Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Nature ; 565(7738): 226-229, 2019 01.
Article in English | MEDLINE | ID: mdl-30464348

ABSTRACT

The Cradle of Humankind (Cradle) in South Africa preserves a rich collection of fossil hominins representing Australopithecus, Paranthropus and Homo1. The ages of these fossils are contentious2-4 and have compromised the degree to which the South African hominin record can be used to test hypotheses of human evolution. However, uranium-lead (U-Pb) analyses of horizontally bedded layers of calcium carbonate (flowstone) provide a potential opportunity to obtain a robust chronology5. Flowstones are ubiquitous cave features and provide a palaeoclimatic context, because they grow only during phases of increased effective precipitation6,7, ideally in closed caves. Here we show that flowstones from eight Cradle caves date to six narrow time intervals between 3.2 and 1.3 million years ago. We use a kernel density estimate to combine 29 U-Pb ages into a single record of flowstone growth intervals. We interpret these as major wet phases, when an increased water supply, more extensive vegetation cover and at least partially closed caves allowed for undisturbed, semi-continuous growth of the flowstones. The intervening times represent substantially drier phases, during which fossils of hominins and other fossils accumulated in open caves. Fossil preservation, restricted to drier intervals, thus biases the view of hominin evolutionary history and behaviour, and places the hominins in a community of comparatively dry-adapted fauna. Although the periods of cave closure leave temporal gaps in the South African fossil record, the flowstones themselves provide valuable insights into both local and pan-African climate variability.


Subject(s)
Calcium Carbonate/chemistry , Climate , Fossils , Hominidae , Lead/analysis , Radiometric Dating , Uranium/analysis , Africa, Eastern , Animals , Caves , Rain , South Africa
2.
Nature ; 572(7767): 112-115, 2019 08.
Article in English | MEDLINE | ID: mdl-31308534

ABSTRACT

Reconstructing the detailed dietary behaviour of extinct hominins is challenging1-particularly for a species such as Australopithecus africanus, which has a highly variable dental morphology that suggests a broad diet2,3. The dietary responses of extinct hominins to seasonal fluctuations in food availability are poorly understood, and nursing behaviours even less so; most of the direct information currently available has been obtained from high-resolution trace-element geochemical analysis of Homo sapiens (both modern and fossil), Homo neanderthalensis4 and living apes5. Here we apply high-resolution trace-element analysis to two A. africanus specimens from Sterkfontein Member 4 (South Africa), dated to 2.6-2.1 million years ago. Elemental signals indicate that A. africanus infants predominantly consumed breast milk for the first year after birth. A cyclical elemental pattern observed following the nursing sequence-comparable to the seasonal dietary signal that is seen in contemporary wild primates and other mammals-indicates irregular food availability. These results are supported by isotopic evidence for a geographical range that was dominated by nutritionally depauperate areas. Cyclical accumulation of lithium in A. africanus teeth also corroborates the idea that their range was characterized by fluctuating resources, and that they possessed physiological adaptations to this instability. This study provides insights into the dietary cycles and ecological behaviours of A. africanus in response to food availability, including the potential cyclical resurgence of milk intake during times of nutritional challenge (as observed in modern wild orangutans5). The geochemical findings for these teeth reinforce the unique place of A. africanus in the fossil record, and indicate dietary stress in specimens that date to shortly before the extinction of Australopithecus in South Africa about two million years ago.


Subject(s)
Fossils , Hominidae , Seasons , Stress, Physiological , Tooth/chemistry , Animals , Breast Feeding , Hominidae/anatomy & histology , Hominidae/physiology , Pongo , Tooth/anatomy & histology , Tooth/physiology
3.
J Hum Evol ; 190: 103498, 2024 05.
Article in English | MEDLINE | ID: mdl-38581918

ABSTRACT

The Homa Peninsula, in southwestern Kenya, continues to yield insights into Oldowan hominin landscape behaviors. The Late Pliocene locality of Nyayanga (∼3-2.6 Ma) preserves some of the oldest Oldowan tools. At the Early Pleistocene locality of Kanjera South (∼2 Ma) toolmakers procured a diversity of raw materials from over 10 km away and strategically reduced them in a grassland-dominated ecosystem. Here, we report findings from Sare-Abururu, a younger (∼1.7 Ma) Oldowan locality approximately 12 km southeast of Kanjera South and 18 km east of Nyayanga. Sare-Abururu has yielded 1754 artifacts in relatively undisturbed low-energy silts and sands. Stable isotopic analysis of pedogenic carbonates suggests that hominin activities were carried out in a grassland-dominated setting with similar vegetation structure as documented at Kanjera South. The composition of a nearby paleo-conglomerate indicates that high-quality stone raw materials were locally abundant. Toolmakers at Sare-Abururu produced angular fragments from quartz pebbles, representing a considerable contrast to the strategies used to reduce high quality raw materials at Kanjera South. Although lithic reduction at Sare-Abururu was technologically simple, toolmakers proficiently produced cutting edges, made few mistakes and exhibited a mastery of platform management, demonstrating that expedient technical strategies do not necessarily indicate a lack of skill or suitable raw materials. Lithic procurement and reduction patterns on the Homa Peninsula appear to reflect variation in local resource contexts rather than large-scale evolutionary changes in mobility, energy budget, or toolmaker cognition.


Subject(s)
Hominidae , Animals , Kenya , Ecosystem , Biological Evolution , Carbonates , Archaeology , Fossils
4.
Evol Anthropol ; 33(2): e22018, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38217397

ABSTRACT

An uncritical reliance on the phylogenetic species concept has led paleoanthropologists to become increasingly typological in their delimitation of new species in the hominin fossil record. As a practical matter, this approach identifies species as diagnosably distinct groups of fossils that share a unique suite of morphological characters but, ontologically, a species is a metapopulation lineage segment that extends from initial divergence to eventual extinction or subsequent speciation. Working from first principles of species concept theory, it is clear that a reliance on morphological diagnosabilty will systematically overestimate species diversity in the fossil record; because morphology can evolve within a lineage segment, it follows that early and late populations of the same species can be diagnosably distinct from each other. We suggest that a combination of morphology and chronology provides a more robust test of the single-species null hypothesis than morphology alone.


Subject(s)
Hominidae , Animals , Hominidae/anatomy & histology , Phylogeny , Biological Evolution , Fossils
5.
J Hum Evol ; 178: 103334, 2023 05.
Article in English | MEDLINE | ID: mdl-36931115

ABSTRACT

Waypoint 160 is a paleocave at Bolt's Farm in the 'Cradle of Humankind,' South Africa. It is known for the novel murid taxa Eurotomys bolti, argued to be morphologically intermediate between Eurotomys pelomyoides from Langebaanweg (∼5.1 Ma) and the earliest Otomyinae from Makapansgat Limeworks (∼3.0-2.6 Ma). Based on the presence of this specimen, an age of ∼4.5 Ma was inferred for Waypoint 160, making it far older than other Cradle sites. This biochronological age was used to argue that Parapapio and Cercopithecoides fossils from Waypoint 160 were the oldest in the region. Here, we provide a detailed sedimentological context for the in-situ deposits at Waypoint 160. We have identified interior cave deposits, in contrast to other sites at Bolt's Farm. Petrography confirms that one unit (facies D) contains in-situ microfaunal fossils, indicating the likely provenience of the E. bolti specimen. Palaeomagnetic analysis shows four periods of magnetic polarity in the sequence. Using U-Pb ages as chronological pins, we argue that the upper part of the sequence records a polarity change at the end of the Olduvai subChron (1.78 Ma). The lower part of the sequence records a polarity shift from normal to reversed that likely relates to the Feni subChron (2.16-2.12 Ma), based on a basal flowstone U-Pb age of 2.269 ± 0.075 Ma. Together this points to a depositional window of ∼500 ka, with the Parapapio and E. bolti tentatively attributed to the micromammal fossil-bearing layers dating to ∼2.27-2.07 Ma. This has significant implications for other biochronological dates in South Africa, as E. bolti is now less than ∼2.27 Ma, younger than the oldest Otomyinae at Makapansgat Limeworks and thus not ancestral to them. This chronology for Waypoint 160 challenges the presence of older, early to mid-Pliocene deposits >3.20 Ma in the Gauteng portion of the Cradle.


Subject(s)
Hominidae , Lead , Animals , Fossils , South Africa
6.
J Hum Evol ; 176: 103324, 2023 03.
Article in English | MEDLINE | ID: mdl-36812778

ABSTRACT

Renewed research at Amanzi Springs has increased resolution on the timing and technology of the Acheulian industry in South Africa. The archeology from the Area 1 spring eye has recently been dated to MIS 11 (∼404-390 ka), and analyses revealed significant technological variability when compared to other southern African Acheulian assemblages. We expand on these results in presenting new luminescence dating and technological analyses of Acheulian stone tools from three artifact-bearing surfaces exposed within the White Sands unit of the Deep Sounding excavation in the Area 2 spring eye. The two lowest surfaces (Surfaces 3 and 2) are sealed within the White Sands and dated between ∼534 to 496 ka and ∼496 to 481 ka (MIS 13), respectively. Surface 1 represents materials deflated onto an erosional surface that cut the upper part of the White Sands (∼481 ka; late MIS 13), which occurred before the deposition of younger Cutting 5 sediments (<408-<290 ka; MIS 11-8). Archaeological comparisons reveal that the older Surface 3 and 2 assemblages are predominated by unifacial and bifacial core reduction and relatively thick, cobble-reduced large cutting tools. In contrast, the younger Surface 1 assemblage is characterized by discoidal core reduction and thinner large cutting tools, mostly made from flake blanks. Typological similarities between the older Area 2 White Sands and younger Area 1 (404-390 ka; MIS 11) assemblages further suggest long-term continuity in site function. We hypothesize Amanzi Springs represent a workshop locality that Acheulian hominins repeatedly visited to access unique floral, faunal, and raw material resources from at least ∼534 to 390 ka.


Subject(s)
Hominidae , Animals , South Africa , Archaeology , Technology , Luminescence
8.
J Hum Evol ; 153: 102954, 2021 04.
Article in English | MEDLINE | ID: mdl-33714916

ABSTRACT

The Middle to Later Stone Age transition is a critical period of human behavioral change that has been variously argued to pertain to the emergence of modern cognition, substantial population growth, and major dispersals of Homo sapiens within and beyond Africa. However, there is little consensus about when the transition occurred, the geographic patterning of its emergence, or even how it is manifested in the stone tool technology that is used to define it. Here, we examine a long sequence of lithic technological change at the cave site of Panga ya Saidi, Kenya, that spans the Middle and Later Stone Age and includes human occupations in each of the last five Marine Isotope Stages. In addition to the stone artifact technology, Panga ya Saidi preserves osseous and shell artifacts, enabling broader considerations of the covariation between different spheres of material culture. Several environmental proxies contextualize the artifactual record of human behavior at Panga ya Saidi. We compare technological change between the Middle and Later Stone Age with on-site paleoenvironmental manifestations of wider climatic fluctuations in the Late Pleistocene. The principal distinguishing feature of Middle from Later Stone Age technology at Panga ya Saidi is the preference for fine-grained stone, coupled with the creation of small flakes (miniaturization). Our review of the Middle to Later Stone Age transition elsewhere in eastern Africa and across the continent suggests that this broader distinction between the two periods is in fact widespread. We suggest that the Later Stone Age represents new short use-life and multicomponent ways of using stone tools, in which edge sharpness was prioritized over durability.


Subject(s)
Archaeology , Forests , Technology/history , Tropical Climate , History, Ancient , Humans , Kenya
9.
Nanotechnology ; 33(2)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34610590

ABSTRACT

Graphitic nanoplatelets (GNPs) have been treated using an ultrasonicated ozonolysis procedure to produce stable aqueous dispersions that facilitate deposition of thin films using electrophoretic deposition. The thin GNP films were then coated with zero valence (ZV) iron nanocubes using a pulsed electrodeposition technique. Characterization of the ZV-iron coating with deposition time revealed that the changing magnetic character of the ferromagnetic-graphitic hybrid material was related to the nucleation density and growth of the ZV-iron nanocubes. Density functional theory calculations show a preference for ZV-iron adsorption at the oxygen sites of the GNPs, with ZV-iron displacement of oxygen groups favored in some configurations. Transmission electron microscopy studies confirm ZV-iron growth nucleates preferentially at the graphite nanoplatelet edges and the hybrid material magnetism is affected by the convergent crystalline grain boundaries formed between adjacent ZV-iron nanocubes.

12.
PeerJ ; 12: e17478, 2024.
Article in English | MEDLINE | ID: mdl-38952976

ABSTRACT

Bolt's Farm is the name given to a series of non-hominin bearing fossil sites that have often been suggested to be some of the oldest Pliocene sites in the Cradle of Humankind, South Africa. This article reports the results of the first combined Uranium-Series and Electron Spin Resonance (US-ESR) dating of bovid teeth at Milo's Cave and Aves Cave at Bolt's Farm. Both tooth enamel fragments and tooth enamel powder ages were presented for comparison. US-ESR, EU and LU models are calculated. Overall, the powder ages are consistent with previous uranium-lead and palaeomagnetic age estimates for the Aves Cave deposit, which suggest an age between ~3.15 and 2.61 Ma and provide the first ages for Milo's Cave dates to between ~3.1 and 2.7 Ma. The final ages were not overly dependent on the models used (US-ESR, LU or EU), which all overlap within error. These ages are all consistent with the biochronological age estimate (<3.4->2.6 Ma) based on the occurrence of Stage I Metridiochoerus andrewsi. Preliminary palaeomagnetic analysis from Milo's Cave indicates a reversal takes place at the site with predominantly intermediate directions, suggesting the deposit may date to the period between ~3.03 and 3.11 Ma within error of the ESR ages. This further suggests that there are no definitive examples of palaeocave deposits at Bolt's Farm older than 3.2 Ma. This research indicates that US-ESR dating has the potential to date fossil sites in the Cradle of Humankind to over 3 Ma. However, bulk sample analysis for US-ESR dating is recommended for sites over 3 Ma.


Subject(s)
Fossils , Radiometric Dating , Uranium , South Africa , Electron Spin Resonance Spectroscopy/methods , Uranium/analysis , Animals , Caves/chemistry , Tooth/chemistry , Tooth/anatomy & histology , Dental Enamel/chemistry
13.
Nature ; 449(7164): 905-8, 2007 Oct 18.
Article in English | MEDLINE | ID: mdl-17943129

ABSTRACT

Genetic and anatomical evidence suggests that Homo sapiens arose in Africa between 200 and 100 thousand years (kyr) ago, and recent evidence indicates symbolic behaviour may have appeared approximately 135-75 kyr ago. From 195-130 kyr ago, the world was in a fluctuating but predominantly glacial stage (marine isotope stage MIS6); much of Africa was cooler and drier, and dated archaeological sites are rare. Here we show that by approximately 164 kyr ago (+/-12 kyr) at Pinnacle Point (on the south coast of South Africa) humans expanded their diet to include marine resources, perhaps as a response to these harsh environmental conditions. The earliest previous evidence for human use of marine resources and coastal habitats was dated to approximately 125 kyr ago. Coincident with this diet and habitat expansion is an early use and modification of pigment, probably for symbolic behaviour, as well as the production of bladelet stone tool technology, previously dated to post-70 kyr ago. Shellfish may have been crucial to the survival of these early humans as they expanded their home ranges to include coastlines and followed the shifting position of the coast when sea level fluctuated over the length of MIS6.


Subject(s)
Coloring Agents/history , Diet/history , Ecosystem , Human Activities/history , Shellfish/history , Animals , Ferric Compounds , History, Ancient , Humans , Indian Ocean , South Africa , Time Factors
14.
Am J Phys Anthropol ; 151(2): 316-24, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23633001

ABSTRACT

Following the discovery of the "Taung Child" (Australopithecus africanus) in 1924 in the Buxton-Norlim Limeworks near Taung, the fossil-bearing deposits associated with the Dart and Hrdlicka pinnacles have been interpreted as the mined remnants of cave sediments that formed within the Plio-Pleistocene Thabaseek Tufa: either as a younger cave-fill or as contemporaneous carapace caves. When combined with the Plio-Pleistocene dolomitic cave deposits from the "Cradle of Humankind," a rather restricted view emerges that South African early hominins derived from cave deposits, whereas those of east and central Africa are derived from fluvio-lacustrine and paleosol deposits. We undertook a sedimentological and paleomagnetic analysis of the pink-colored deposit (PCS) from which the "Taung Child" is purported to have derived and demonstrate that it is a calcrete, a carbonate-rich pedogenic sediment, which formed on the paleo-land surface. The deposit extends 100 s of meters laterally beyond the Dart and Hrdlicka Pinnacles where it is interbedded with the Thabaseek Tufa, indicating multiple episodes of calcrete development and tufa growth. The presence of in situ rhizoconcretions and insect trace fossils (Celliforma sp. and Coprinisphaera sp.) and the distinctive carbonate microfabric confirm that the pink deposit is a pedogenic calcrete, not a calcified cave sediment. Paleomagnetic and stratigraphic evidence indicates that a second, reversed polarity, fossil-bearing deposit (YRSS) is a younger fissure-fill formed within a solutional cavity of the normal polarity tufa and pink calcrete (PCS). These observations have implications for the dating, environment, and taphonomy of the site, and increase the likelihood of future fossil discoveries within the Buxton-Norlim Limeworks.


Subject(s)
Caves , Fossils , Geologic Sediments/chemistry , Paleontology , Animals , Carbonates/analysis , Carbonates/chemistry , Geologic Sediments/analysis , Hominidae , Magnetics , South Africa
15.
Proc Natl Acad Sci U S A ; 107(22): 10002-7, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20534571

ABSTRACT

The manufacture of stone tools and their use to access animal tissues by Pliocene hominins marks the origin of a key adaptation in human evolutionary history. Here we report an in situ archaeological assemblage from the Koobi Fora Formation in northern Kenya that provides a unique combination of faunal remains, some with direct evidence of butchery, and Oldowan artifacts, which are well dated to 1.95 Ma. This site provides the oldest in situ evidence that hominins, predating Homo erectus, enjoyed access to carcasses of terrestrial and aquatic animals that they butchered in a well-watered habitat. It also provides the earliest definitive evidence of the incorporation into the hominin diet of various aquatic animals including turtles, crocodiles, and fish, which are rich sources of specific nutrients needed in human brain growth. The evidence here shows that these critical brain-growth compounds were part of the diets of hominins before the appearance of Homo ergaster/erectus and could have played an important role in the evolution of larger brains in the early history of our lineage.


Subject(s)
Diet/history , Hominidae , Animals , Fossils , History, Ancient , Hominidae/physiology , Humans , Kenya , Paleontology
16.
Nat Ecol Evol ; 7(12): 1971-1977, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38036632

ABSTRACT

Advanced geoscience techniques are essential to contextualize fossils, artefacts and other archaeologically important material accurately and effectively. Their appropriate use will increase confidence in new interpretations of the fossil and archaeological record, providing important information about the life and depositional history of these materials and so should form an integral component of all human evolutionary studies. Many of the most remarkable recent finds that have transformed the field of human evolution are small and scarce, ranging in size from teeth to strands of DNA, recovered from complex sedimentary environments. Nevertheless, if properly analysed, they hold immense potential to rewrite what we know about the evolution of our species and our closest hominin ancestors.


Subject(s)
Hominidae , Tooth , Animals , Humans , Biological Evolution , Fossils , Earth Sciences
17.
Science ; 379(6632): 561-566, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36758076

ABSTRACT

The oldest Oldowan tool sites, from around 2.6 million years ago, have previously been confined to Ethiopia's Afar Triangle. We describe sites at Nyayanga, Kenya, dated to 3.032 to 2.581 million years ago and expand this distribution by over 1300 kilometers. Furthermore, we found two hippopotamid butchery sites associated with mosaic vegetation and a C4 grazer-dominated fauna. Tool flaking proficiency was comparable with that of younger Oldowan assemblages, but pounding activities were more common. Tool use-wear and bone damage indicate plant and animal tissue processing. Paranthropus sp. teeth, the first from southwestern Kenya, possessed carbon isotopic values indicative of a diet rich in C4 foods. We argue that the earliest Oldowan was more widespread than previously known, used to process diverse foods including megafauna, and associated with Paranthropus from its onset.


Subject(s)
Biological Evolution , Diet , Feeding Behavior , Hominidae , Animals , Bone and Bones , Fossils , Kenya , Plants , Paleontology
18.
J Hum Evol ; 63(3): 527-35, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22840572

ABSTRACT

We report here on evidence of early Homo around 1.0 Ma (millions of years ago) in the central plains of southern Africa. The human material, a first upper molar, was discovered during the systematic excavation of a densely-packed bone bed in the basal part of the sedimentary sequence at the Cornelia-Uitzoek fossil vertebrate locality. We dated this sequence by palaeomagnetism and correlated the bone bed to the Jaramillo subchron, between 1.07 and 0.99 Ma. This makes the specimen the oldest southern African hominine remains outside the dolomitic karst landscapes of northern South Africa. Cornelia-Uitzoek is the type locality of the Cornelian Land Mammal Age. The fauna contains an archaic component, reflecting previous biogeographic links with East Africa, and a derived component, suggesting incipient southern endemism. The bone bed is considered to be the result of the bone collecting behaviour of a large predator, possibly spotted hyaenas. Acheulian artefacts are found in small numbers within the bone bed among the fossil vertebrates, reflecting the penecontemporaneous presence of people in the immediate vicinity of the occurrence. The hominine tooth was recovered from the central, deeper part of the bone bed. In size, it clusters with southern African early Homo and it is also morphologically similar. We propose that the early Homo specimen forms part of an archaic component in the fauna, in parallel with the other archaic faunal elements at Uitzoek. This supports an emergent pattern of archaic survivors in the southern landscape at this time, but also demonstrates the presence of early Homo in the central plains of southern Africa, beyond the dolomitic karst areas.


Subject(s)
Fossils , Hominidae/anatomy & histology , Animals , Ecology , History, Ancient , Molar/anatomy & histology , South Africa , Tool Use Behavior
19.
Data Brief ; 42: 108144, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35479421

ABSTRACT

This Data in Brief paper comprises dataset obtained for sediment cores collected from Lake Selina, located in the West Coast Range of Tasmania, Australia. Datasets include radiocarbon and optically stimulated luminescence age estimates, elemental composition, beryllium isotopes, magnetic properties and the paleomagnetic record measured on the cores assigned as TAS1402 (Location: Tasmania, Year: 2014, Site number: 02). The multi-proxy dataset was used to develop a chronostratigraphy for the 5.5 m and 270,000 year old record. See Lisé-Pronovost et al. (2021) (10.1016/j.quageo.2021.101152) for interpretation and discussion. The data presented in this study serve as an archive for future studies focusing on Earth system dynamics and the timeline and linkages of environmental changes across Tasmania, the Southern Hemisphere and at a global scale.

20.
PLoS One ; 17(10): e0273714, 2022.
Article in English | MEDLINE | ID: mdl-36264956

ABSTRACT

Amanzi Springs is a series of inactive thermal springs located near Kariega in the Eastern Cape of South Africa. Excavations in the 1960s exposed rare, stratified Acheulian-bearing deposits that were not further investigated over the next 50 years. Reanalysis of the site and its legacy collection has led to a redefined stratigraphic context for the archaeology, a confirmed direct association between Acheulian artefacts and wood, as well as the first reliable age estimates for the site. Thermally transferred optically stimulated luminescence and post-infrared infrared stimulated luminescence dating indicates that the Acheulian deposits from the Amanzi Springs Area 1 spring eye formed during Marine Isotope Stage (MIS) 11 at ~ 404-390 ka. At this time, higher sea levels of ~13-14m would have placed Amanzi Springs around 7 km from a ria that would have formed along what is today the Swartkops River, and which likely led to spring reactivation. This makes the Amanzi Springs Area 1 assemblage an unusual occurrence of a verified late occurring, seaward, open-air Acheulian occupation. The Acheulian levels do not contain any Middle Stone Age (MSA) elements such as blades and points that have been documented in the interior of South Africa at this time. However, a small number of stone tools from the upper layers of the artefact zone, and originally thought of as intrusive, have been dated to ~190 ka, at the transition between MIS 7 to 6, and represent the first potential MSA identified at the site.


Subject(s)
Archaeology , Wood , South Africa , Rivers , Isotopes , Fossils
SELECTION OF CITATIONS
SEARCH DETAIL