Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Diagnostics (Basel) ; 14(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38337787

ABSTRACT

In this paper, a novel strategy to perform high-dimensional feature selection using an evolutionary algorithm for the automatic classification of coronary stenosis is introduced. The method involves a feature extraction stage to form a bank of 473 features considering different types such as intensity, texture and shape. The feature selection task is carried out on a high-dimensional feature bank, where the search space is denoted by O(2n) and n=473. The proposed evolutionary search strategy was compared in terms of the Jaccard coefficient and accuracy classification with different state-of-the-art methods. The highest feature selection rate, along with the best classification performance, was obtained with a subset of four features, representing a 99% discrimination rate. In the last stage, the feature subset was used as input to train a support vector machine using an independent testing set. The classification of coronary stenosis cases involves a binary classification type by considering positive and negative classes. The highest classification performance was obtained with the four-feature subset in terms of accuracy (0.86) and Jaccard coefficient (0.75) metrics. In addition, a second dataset containing 2788 instances was formed from a public image database, obtaining an accuracy of 0.89 and a Jaccard Coefficient of 0.80. Finally, based on the performance achieved with the four-feature subset, they can be suitable for use in a clinical decision support system.

2.
Appl Radiat Isot ; 138: 18-24, 2018 Aug.
Article in English | MEDLINE | ID: mdl-28807553

ABSTRACT

Segmentation of coronary arteries in X-ray angiograms represents an essential task for computer-aided diagnosis, since it can help cardiologists in diagnosing and monitoring vascular abnormalities. Due to the main disadvantages of the X-ray angiograms are the nonuniform illumination, and the weak contrast between blood vessels and image background, different vessel enhancement methods have been introduced. In this paper, a novel method for blood vessel enhancement based on Gabor filters tuned using the optimization strategy of Differential evolution (DE) is proposed. Because the Gabor filters are governed by three different parameters, the optimal selection of those parameters is highly desirable in order to maximize the vessel detection rate while reducing the computational cost of the training stage. To obtain the optimal set of parameters for the Gabor filters, the area (Az) under the receiver operating characteristics curve is used as objective function. In the experimental results, the proposed method achieves an Az=0.9388 in a training set of 40 images, and for a test set of 40 images it obtains the highest performance with an Az=0.9538 compared with six state-of-the-art vessel detection methods. Finally, the proposed method achieves an accuracy of 0.9423 for vessel segmentation using the test set. In addition, the experimental results have also shown that the proposed method can be highly suitable for clinical decision support in terms of computational time and vessel segmentation performance.


Subject(s)
Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Coronary Vessels/diagnostic imaging , Algorithms , Coronary Angiography/statistics & numerical data , Diagnosis, Computer-Assisted/methods , Diagnosis, Computer-Assisted/statistics & numerical data , Humans , ROC Curve , Radiographic Image Enhancement/methods
3.
Comput Intell Neurosci ; 2016: 2420962, 2016.
Article in English | MEDLINE | ID: mdl-27738422

ABSTRACT

This paper presents a novel method for improving the training step of the single-scale Gabor filters by using the Boltzmann univariate marginal distribution algorithm (BUMDA) in X-ray angiograms. Since the single-scale Gabor filters (SSG) are governed by three parameters, the optimal selection of the SSG parameters is highly desirable in order to maximize the detection performance of coronary arteries while reducing the computational time. To obtain the best set of parameters for the SSG, the area (Az ) under the receiver operating characteristic curve is used as fitness function. Moreover, to classify vessel and nonvessel pixels from the Gabor filter response, the interclass variance thresholding method has been adopted. The experimental results using the proposed method obtained the highest detection rate with Az = 0.9502 over a training set of 40 images and Az = 0.9583 with a test set of 40 images. In addition, the experimental results of vessel segmentation provided an accuracy of 0.944 with the test set of angiograms.


Subject(s)
Algorithms , Coronary Angiography , Coronary Vessels/diagnostic imaging , Image Processing, Computer-Assisted , Humans , Normal Distribution , ROC Curve , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL