Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Arterioscler Thromb Vasc Biol ; 44(3): 741-754, 2024 03.
Article in English | MEDLINE | ID: mdl-38299357

ABSTRACT

BACKGROUND: The metabolic alterations occurring within the arterial architecture during atherosclerosis development remain poorly understood, let alone those particular to each arterial tunica. We aimed first to identify, in a spatially resolved manner, the specific metabolic changes in plaque, media, adventitia, and cardiac tissue between control and atherosclerotic murine aortas. Second, we assessed their translatability to human tissue and plasma for cardiovascular risk estimation. METHODS: In this observational study, mass spectrometry imaging (MSI) was applied to identify region-specific metabolic differences between atherosclerotic (n=11) and control (n=11) aortas from low-density lipoprotein receptor-deficient mice, via histology-guided virtual microdissection. Early and advanced plaques were compared within the same atherosclerotic animals. Progression metabolites were further analyzed by MSI in 9 human atherosclerotic carotids and by targeted mass spectrometry in human plasma from subjects with elective coronary artery bypass grafting (cardiovascular risk group, n=27) and a control group (n=27). RESULTS: MSI identified 362 local metabolic alterations in atherosclerotic mice (log2 fold-change ≥1.5; P≤0.05). The lipid composition of cardiac tissue is altered during atherosclerosis development and presents a generalized accumulation of glycerophospholipids, except for lysolipids. Lysolipids (among other glycerophospholipids) were found at elevated levels in all 3 arterial layers of atherosclerotic aortas. LPC(18:0) (lysophosphatidylcholine; P=0.024) and LPA(18:1) (lysophosphatidic acid; P=0.025) were found to be significantly elevated in advanced plaques as compared with mouse-matched early plaques. Higher levels of both lipid species were also observed in fibrosis-rich areas of advanced- versus early-stage human samples. They were found to be significantly reduced in human plasma from subjects with elective coronary artery bypass grafting (P<0.001 and P=0.031, respectively), with LPC(18:0) showing significant association with cardiovascular risk (odds ratio, 0.479 [95% CI, 0.225-0.883]; P=0.032) and diagnostic potential (area under the curve, 0.778 [95% CI, 0.638-0.917]). CONCLUSIONS: An altered phospholipid metabolism occurs in atherosclerosis, affecting both the aorta and the adjacent heart tissue. Plaque-progression lipids LPC(18:0) and LPA(18:1), as identified by MSI on tissue, reflect cardiovascular risk in human plasma.


Subject(s)
Aortic Diseases , Atherosclerosis , Cardiovascular Diseases , Plaque, Atherosclerotic , Humans , Animals , Mice , Plaque, Atherosclerotic/metabolism , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/metabolism , Risk Factors , Atherosclerosis/diagnosis , Atherosclerosis/metabolism , Aorta/diagnostic imaging , Aorta/metabolism , Aortic Diseases/genetics , Aortic Diseases/metabolism , Glycerophospholipids/metabolism , Heart Disease Risk Factors
2.
J Proteome Res ; 23(8): 3012-3024, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38594816

ABSTRACT

Thoracic aortic aneurysm (TAA) is mainly sporadic and with higher incidence in the presence of a bicuspid aortic valve (BAV) for unknown reasons. The lack of drug therapy to delay TAA progression lies in the limited knowledge of pathophysiology. We aimed to identify the molecular hallmarks that differentiate the aortic dilatation associated with BAV and tricuspid aortic valve (TAV). Aortic vascular smooth muscle cells (VSMCs) isolated from sporadic TAA patients with BAV or TAV were analyzed by mass spectrometry. DNA oxidative damage assay and cell cycle profiling were performed in three independent cohorts supporting proteomics data. The alteration of secreted proteins was confirmed in plasma. Stress phenotype, oxidative stress, and enhanced DNA damage response (increased S-phase arrest and apoptosis) were found in BAV-TAA patients. The increased levels of plasma C1QTNF5, LAMA2, THSB3, and FAP confirm the enhanced stress in BAV-TAA. Plasma FAP and BGN point to an increased inflammatory condition in TAV. The arterial wall of BAV patients shows a limited capacity to counteract drivers of sporadic TAA. The molecular pathways identified support the need of differential molecular diagnosis and therapeutic approaches for BAV and TAV patients, showing specific markers in plasma which may serve to monitor therapy efficacy.


Subject(s)
Aortic Aneurysm, Thoracic , Aortic Valve , Bicuspid Aortic Valve Disease , Cell Cycle Checkpoints , DNA Damage , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Humans , Bicuspid Aortic Valve Disease/pathology , Bicuspid Aortic Valve Disease/metabolism , Aortic Aneurysm, Thoracic/pathology , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , Cell Cycle Checkpoints/genetics , Male , Aortic Valve/pathology , Aortic Valve/abnormalities , Aortic Valve/metabolism , Female , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Middle Aged , Oxidative Stress , Heart Valve Diseases/pathology , Heart Valve Diseases/metabolism , Heart Valve Diseases/genetics , Aged , Proteomics/methods , Apoptosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL