Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Exp Cell Res ; 333(1): 105-15, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25724901

ABSTRACT

The EphB4 receptor tyrosine kinase is over-expressed in a variety of different epithelial cancers including prostate where it has been shown to be involved in survival, migration and angiogenesis. We report here that EphB4 also resides in the nucleus of prostate cancer cell lines. We used in silico methods to identify a bipartite nuclear localisation signal (NLS) in the extracellular domain and a monopartite NLS sequence in the intracellular kinase domain of EphB4. To determine whether both putative NLS sequences were functional, fragments of the EphB4 sequence containing each NLS were cloned to create EphB4NLS-GFP fusion proteins. Localisation of both NLS-GFP proteins to the nuclei of transfected cells was observed, demonstrating that EphB4 contains two functional NLS sequences. Mutation of the key amino residues in both NLS sequences resulted in diminished nuclear accumulation. As nuclear translocation is often dependent on importins we confirmed that EphB4 and importin-α can interact. To assess if nuclear EphB4 could be implicated in gene regulatory functions potential EphB4-binding genomic loci were identified using chromatin immunoprecipitation and Lef1 was confirmed as a potential target of EphB4-mediated gene regulation. These novel findings add further complexity to the biology of this important cancer-associated receptor.


Subject(s)
Cell Nucleus/metabolism , Receptor, EphB4/metabolism , Active Transport, Cell Nucleus , Amino Acid Sequence , Cell Line, Tumor , DNA/metabolism , Gene Expression , Humans , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism , Male , Molecular Sequence Data , Nuclear Localization Signals , Prostatic Neoplasms , Protein Binding , Receptor, EphB4/chemistry , alpha Karyopherins/metabolism
2.
BMC Cancer ; 15: 164, 2015 Mar 22.
Article in English | MEDLINE | ID: mdl-25886373

ABSTRACT

BACKGROUND: The EphB4 receptor tyrosine kinase is overexpressed in many cancers including prostate cancer. The molecular mechanisms by which this ephrin receptor influences cancer progression are complex as there are tumor-promoting ligand-independent mechanisms in place as well as ligand-dependent tumor suppressive pathways. METHODS: We employed transient knockdown of EPHB4 in prostate cancer cells, coupled with gene microarray analysis, to identify genes that were regulated by EPHB4 and may represent linked tumor-promoting factors. We validated target genes using qRT-PCR and employed functional assays to determine their role in prostate cancer migration and invasion. RESULTS: We discovered that over 500 genes were deregulated upon EPHB4 siRNA knockdown, with integrin ß8 (ITGB8) being the top hit (29-fold down-regulated compared to negative non-silencing siRNA). Gene ontology analysis found that the process of cell adhesion was highly deregulated and two other integrin genes, ITGA3 and ITGA10, were also differentially expressed. In parallel, we also discovered that over-expression of EPHB4 led to a concomitant increase in ITGB8 expression. In silico analysis of a prostate cancer progression microarray publically available in the Oncomine database showed that both EPHB4 and ITGB8 are highly expressed in prostatic intraepithelial neoplasia, the precursor to prostate cancer. Knockdown of ITGB8 in PC-3 and 22Rv1 prostate cancer cells in vitro resulted in significant reduction of cell migration and invasion. CONCLUSIONS: These results reveal that EphB4 regulates integrin ß8 expression and that integrin ß8 plays a hitherto unrecognized role in the motility of prostate cancer cells and thus targeting integrin ß8 may be a new treatment strategy for prostate cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Integrin beta Chains/biosynthesis , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Receptor, EphB4/physiology , Cell Line, Tumor , Humans , Male , Receptor Protein-Tyrosine Kinases/physiology
3.
Gen Comp Endocrinol ; 216: 98-102, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25500363

ABSTRACT

Ghrelin and leptin are key peripherally secreted appetite-regulating hormones in vertebrates. Here we consider the ghrelin gene (GHRL) of birds (class Aves), where it has been reported that ghrelin inhibits rather than augments feeding. Thirty-one bird species were compared, revealing that most species harbour a functional copy of GHRL and the coding region for its derived peptides ghrelin and obestatin. We provide evidence for loss of GHRL in saker and peregrine falcons, and this is likely to result from the insertion of an ERVK retrotransposon in intron 0. We hypothesise that the loss of anorexigenic ghrelin is a predatory adaptation that results in increased food-seeking behaviour and feeding in falcons.


Subject(s)
Appetite Regulation/physiology , Falconiformes/physiology , Ghrelin/metabolism , Peptide Hormones/metabolism , Amino Acid Sequence , Animals , Molecular Sequence Data , Phylogeny , Sequence Homology, Amino Acid
4.
Biochim Biophys Acta ; 1835(2): 243-57, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23396052

ABSTRACT

Although at present, there is a high incidence of prostate cancer, particularly in the Western world, mortality from this disease is declining and occurs primarily only from clinically significant late stage tumors with a poor prognosis. A major current focus of this field is the identification of new biomarkers which can detect earlier, and more effectively, clinically significant tumors from those deemed "low risk", as well as predict the prognostic course of a particular cancer. This strategy can in turn offer novel avenues for targeted therapies. The large family of Receptor Tyrosine Kinases, the Ephs, and their binding partners, the ephrins, has been implicated in many cancers of epithelial origin through stimulation of oncogenic transformation, tumor angiogenesis, and promotion of increased cell survival, invasion and migration. They also show promise as both biomarkers of diagnostic and prognostic value and as targeted therapies in cancer. This review will briefly discuss the complex roles and biological mechanisms of action of these receptors and ligands and, with regard to prostate cancer, highlight their potential as biomarkers for both diagnosis and prognosis, their application as imaging agents, and current approaches to assessing them as therapeutic targets. This review demonstrates the need for future studies into those particular family members that will prove helpful in understanding the biology and potential as targets for treatment of prostate cancer.


Subject(s)
Ephrins/physiology , Prostatic Neoplasms/drug therapy , Receptor, EphA1/physiology , Biomarkers , Ephrins/analysis , Humans , Male , Neoplastic Cells, Circulating/chemistry , Prostatic Neoplasms/etiology , Receptor, EphA1/analysis , Receptor, EphA1/antagonists & inhibitors , Signal Transduction
5.
Biol Chem ; 395(9): 977-90, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24854540

ABSTRACT

The 15 members of the kallikrein-related serine peptidase (KLK) family have diverse tissue-specific expression profiles and roles in a range of cellular processes, including proliferation, migration, invasion, differentiation, inflammation and angiogenesis that are required in both normal physiology as well as pathological conditions. These roles require cleavage of a range of substrates, including extracellular matrix proteins, growth factors, cytokines as well as other proteinases. In addition, it has been clear since the earliest days of KLK research that cleavage of cell surface substrates is also essential in a range of KLK-mediated cellular processes where these peptidases are essentially acting as agonists and antagonists. In this review we focus on these KLK-regulated cell surface receptor systems including bradykinin receptors, proteinase-activated receptors, as well as the plasminogen activator, ephrins and their receptors, and hepatocyte growth factor/Met receptor systems and other plasma membrane proteins. From this analysis it is clear that in many physiological and pathological settings KLKs have the potential to regulate multiple receptor systems simultaneously; an important issue when these peptidases and substrates are targeted in disease.


Subject(s)
Membrane Proteins/metabolism , Receptors, Cell Surface/metabolism , Tissue Kallikreins/metabolism , Animals , Humans , Kinins/metabolism , Substrate Specificity
6.
Reprod Biol Endocrinol ; 11: 70, 2013 Jul 23.
Article in English | MEDLINE | ID: mdl-23879975

ABSTRACT

BACKGROUND: Ghrelin is a 28 amino acid peptide hormone that is expressed in the stomach and a range of peripheral tissues, where it frequently acts as an autocrine/paracrine growth factor. Ghrelin is modified by a unique acylation required for it to activate its cognate receptor, the growth hormone secretagogue receptor (GHSR), which mediates many of the actions of ghrelin. Recently, the enzyme responsible for adding the fatty acid residue (octanoyl/acyl group) to the third amino acid of ghrelin, GOAT (ghrelin O-acyltransferase), was identified. METHODS: We used cell culture, quantitative real-time reverse transcription (RT)-PCR and immunohistochemistry to demonstrate the expression of GOAT in prostate cancer cell lines and tissues from patients. Real-time RT-PCR was used to demonstrate the expression of prohormone convertase (PC)1/3, PC2 and furin in prostate cancer cell lines. Prostate-derived cell lines were treated with ghrelin and desacyl ghrelin and the effect on GOAT expression was measured using quantitative RT-PCR. RESULTS: We have demonstrated that GOAT mRNA and protein are expressed in the normal prostate and human prostate cancer tissue samples. The RWPE-1 and RWPE-2 normal prostate-derived cell lines and the LNCaP, DU145, and PC3 prostate cancer cell lines express GOAT and at least one other enzyme that is necessary to produce mature, acylated ghrelin from proghrelin (PC1/3, PC2 or furin). Finally, ghrelin, but not desacyl ghrelin (unacylated ghrelin), can directly regulate the expression of GOAT in the RWPE-1 normal prostate derived cell line and the PC3 prostate cancer cell line. Ghrelin treatment (100nM) for 6 hours significantly decreased GOAT mRNA expression two-fold (P < 0.05) in the PC3 prostate cancer cell line, however, ghrelin did not regulate GOAT expression in the DU145 and LNCaP prostate cancer cell lines. CONCLUSIONS: This study demonstrates that GOAT is expressed in prostate cancer specimens and cell lines. Ghrelin regulates GOAT expression, however, this is likely to be cell-type specific. The expression of GOAT in prostate cancer supports the hypothesis that the ghrelin axis has autocrine/paracrine roles. We propose that the RWPE-1 prostate cell line and the PC3 prostate cancer cell line may be useful for investigating GOAT regulation and function.


Subject(s)
Acyltransferases/genetics , Gene Expression Regulation, Neoplastic , Ghrelin/pharmacology , Prostatic Neoplasms/genetics , Acyltransferases/metabolism , Cell Line , Cell Line, Tumor , Furin/genetics , Furin/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Humans , Immunohistochemistry , Male , Proprotein Convertase 1/genetics , Proprotein Convertase 1/metabolism , Proprotein Convertase 2/genetics , Proprotein Convertase 2/metabolism , Prostate/enzymology , Prostate/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Reverse Transcriptase Polymerase Chain Reaction
7.
Genes Chromosomes Cancer ; 51(5): 452-61, 2012 May.
Article in English | MEDLINE | ID: mdl-22250051

ABSTRACT

High density SNP arrays can be used to identify DNA copy number changes in tumors such as homozygous deletions of tumor suppressor genes and focal amplifications of oncogenes. Illumina Human CNV370 Bead chip arrays were used to assess the genome for unbalanced chromosomal events occurring in 39 cell lines derived from stage III metastatic melanomas. A number of genes previously recognized to have an important role in the development and progression of melanoma were identified including homozygous deletions of CDKN2A (13 of 39 samples), CDKN2B (10 of 39), PTEN (3 of 39), PTPRD (3 of 39), TP53 (1 of 39), and amplifications of CCND1 (2 of 39), MITF (2 of 39), MDM2 (1 of 39), and NRAS (1 of 39). In addition, a number of focal homozygous deletions potentially targeting novel melanoma tumor suppressor genes were identified. Because of their likely functional significance for melanoma progression, FAS, CH25H, BMPR1A, ACTA2, and TFG were investigated in a larger cohort of melanomas through sequencing. Nonsynonymous mutations were identified in BMPR1A (1 of 43), ACTA2 (3 of 43), and TFG (5 of 103). A number of potentially important mutation events occurred in TFG including the identification of a mini mutation "hotspot" at amino acid residue 380 (P380S and P380L) and the presence of multiple mutations in two melanomas. Mutations in TFG may have important clinical relevance for current therapeutic strategies to treat metastatic melanoma.


Subject(s)
Genes, Tumor Suppressor , Melanoma/genetics , Melanoma/pathology , Proteins/genetics , Cell Line, Tumor , Gene Amplification , Gene Deletion , Homozygote , Humans , Mutation , Neoplasm Metastasis , Neoplasm Staging
8.
Int J Cancer ; 131(5): E614-24, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22161689

ABSTRACT

Overexpression of the receptor tyrosine kinase EphB4 is common in epithelial cancers and linked to tumor progression by promoting angiogenesis, increasing survival and facilitating invasion and migration. However, other studies have reported loss of EphB4 suggesting a tumor suppressor function in some cancers. These opposing roles may be regulated by (i) the presence of the primary ligand ephrin-B2 that regulates pathways involved in tumor suppression or (ii) the absence of ephrin-B2 that allows EphB4 signaling via ligand-independent pathways that contribute to tumor promotion. To explore this theory, EphB4 was overexpressed in the prostate cancer cell line 22Rv1 and the mammary epithelial cell line MCF-10A. Overexpressed EphB4 localized to lipid-rich regions of the plasma membrane and confirmed to be ligand-responsive as demonstrated by increased phosphorylation of ERK1/2 and internalization. EphB4 overexpressing cells demonstrated enhanced anchorage-independent growth, migration and invasion, all characteristics associated with an aggressive phenotype, and therefore supporting the hypothesis that overexpressed EphB4 facilitates tumor promotion. Importantly, these effects were reversed in the presence of ephrin-B2 which led to a reduction in EphB4 protein levels, demonstrating that ligand-dependent signaling is tumor suppressive. Furthermore, extended ligand stimulation caused a significant decrease in proliferation that correlated with a rise in caspase-3/7 and -8 activities. Together, these results demonstrate that overexpression of EphB4 confers a transformed phenotype in the case of MCF-10A cells and an increased metastatic phenotype in the case of 22Rv1 cancer cells and that both phenotypes can be restrained by stimulation with ephrin-B2, in part by reducing EphB4 levels.


Subject(s)
Apoptosis , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Ephrin-B2/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Receptor, EphB4/metabolism , Blotting, Western , Cell Adhesion , Cell Movement , Cell Proliferation , Female , Fluorescent Antibody Technique , Humans , Immunoprecipitation , Ligands , Male , Membrane Microdomains , Phosphorylation , Signal Transduction , Tumor Cells, Cultured
9.
PeerJ ; 9: e10280, 2021.
Article in English | MEDLINE | ID: mdl-33585078

ABSTRACT

It is now appreciated that long non-coding RNAs (lncRNAs) are important players in orchestrating cancer progression. In this study we characterized GHSROS, a human lncRNA gene on the opposite DNA strand (antisense) to the ghrelin receptor gene, in prostate cancer. The lncRNA was upregulated by prostate tumors from different clinical datasets. Transcriptome data revealed that GHSROS alters the expression of cancer-associated genes. Functional analyses in vitro showed that GHSROS mediates tumor growth, migration and survival, and resistance to the cytotoxic drug docetaxel. Increased cellular proliferation of GHSROS-overexpressing PC3, DU145, and LNCaP prostate cancer cell lines in vitro was recapitulated in a subcutaneous xenograft model. Conversely, in vitro antisense oligonucleotide inhibition of the lncRNA reciprocally regulated cell growth and migration, and gene expression. Notably, GHSROS modulates the expression of PPP2R2C, the loss of which may drive androgen receptor pathway-independent prostate tumor progression in a subset of prostate cancers. Collectively, our findings suggest that GHSROS can reprogram prostate cancer cells toward a more aggressive phenotype and that this lncRNA may represent a potential therapeutic target.

10.
Growth Factors ; 28(5): 359-69, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20569097

ABSTRACT

Numerous studies have reported links between insulin-like growth factors (IGFs) and the extra-cellular matrix protein vitronectin (VN). We ourselves have reported that IGF-I binds to VN via IGF-binding proteins (IGFBPs) to stimulate HaCaT and MCF-7 cell migration. Here, we detail the functional evaluation of IGFBP-1, -2, -3, -4 and -6 in the presence and absence of IGF-I and VN. The data presented here, combined with our prior data on IGFBP-5, suggest that IGFBP-3, -4 and -5 are the most effective at stimulating cell migration in combination with IGF-I and VN. In addition, we demonstrate that different regions within IGFBP-3 and -4 are critical for complex formation. Furthermore, we examine whether multi-protein complexes of IGF-I and IGFBPs associated with fibronectin and collagen IV are also able to enhance functional biological responses.


Subject(s)
Cell Movement/drug effects , Insulin-Like Growth Factor Binding Proteins/pharmacology , Insulin-Like Growth Factor I/pharmacology , Vitronectin/pharmacology , Cell Line , Cell Line, Tumor , Collagen Type IV/metabolism , Fibronectins/metabolism , Humans , Insulin-Like Growth Factor Binding Proteins/metabolism , Insulin-Like Growth Factor I/metabolism , Protein Interaction Domains and Motifs , Vitronectin/metabolism
11.
Clin Exp Pharmacol Physiol ; 37(1): 125-31, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19566830

ABSTRACT

1. Ghrelin is a multifunctional peptide hormone that affects various processes, including growth hormone and insulin release, appetite regulation, gut motility, metabolism and cancer cell proliferation. Ghrelin is produced in the stomach and in other normal and pathological cell types. It may act as an endocrine or autocrine/paracrine factor. 2. The present article reviews recent findings in the study of ghrelin and its receptor that suggest that the ghrelin gene locus may give rise to a number of functional molecules (peptides and RNA transcripts) in addition to ghrelin. 3. The ghrelin gene encodes a precursor protein, preproghrelin, from which ghrelin and other potentially active peptides are derived by alternative mRNA splicing and/or proteolytic processing. The metabolic role of the peptide obestatin, derived from the preproghrelin C-terminal region, is contentious. However, obestatin has direct effects on cell proliferation. 4. The regulation of ghrelin expression and the mechanisms through which the peptide products arise are unclear. We have recently re-examined the organization of the ghrelin gene and identified several novel exons and transcripts. One transcript, which lacks the ghrelin-coding region of preproghrelin, contains the coding sequence of obestatin. 5. Furthermore, we have identified an overlapping gene on the antisense strand of ghrelin, namely GHRLOS, which generates transcripts that may function as non-coding regulatory RNAs or code for novel, short bioactive peptides. 6. The identification of these novel ghrelin-gene related transcripts and peptides raises critical questions regarding their physiological function and their potential role in obesity, diabetes and cancer.


Subject(s)
Gene Expression Regulation/physiology , Ghrelin , Neoplasms/drug therapy , Obesity/drug therapy , Peptide Hormones/therapeutic use , Alternative Splicing , Animals , Appetite Regulation/physiology , Eating/physiology , Ghrelin/analogs & derivatives , Ghrelin/genetics , Ghrelin/physiology , Ghrelin/therapeutic use , Humans , Peptide Hormones/genetics , Peptide Hormones/physiology , Receptors, Ghrelin/genetics , Receptors, Ghrelin/metabolism
12.
Endocrine ; 64(2): 393-405, 2019 05.
Article in English | MEDLINE | ID: mdl-30390209

ABSTRACT

PURPOSE: The ghrelin axis regulates many physiological functions (including appetite, metabolism, and energy balance) and plays a role in disease processes. As ghrelin stimulates prostate cancer proliferation, the ghrelin receptor antagonist [D-Lys3]-GHRP-6 is a potential treatment for castrate-resistant prostate cancer and for preventing the metabolic consequences of androgen-targeted therapies. We therefore explored the effect of [D-Lys3]-GHRP-6 on PC3 prostate cancer xenograft growth. METHODS: NOD/SCID mice with PC3 prostate cancer xenografts were administered 20 nmoles/mouse [D-Lys3]-GHRP-6 daily by intraperitoneal injection for 14 days and tumour volume and weight were measured. RNA sequencing of tumours was conducted to investigate expression changes following [D-Lys3]-GHRP-6 treatment. A second experiment, extending treatment time to 18 days and including a higher dose of [D-Lys3]-GHRP-6 (200 nmoles/mouse/day), was undertaken to ensure repeatability. RESULTS: We demonstrate here that daily intraperitoneal injection of 20 nmoles/mouse [D-Lys3]-GHRP-6 reduces PC3 prostate cancer xenograft tumour volume and weight in NOD/SCID mice at two weeks post treatment initiation. RNA-sequencing revealed reduced expression of epidermal growth factor receptor (EGFR) in these tumours. Further experiments demonstrated that the effects of [D-Lys3]-GHRP-6 are transitory and lost after 18 days of treatment. CONCLUSIONS: We show that [D-Lys3]-GHRP-6 has transitory effects on prostate xenograft tumours in mice, which rapidly develop an apparent resistance to the antagonist. Although further studies on [D-Lys3]-GHRP-6 are warranted, we suggest that daily treatment with the antagonist is not a suitable treatment for advanced prostate cancer.


Subject(s)
Cell Proliferation/drug effects , ErbB Receptors/genetics , Gene Expression/drug effects , Oligopeptides/pharmacology , Prostatic Neoplasms/pathology , Receptors, Ghrelin/antagonists & inhibitors , Animals , ErbB Receptors/metabolism , Heterografts , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , PC-3 Cells , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism
13.
Int J Oncol ; 55(6): 1223-1236, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31638176

ABSTRACT

Recent evidence suggests that numerous long non­coding RNAs (lncRNAs) are dysregulated in cancer, and have critical roles in tumour development and progression. The present study investigated the ghrelin receptor antisense lncRNA growth hormone secretagogue receptor opposite strand (GHSROS) in breast cancer. Reverse transcription­quantitative polymerase chain reaction revealed that GHSROS expression was significantly upregulated in breast tumour tissues compared with normal breast tissue. Induced overexpression of GHSROS in the MDA­MB­231 breast cancer cell line significantly increased cell migration in vitro, without affecting cell proliferation, a finding similar to our previous study on lung cancer cell lines. Microarray analysis revealed a significant repression of a small cluster of major histocompatibility class II genes and enrichment of immune response pathways; this phenomenon may allow tumour cells to better evade the immune system. Ectopic overexpression of GHSROS in the MDA­MB­231 cell line significantly increased orthotopic xenograft growth in mice, suggesting that in vitro culture does not fully capture the function of this lncRNA. This study demonstrated that GHSROS may serve a relevant role in breast cancer. Further studies are warranted to explore the function and therapeutic potential of this lncRNA in breast cancer progression.


Subject(s)
Breast Neoplasms/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding/metabolism , Animals , Apoptosis/genetics , Breast/pathology , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Disease Progression , Down-Regulation , Female , Gene Expression Profiling , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Humans , MCF-7 Cells , Mice , Middle Aged , Oligonucleotide Array Sequence Analysis , Receptors, Ghrelin/genetics , Tumor Escape/genetics , Xenograft Model Antitumor Assays
14.
BMC Mol Biol ; 9: 95, 2008 Oct 28.
Article in English | MEDLINE | ID: mdl-18954468

ABSTRACT

BACKGROUND: The peptide hormone ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH) release, appetite regulation, gut motility and proliferation of cancer cells. We previously identified a gene on the opposite strand of the ghrelin gene, ghrelinOS (GHRLOS), which spans the promoter and untranslated regions of the ghrelin gene (GHRL). Here we further characterise GHRLOS. RESULTS: We have described GHRLOS mRNA isoforms that extend over 1.4 kb of the promoter region and 106 nucleotides of exon 4 of the ghrelin gene, GHRL. These GHRLOS transcripts initiate 4.8 kb downstream of the terminal exon 4 of GHRL and are present in the 3' untranslated exon of the adjacent gene TATDN2 (TatD DNase domain containing 2). Interestingly, we have also identified a putative non-coding TATDN2-GHRLOS chimaeric transcript, indicating that GHRLOS RNA biogenesis is extremely complex. Moreover, we have discovered that the 3' region of GHRLOS is also antisense, in a tail-to-tail fashion to a novel terminal exon of the neighbouring SEC13 gene, which is important in protein transport. Sequence analyses revealed that GHRLOS is riddled with stop codons, and that there is little nucleotide and amino-acid sequence conservation of the GHRLOS gene between vertebrates. The gene spans 44 kb on 3p25.3, is extensively spliced and harbours multiple variable exons. We have also investigated the expression of GHRLOS and found evidence of differential tissue expression. It is highly expressed in tissues which are emerging as major sites of non-coding RNA expression (the thymus, brain, and testis), as well as in the ovary and uterus. In contrast, very low levels were found in the stomach where sense, GHRL derived RNAs are highly expressed. CONCLUSION: GHRLOS RNA transcripts display several distinctive features of non-coding (ncRNA) genes, including 5' capping, polyadenylation, extensive splicing and short open reading frames. The gene is also non-conserved, with differential and tissue-restricted expression. The overlapping genomic arrangement of GHRLOS with the ghrelin gene indicates that it is likely to have interesting regulatory and functional roles in the ghrelin axis.


Subject(s)
Ghrelin/genetics , RNA, Antisense/genetics , Alternative Splicing , Cell Line , Exons/genetics , Gene Expression Regulation , Humans , Polymorphism, Genetic , RNA, Antisense/analysis , RNA, Messenger/analysis , RNA, Messenger/genetics
15.
PLoS One ; 13(11): e0198495, 2018.
Article in English | MEDLINE | ID: mdl-30458004

ABSTRACT

Ghrelin is a peptide hormone which, when acylated, regulates appetite, energy balance and a range of other biological processes. Ghrelin predominately circulates in its unacylated form (unacylated ghrelin; UAG). UAG has a number of functions independent of acylated ghrelin, including modulation of metabolic parameters and cancer progression. UAG has also been postulated to antagonise some of the metabolic effects of acyl-ghrelin, including its effects on glucose and insulin regulation. In this study, Rag1-/- mice with high-fat diet-induced obesity and hyperinsulinaemia were subcutaneously implanted with PC3 prostate cancer xenografts to investigate the effect of UAG treatment on metabolic parameters and xenograft growth. Daily intraperitoneal injection of 100 µg/kg UAG had no effect on xenograft tumour growth in mice fed normal rodent chow or 23% high-fat diet. UAG significantly improved glucose tolerance in host Rag1-/- mice on a high-fat diet, but did not significantly improve other metabolic parameters. We propose that UAG is not likely to be an effective treatment for prostate cancer, with or without associated metabolic syndrome.


Subject(s)
Ghrelin/pharmacology , Homeodomain Proteins/metabolism , Hyperinsulinism/complications , Obesity/complications , Prostatic Neoplasms/drug therapy , Animals , Blood Glucose , Cell Line, Tumor , Diet, High-Fat , Ghrelin/therapeutic use , Heterografts , Homeodomain Proteins/genetics , Humans , Hyperinsulinism/metabolism , Male , Mice , Mice, Knockout , Obesity/metabolism , Prostatic Neoplasms/complications , Prostatic Neoplasms/metabolism
16.
Drug Discov Today ; 12(15-16): 664-73, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17706549

ABSTRACT

To date, several clinically important drugs have been identified that interact with commonly used herbs. These drugs include (among others) warfarin, midazolam, digoxin, amitriptyline, indinavir, cyclosporine, tacrolimus and irinotecan. Importantly, many of these drugs have very narrow therapeutic indices. Most of them are substrates for cytochrome P450s (CYPs) and/or P-glycoprotein (P-gp). Because drug-herb interactions can significantly affect circulating levels of drug and, hence, alter the clinical outcome, the identification of drugs that interact with commonly used herbal medicines has important implications in drug development. In silico, in vitro, animal and human studies are often used to identify drug interactions with herbs. We propose that drug-herb and herb-CYP interaction studies should be incorporated into drug development.


Subject(s)
Drug Design , Herb-Drug Interactions , Technology, Pharmaceutical/methods , Animals , Drug-Related Side Effects and Adverse Reactions , Humans , Models, Biological , Pharmaceutical Preparations/chemistry , Plant Preparations/adverse effects , Plant Preparations/chemistry , Technology, Pharmaceutical/trends
17.
BMC Genomics ; 8: 298, 2007 Aug 30.
Article in English | MEDLINE | ID: mdl-17727735

ABSTRACT

BACKGROUND: Ghrelin is a multifunctional peptide hormone expressed in a range of normal tissues and pathologies. It has been reported that the human ghrelin gene consists of five exons which span 5 kb of genomic DNA on chromosome 3 and includes a 20 bp non-coding first exon (20 bp exon 0). The availability of bioinformatic tools enabling comparative analysis and the finalisation of the human genome prompted us to re-examine the genomic structure of the ghrelin locus. RESULTS: We have demonstrated the presence of an additional novel exon (exon -1) and 5' extensions to exon 0 and 1 using comparative in silico analysis and have demonstrated their existence experimentally using RT-PCR and 5' RACE. A revised exon-intron structure demonstrates that the human ghrelin gene spans 7.2 kb and consists of six rather than five exons. Several ghrelin gene-derived splice forms were detected in a range of human tissues and cell lines. We have demonstrated ghrelin gene-derived mRNA transcripts that do not code for ghrelin, but instead may encode the C-terminal region of full-length preproghrelin (C-ghrelin, which contains the coding region for obestatin) and a transcript encoding obestatin-only. Splice variants that differed in their 5' untranslated regions were also found, suggesting a role of these regions in the post-transcriptional regulation of preproghrelin translation. Finally, several natural antisense transcripts, termed ghrelinOS (ghrelin opposite strand) transcripts, were demonstrated via orientation-specific RT-PCR, 5' RACE and in silico analysis of ESTs and cloned amplicons. CONCLUSION: The sense and antisense alternative transcripts demonstrated in this study may function as non-coding regulatory RNA, or code for novel protein isoforms. This is the first demonstration of putative obestatin and C-ghrelin specific transcripts and these findings suggest that these ghrelin gene-derived peptides may also be produced independently of preproghrelin. This study reveals several novel aspects of the ghrelin gene and suggests that the ghrelin locus is far more complex than previously recognised.


Subject(s)
Alternative Splicing , Exons , Genome, Human , Peptide Hormones/genetics , RNA, Antisense/genetics , RNA, Messenger/genetics , Amino Acid Sequence , Animals , Ghrelin , Humans , Mice , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction
18.
Cytokine Growth Factor Rev ; 14(2): 113-22, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12651223

ABSTRACT

Ghrelin is a recently identified 28 amino acid peptide capable of stimulating pituitary growth hormone release in humans. The actions of ghrelin are mediated via the naturally occurring ghrelin receptor, also known as the growth hormone secretagogue receptor (GHS-R). Ghrelin and its receptors are now being recognized as components of the growth hormone axis and are therefore potentially involved in tissue growth and development. As is the case for other members of this axis, evidence is rapidly emerging to indicate that ghrelin/GHS-R may play an important autocrine/paracrine role in some cancers. This review highlights the evidence for the expression, regulation and potential functional role of ghrelin and its receptor in hormone-dependent cancers, such as prostate and breast cancer.


Subject(s)
Hormones/metabolism , Neoplasms/metabolism , Peptide Hormones/physiology , Receptors, G-Protein-Coupled/physiology , Alternative Splicing , Amino Acid Sequence , Animals , Cell Division , Ghrelin , Growth Hormone/metabolism , Humans , Models, Biological , Models, Genetic , Molecular Sequence Data , Peptide Hormones/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Ghrelin
19.
Sci Rep ; 7(1): 491, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28352127

ABSTRACT

Hyperinsulinaemia, obesity and dyslipidaemia are independent and collective risk factors for many cancers. Here, the long-term effects of a 23% Western high-fat diet (HFD) in two immunodeficient mouse strains (NOD/SCID and Rag1 -/-) suitable for engraftment with human-derived tissue xenografts, and the effect of diet-induced hyperinsulinaemia on human prostate cancer cell line xenograft growth, were investigated. Rag1 -/-and NOD/SCID HFD-fed mice demonstrated diet-induced impairments in glucose tolerance at 16 and 23 weeks post weaning. Rag1 -/- mice developed significantly higher fasting insulin levels (2.16 ± 1.01 ng/ml, P = 0.01) and increased insulin resistance (6.70 ± 1.68 HOMA-IR, P = 0.01) compared to low-fat chow-fed mice (0.71 ± 0.12 ng/ml and 2.91 ± 0.42 HOMA-IR). This was not observed in the NOD/SCID strain. Hepatic steatosis was more extensive in Rag1 -/- HFD-fed mice compared to NOD/SCID mice. Intramyocellular lipid storage was increased in Rag1 -/- HFD-fed mice, but not in NOD/SCID mice. In Rag1 -/- HFD-fed mice, LNCaP xenograft tumours grew more rapidly compared to low-fat chow-fed mice. This is the first characterisation of the metabolic effects of long-term Western HFD in two mouse strains suitable for xenograft studies. We conclude that Rag1 -/- mice are an appropriate and novel xenograft model for studying the relationship between cancer and hyperinsulinaemia.


Subject(s)
Disease Models, Animal , Disease Susceptibility , Hyperinsulinism/etiology , Hyperinsulinism/metabolism , Adipose Tissue/metabolism , Animals , Blood Glucose , Body Weight , Diet, High-Fat , Female , Heterografts , Homeodomain Proteins/genetics , Humans , Hyperinsulinism/immunology , Insulin/blood , Insulin/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Muscle, Skeletal/metabolism , Organ Specificity , Pancreas/metabolism
20.
Clin Cancer Res ; 11(23): 8295-303, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16322288

ABSTRACT

PURPOSE: There is evidence that the hormone ghrelin stimulates proliferation in the PC3 prostate cancer cell line although the underlying mechanism(s) remain to be determined. A novel, exon 3-deleted preproghrelin isoform has previously been detected in breast and prostate cancer cells; however, its characterization, expression, and potential function in prostate cancer tissues are unknown. EXPERIMENTAL DESIGN: Expression of ghrelin and exon 3-deleted preproghrelin was investigated in prostate cancer cell lines and tissues by reverse transcription-PCR and immunohistochemistry. Proliferation and apoptosis assays were done in the LNCaP prostate cancer cell line to determine if ghrelin stimulates proliferation and/or cell survival. Stimulation of mitogen-activated protein kinase (MAPK) pathway activation by ghrelin was determined in PC3 and LNCaP cells by immunoblotting with antibodies specific for phosphorylated MAPKs. RESULTS: Prostate cancer tissues display greater immunoreactivity for ghrelin and exon 3-deleted preproghrelin than normal prostate tissues, and prostate cancer cell lines secrete mature ghrelin into conditioned medium. Treatment with ghrelin (10 nmol/L), but not the unique COOH-terminal peptide derived from exon 3-deleted preproghrelin, stimulates proliferation in the LNCaP cells (45.0 +/- 1.7% above control, P < 0.01) and rapidly activates the extracellular signal-regulated kinase-1/2 MAPK pathway in both PC3 and LNCaP cell lines. Ghrelin, however, does not protect prostate cancer cells from apoptosis induced by actinomycin D (1 microg/mL). The MAPK inhibitors PD98059 and U0126 blocked ghrelin-induced MAPK activation, as well as proliferation, in both cell lines. CONCLUSIONS: These data suggest that these components of the ghrelin axis may have potential as novel biomarkers and/or adjunctive therapeutic targets for prostate cancer.


Subject(s)
Mitogen-Activated Protein Kinases/metabolism , Motilin/genetics , Peptide Hormones/genetics , Peptide Hormones/pharmacology , Prostatic Neoplasms/genetics , Apoptosis , Cell Proliferation , Culture Media, Conditioned , Enzyme Activation/drug effects , Exons/genetics , Ghrelin , Humans , Male , Peptide Fragments/pharmacology , Prostatic Hyperplasia/enzymology , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/pathology , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Sequence Deletion , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL