Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 44(2): 526-540, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35723322

ABSTRACT

Extracellular vesicles, which are highly conserved in most cells, contain biologically active substances. The vesicles and substances interact with cells and impact physiological mechanisms. The skin is the most external organ and is in direct contact with the external environment. Photoaging and skin damage are caused by extrinsic factors. The formation of wrinkles is a major indicator of skin aging and is caused by a decrease in collagen and hyaluronic acid. MMP-1 expression is also increased. Due to accruing damage, skin aging reduces the ability of the skin barrier, thereby lowering the skin's ability to contain water and increasing the amount of water loss. L. plantarum suppresses various harmful bacteria by secreting an antimicrobial substance. L. plantarum is also found in the skin, and research on the interactions between the bacteria and the skin is in progress. Although several studies have investigated L. plantarum, there are only a limited number of studies on extracellular vesicles (EV) derived from L. plantarum, especially in relation to skin aging. Herein, we isolated EVs that were secreted from L. plantarum of women in their 20s (LpEVs). We then investigated the effect of LpEVs on skin aging in CCD986sk. We showed that LpEVs modulated the mRNA expression of ECM related genes in vitro. Furthermore, LpEVs suppressed wrinkle formation and pigmentation in clinical trials. These results demonstrated that LpEVs have a great effect on skin aging by regulating ECM related genes. In addition, our study offers important evidence on the depigmentation effect of LpEVs.

2.
ACS Appl Mater Interfaces ; 8(5): 3407-17, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26771693

ABSTRACT

Developing an artificial extracellular matrix that closely mimics the native tissue microenvironment is important for use as both a cell culture platform for controlling cell fate and an in vitro model system for investigating the role of the cellular microenvironment. Electrospinning, one of the methods for fabricating structures that mimic the native ECM, is a promising technique for creating fibrous platforms. It is well-known that align or randomly distributed electrospun fibers provide cellular contact guidance in a single pattern. However, native tissues have hierarchical structures, i.e., topographies on the micro- and nanoscales, rather than a single structure. Thus, we fabricated randomly distributed nanofibrous (720 ± 80 nm in diameter) platforms via a conventional electrospinning process, and then we generated microscale grooves using a femtosecond laser ablation process to develop engineered fibrous platforms with patterned hierarchical topographies. The engineered fibrous platforms can regulate cellular adhesive morphology, proliferation, and distinct distribution of focal adhesion proteins. Furthermore, confluent myoblasts cultured on the engineered fibrous platforms revealed that the direction of myotube assembly can be controlled. These results indicate that our engineered fibrous platforms may be useful tools in investigating the roles of nano- and microscale topographies in the communication between cells and ECM.


Subject(s)
Biomimetics , Extracellular Matrix/ultrastructure , Myoblasts/ultrastructure , Tissue Engineering , Cell Adhesion/drug effects , Cell Communication/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cellular Microenvironment , Extracellular Matrix/chemistry , Myoblasts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL