chemistry , Shaker Superfamily of Potassium Channels/metabolism , Xenopus laevis
3.
Res Sq ; 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35194601

ABSTRACT

The SARS-CoV-2 RNA genome contains a 5'-cap that facilitates translation of viral proteins, protection from exonucleases and evasion of the host immune response1-4. How this cap is made is not completely understood. Here, we reconstitute the SARS-CoV-2 7MeGpppA2'-O-Me-RNA cap using virally encoded non-structural proteins (nsps). We show that the kinase-like NiRAN domain5 of nsp12 transfers RNA to the amino terminus of nsp9, forming a covalent RNA-protein intermediate (a process termed RNAylation). Subsequently, the NiRAN domain transfers RNA to GDP, forming the cap core structure GpppA-RNA. The nsp146 and nsp167 methyltransferases then add methyl groups to form functional cap structures. Structural analyses of the replication-transcription complex bound to nsp9 identified key interactions that mediate the capping reaction. Furthermore, we demonstrate in a reverse genetics system8 that the N-terminus of nsp9 and the kinase-like active site residues in the NiRAN domain are required for successful SARS-CoV-2 replication. Collectively, our results reveal an unconventional mechanism by which SARS-CoV-2 caps its RNA genome, thus exposing a new target in the development of antivirals to treat COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL