Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 213
Filter
Add more filters

Publication year range
1.
Development ; 151(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38856043

ABSTRACT

The function of medial entorhinal cortex layer II (MECII) excitatory neurons has been recently explored. MECII dysfunction underlies deficits in spatial navigation and working memory. MECII neurons comprise two major excitatory neuronal populations, pyramidal island and stellate ocean cells, in addition to the inhibitory interneurons. Ocean cells express reelin and surround clusters of island cells that lack reelin expression. The influence of reelin expression by ocean cells and interneurons on their own morphological differentiation and that of MECII island cells has remained unknown. To address this, we used a conditional reelin knockout (RelncKO) mouse to induce reelin deficiency postnatally in vitro and in vivo. Reelin deficiency caused dendritic hypertrophy of ocean cells, interneurons and only proximal dendritic compartments of island cells. Ca2+ recording showed that both cell types exhibited an elevation of calcium frequencies in RelncKO, indicating that the hypertrophic effect is related to excessive Ca2+ signalling. Moreover, pharmacological receptor blockade in RelncKO mouse revealed malfunctioning of GABAB, NMDA and AMPA receptors. Collectively, this study emphasizes the significance of reelin in neuronal growth, and its absence results in dendrite hypertrophy of MECII neurons.


Subject(s)
Cell Adhesion Molecules, Neuronal , Dendrites , Entorhinal Cortex , Extracellular Matrix Proteins , Mice, Knockout , Nerve Tissue Proteins , Reelin Protein , Serine Endopeptidases , Animals , Entorhinal Cortex/metabolism , Dendrites/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Mice , Interneurons/metabolism , Neurons/metabolism , Calcium Signaling
2.
Nature ; 588(7839): 705-711, 2020 12.
Article in English | MEDLINE | ID: mdl-33299187

ABSTRACT

Recent studies have suggested that lymphatics help to restore heart function after cardiac injury1-6. Here we report that lymphatics promote cardiac growth, repair and cardioprotection in mice. We show that a lymphoangiocrine signal produced by lymphatic endothelial cells (LECs) controls the proliferation and survival of cardiomyocytes during heart development, improves neonatal cardiac regeneration and is cardioprotective after myocardial infarction. Embryos that lack LECs develop smaller hearts as a consequence of reduced cardiomyocyte proliferation and increased cardiomyocyte apoptosis. Culturing primary mouse cardiomyocytes in LEC-conditioned medium increases cardiomyocyte proliferation and survival, which indicates that LECs produce lymphoangiocrine signals that control cardiomyocyte homeostasis. Characterization of the LEC secretome identified the extracellular protein reelin (RELN) as a key component of this process. Moreover, we report that LEC-specific Reln-null mouse embryos develop smaller hearts, that RELN is required for efficient heart repair and function after neonatal myocardial infarction, and that cardiac delivery of RELN using collagen patches improves heart function in adult mice after myocardial infarction by a cardioprotective effect. These results highlight a lymphoangiocrine role of LECs during cardiac development and injury response, and identify RELN as an important mediator of this function.


Subject(s)
Heart/embryology , Lymphatic System/cytology , Lymphatic System/metabolism , Myocardium/cytology , Myocytes, Cardiac/cytology , Regeneration , Signal Transduction , Animals , Animals, Newborn , Apoptosis , Cell Adhesion Molecules, Neuronal/deficiency , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Proliferation , Cell Survival , Cells, Cultured , Endothelial Cells/metabolism , Extracellular Matrix Proteins/deficiency , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Female , Humans , Integrin beta1/metabolism , Mice , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocytes, Cardiac/metabolism , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Organ Size , Organogenesis , Reelin Protein , Serine Endopeptidases/deficiency , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
3.
Ann Neurol ; 95(4): 625-634, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38180638

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder and one of the leading causes of disability worldwide. The apolipoprotein E4 gene (APOE4) is the strongest genetic risk factor for AD. In 2023, the APOE4 National Institute on Aging/Alzheimer's Disease Sequencing Project working group came together to gather data and discuss the question of whether to reduce or increase APOE4 as a therapeutic intervention for AD. It was the unanimous consensus that cumulative data from multiple studies in humans and animal models support that lowering APOE4 should be a target for therapeutic approaches for APOE4 carriers. ANN NEUROL 2024;95:625-634.


Subject(s)
Alzheimer Disease , Animals , United States , Humans , Alzheimer Disease/therapy , Alzheimer Disease/drug therapy , Apolipoprotein E4/genetics , Goals , National Institute on Aging (U.S.)
4.
Development ; 148(17)2021 09 01.
Article in English | MEDLINE | ID: mdl-34414407

ABSTRACT

Reelin is a large secreted glycoprotein that regulates neuronal migration, lamination and establishment of dendritic architecture in the embryonic brain. Reelin expression switches postnatally from Cajal-Retzius cells to interneurons. However, reelin function in interneuron development is still poorly understood. Here, we have investigated the role of reelin in interneuron development in the postnatal neocortex. To preclude early cortical migration defects caused by reelin deficiency, we employed a conditional reelin knockout (RelncKO) mouse to induce postnatal reelin deficiency. Induced reelin deficiency caused dendritic hypertrophy in distal dendritic segments of neuropeptide Y-positive (NPY+) and calretinin-positive (Calr+) interneurons, and in proximal dendritic segments of parvalbumin-positive (Parv+) interneurons. Chronic recombinant Reelin treatment rescued dendritic hypertrophy in Relncko interneurons. Moreover, we provide evidence that RelncKO interneuron hypertrophy is due to presynaptic GABABR dysfunction. Thus, GABABRs in RelncKO interneurons were unable to block N-type (Cav2.2) Ca2+ channels that control neurotransmitter release. Consequently, the excessive Ca2+ influx through AMPA receptors, but not NMDA receptors, caused interneuron dendritic hypertrophy. These findings suggest that reelin acts as a 'stop-growth-signal' for postnatal interneuron maturation.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Dendrites/metabolism , Extracellular Matrix Proteins/metabolism , Interneurons/cytology , Neocortex/growth & development , Nerve Tissue Proteins/metabolism , Serine Endopeptidases/metabolism , Animals , Calbindin 2/metabolism , Calcium/metabolism , Cell Adhesion Molecules, Neuronal/deficiency , Cell Adhesion Molecules, Neuronal/pharmacology , Dendrites/drug effects , Extracellular Matrix Proteins/deficiency , Extracellular Matrix Proteins/pharmacology , Hypertrophy , Interneurons/drug effects , Interneurons/metabolism , Mice , Mice, Knockout , Neocortex/cytology , Neocortex/drug effects , Neocortex/pathology , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/pharmacology , Neuropeptide Y/metabolism , Parvalbumins/metabolism , Receptors, GABA-B/metabolism , Receptors, Glutamate/metabolism , Reelin Protein , Serine Endopeptidases/deficiency , Serine Endopeptidases/pharmacology
5.
Circ Res ; 130(2): 184-199, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34886684

ABSTRACT

BACKGROUND: Impairment of cellular cholesterol trafficking is at the heart of atherosclerotic lesions formation. This involves egress of cholesterol from the lysosomes and 2 lysosomal proteins, the NPC1 (Niemann-Pick C1) and NPC2 that promotes cholesterol trafficking. However, movement of cholesterol out the lysosome and how disrupted cholesterol trafficking leads to atherosclerosis is unclear. As the Wnt ligand, Wnt5a inhibits the intracellular accumulation of cholesterol in multiple cell types, we tested whether Wnt5a interacts with the lysosomal cholesterol export machinery and studied its role in atherosclerotic lesions formation. METHODS: We generated mice deleted for the Wnt5a gene in vascular smooth muscle cells. To establish whether Wnt5a also protects against cholesterol accumulation in human vascular smooth muscle cells, we used a CRISPR/Cas9 guided nuclease approach to generate human vascular smooth muscle cells knockout for Wnt5a. RESULTS: We show that Wnt5a is a crucial component of the lysosomal cholesterol export machinery. By increasing lysosomal acid lipase expression, decreasing metabolic signaling by the mTORC1 (mechanistic target of rapamycin complex 1) kinase, and through binding to NPC1 and NPC2, Wnt5a senses changes in dietary cholesterol supply and promotes lysosomal cholesterol egress to the endoplasmic reticulum. Consequently, loss of Wnt5a decoupled mTORC1 from variations in lysosomal sterol levels, disrupted lysosomal function, decreased cholesterol content in the endoplasmic reticulum, and promoted atherosclerosis. CONCLUSIONS: These results reveal an unexpected function of the Wnt5a pathway as essential for maintaining cholesterol homeostasis in vivo.


Subject(s)
Atherosclerosis/metabolism , Cholesterol/metabolism , Lysosomes/metabolism , Wnt-5a Protein/metabolism , Animals , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred C57BL , Niemann-Pick C1 Protein/metabolism , Vesicular Transport Proteins/metabolism , Wnt-5a Protein/genetics
6.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33975959

ABSTRACT

Ketamine is a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist that produces rapid antidepressant action in some patients with treatment-resistant depression. However, recent data suggest that ∼50% of patients with treatment-resistant depression do not respond to ketamine. The factors that contribute to the nonresponsiveness to ketamine's antidepressant action remain unclear. Recent studies have reported a role for secreted glycoprotein Reelin in regulating pre- and postsynaptic function, which suggests that Reelin may be involved in ketamine's antidepressant action, although the premise has not been tested. Here, we investigated whether the disruption of Reelin-mediated synaptic signaling alters ketamine-triggered synaptic plasticity and behavioral effects. To this end, we used mouse models with genetic deletion of Reelin or apolipoprotein E receptor 2 (Apoer2), as well as pharmacological inhibition of their downstream effectors, Src family kinases (SFKs) or phosphoinositide 3-kinase. We found that disruption of Reelin, Apoer2, or SFKs blocks ketamine-driven behavioral changes and synaptic plasticity in the hippocampal CA1 region. Although ketamine administration did not affect tyrosine phosphorylation of DAB1, an adaptor protein linked to downstream signaling of Reelin, disruption of Apoer2 or SFKs impaired baseline NMDA receptor-mediated neurotransmission. These results suggest that maintenance of baseline NMDA receptor function by Reelin signaling may be a key permissive factor required for ketamine's antidepressant effects. Taken together, our results suggest that impairments in Reelin-Apoer2-SFK pathway components may in part underlie nonresponsiveness to ketamine's antidepressant action.


Subject(s)
Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Ketamine/pharmacology , Neuronal Plasticity/drug effects , Reelin Protein/physiology , Animals , LDL-Receptor Related Proteins/physiology , Male , Mice , Neuronal Plasticity/physiology , Phosphatidylinositol 3-Kinases/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Signal Transduction/drug effects , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/physiology
7.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Article in English | MEDLINE | ID: mdl-33785592

ABSTRACT

Natalizumab, a humanized monoclonal antibody (mAb) against α4-integrin, reduces the number of dendritic cells (DC) in cerebral perivascular spaces in multiple sclerosis (MS). Selective deletion of α4-integrin in CD11c+ cells should curtail their migration to the central nervous system (CNS) and ameliorate experimental autoimmune encephalomyelitis (EAE). We generated CD11c.Cre+/-ITGA4fl/fl C57BL/6 mice to selectively delete α4-integrin in CD11c+ cells. Active immunization and adoptive transfer EAE models were employed and compared with WT controls. Multiparameter flow cytometry was utilized to immunophenotype leukocyte subsets. Single-cell RNA sequencing was used to profile individual cells. α4-Integrin expression by CD11c+ cells was significantly reduced in primary and secondary lymphoid organs in CD11c.Cre+/-ITGA4fl/fl mice. In active EAE, a delayed disease onset was observed in CD11c.Cre+/-ITGA4fl/fl mice, during which CD11c+CD88+ cells were sequestered in the blood. Upon clinical EAE onset, CD11c+CD88+ cells appeared in the CNS and expressed CD317+ In adoptive transfer experiments, CD11c.Cre+/-ITGA4fl/fl mice had ameliorated clinical disease phenotype associated with significantly diminished numbers of CNS CD11c+CD88+CD317+ cells. In human cerebrospinal fluid from subjects with neuroinflammation, microglia-like cells display coincident expression of ITGAX (CD11c), C5AR1 (CD88), and BST2 (CD317). In mice, we show that only activated, but not naïve microglia expressed CD11c, CD88, and CD317. Finally, anti-CD317 treatment prior to clinical EAE substantially enhanced recovery in mice.


Subject(s)
Antigens, CD/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Integrin alpha4/metabolism , Myeloid Cells/metabolism , Animals , Antigen Presentation , Cells, Cultured , Central Nervous System/immunology , Central Nervous System/metabolism , Female , Humans , Male , Mice , Microglia/metabolism
9.
J Neurosci ; 41(35): 7340-7349, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34290083

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease marked by the accumulation of amyloid-ß (Aß) plaques and neurofibrillary tangles. Aß oligomers cause synaptic dysfunction early in AD by enhancing long-term depression (LTD; a paradigm for forgetfulness) via metabotropic glutamate receptor (mGluR)-dependent regulation of striatal-enriched tyrosine phosphatase (STEP61). Reelin is a neuromodulator that signals through ApoE (apolipoprotein E) receptors to protect the synapse against Aß toxicity (Durakoglugil et al., 2009) Reelin signaling is impaired by ApoE4, the most important genetic risk factor for AD, and Aß-oligomers activate metabotropic glutamate receptors (Renner et al., 2010). We therefore asked whether Reelin might also affect mGluR-LTD. To this end, we induced chemical mGluR-LTD using DHPG (Dihydroxyphenylglycine), a selective mGluR5 agonist. We found that exogenous Reelin reduces the DHPG-induced increase in STEP61, prevents the dephosphorylation of GluA2, and concomitantly blocks mGluR-mediated LTD. By contrast, Reelin deficiency increased expression of Ca2+-permeable GluA2-lacking AMPA receptors along with higher STEP61 levels, resulting in occlusion of DHPG-induced LTD in hippocampal CA1 neurons. We propose a model in which Reelin modulates local protein synthesis as well as AMPA receptor subunit composition through modulation of mGluR-mediated signaling with implications for memory consolidation or neurodegeneration.SIGNIFICANCE STATEMENT Reelin is an important neuromodulator, which in the adult brain controls synaptic plasticity and protects against neurodegeneration. Amyloid-ß has been shown to use mGluRs to induce synaptic depression through endocytosis of NMDA and AMPA receptors, a mechanism referred to as LTD, a paradigm of forgetfulness. Our results show that Reelin regulates the phosphatase STEP, which plays an important role in neurodegeneration, as well as the expression of calcium-permeable AMPA receptors, which play a role in memory formation. These data suggest that Reelin uses mGluR LTD pathways to regulate memory formation as well as neurodegeneration.


Subject(s)
Long-Term Synaptic Depression/physiology , Neurons/physiology , Protein Tyrosine Phosphatases, Non-Receptor/physiology , Receptors, Metabotropic Glutamate/physiology , Reelin Protein/physiology , 2-Amino-5-phosphonovalerate/pharmacology , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/drug effects , Calcium/physiology , Cells, Cultured , Cerebral Cortex/cytology , Enzyme Induction/drug effects , Long-Term Synaptic Depression/drug effects , Memory/physiology , Methoxyhydroxyphenylglycol/analogs & derivatives , Methoxyhydroxyphenylglycol/pharmacology , Mice , Nerve Degeneration/physiopathology , Neurons/drug effects , Patch-Clamp Techniques , Phosphorylation/drug effects , Picrotoxin/pharmacology , Protein Processing, Post-Translational/drug effects , Rats , Rats, Sprague-Dawley , Receptors, AMPA/metabolism , Receptors, Metabotropic Glutamate/agonists , Recombinant Proteins/metabolism , Reelin Protein/deficiency , Reelin Protein/genetics
10.
PLoS Biol ; 17(6): e3000310, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31163031

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pbio.1000575.].

11.
Arterioscler Thromb Vasc Biol ; 41(4): 1309-1318, 2021 04.
Article in English | MEDLINE | ID: mdl-33626909
12.
J Neurochem ; 156(5): 589-603, 2021 03.
Article in English | MEDLINE | ID: mdl-32083308

ABSTRACT

Reelin is a protein that is best known for its role in controlling neuronal layer formation in the developing cortex. Here, we studied its role for post-natal cortical network function, which is poorly explored. To preclude early cortical migration defects caused by Reelin deficiency, we used a conditional Reelin knock-out (RelncKO ) mouse, and induced Reelin deficiency post-natally. Induced Reelin deficiency caused hyperexcitability of the neocortical network in vitro and ex vivo. Blocking Reelin binding to its receptors ApoER2 and VLDLR resulted in a similar effect. Hyperexcitability in RelncKO organotypic slice cultures could be rescued by co-culture with wild-type organotypic slice cultures. Moreover, the GABAB receptor (GABAB R) agonist baclofen failed to activate and the antagonist CGP35348 failed to block GABAB Rs in RelncKO mice. Immunolabeling of RelncKO cortical slices revealed a reduction in GABAB R1 and GABAB R2 surface expression at the plasma membrane and western blot of RelncKO cortical tissue revealed decreased phosphorylation of the GABAB R2 subunit at serine 892 and increased phosphorylation at serine 783, reflecting receptor deactivation and proteolysis. These data show a role of Reelin in controlling early network activity, by modulating GABAB R function. Cover Image for this issue: https://doi.org/10.1111/jnc.15054.


Subject(s)
Cell Adhesion Molecules, Neuronal/deficiency , Extracellular Matrix Proteins/deficiency , Neocortex/metabolism , Nerve Tissue Proteins/deficiency , Receptors, GABA-B/physiology , Serine Endopeptidases/deficiency , Signal Transduction/physiology , Animals , Animals, Newborn , Cell Adhesion Molecules, Neuronal/genetics , Extracellular Matrix Proteins/genetics , Female , GABA-B Receptor Agonists/pharmacology , Male , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Organ Culture Techniques , Reelin Protein , Serine Endopeptidases/genetics , Signal Transduction/drug effects
13.
Circ Res ; 124(12): 1778-1785, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31023188

ABSTRACT

RATIONALE: Arterial remodeling-a hallmark of many cardiovascular pathologies including pulmonary arterial hypertension (PAH)-is regulated by TGFß1 (transforming growth factor-ß1)-TGFß receptors and the antagonistic, vasoprotective BMPR2 (bone morphogenetic protein receptor 2)-PPARγ (peroxisome proliferator-activated receptor-γ) axis. However, it is unclear which factors drive detrimental TGFß1 pathways in the hypertensive pulmonary vasculature. OBJECTIVE: We hypothesized that LRP1 (low-density lipoprotein receptor-related protein 1) expression is decreased in PAH, leading to enhancement (disinhibition) of TGFß1 signals and that the PPARγ agonist pioglitazone can restore vascular homeostasis and prevent PAH resulting from LRP1 deletion in vascular smooth muscle cells (SMCs). METHODS AND RESULTS: Targeted deletion of LRP1 in vascular SMC (smLRP1-/-) in mice disinhibited TGFß1-CTGF (connective tissue growth factor) signaling, leading to spontaneous PAH and distal pulmonary arterial muscularization as assessed by closed-chest cardiac catheterization and anti-αSMA staining. Pioglitazone inhibited the canonical TGFß1-CTGF axis in human pulmonary artery SMC and smLRP1-/- main pulmonary artery (CTGF and NOX4) and reversed PAH in smLRP1-/- mice. TGFß1 boosted pSmad3 in PASMC from smLRP1-/- mice versus controls. Pioglitazone-activated PPARγ binds to Smad3 in human pulmonary artery SMC (coimmunoprecipitation), thereby blocking its phosphorylation and overriding LRP1 deficiency. Finally, mRNA and protein expression of LRP1 was decreased in pulmonary plexiform lesions of patients with end-stage idiopathic PAH (laser capture microdissection, qPCR, and immunohistochemistry). Downregulation of LRP1 protein was also demonstrated in explanted PASMC from patients with PAH and accompanied by enhanced TGFß1-pSmad3-CTGF signaling and increased TGFß1-induced PASMC proliferation that was prevented by pioglitazone. CONCLUSIONS: Here, we identify LRP1 as an integrator of TGFß1-mediated mechanisms that regulate vascular remodeling in mice and clinical PAH and PPARγ as a therapeutic target that controls canonical TGFß1 pathways. Hence, pharmacologic PPARγ activation represents a promising new therapy for patients with PAH who lack the vasoprotective LRP1 in vascular SMC.


Subject(s)
Low Density Lipoprotein Receptor-Related Protein-1/deficiency , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , PPAR gamma/metabolism , Pulmonary Arterial Hypertension/metabolism , Animals , Cells, Cultured , Female , Humans , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Male , Mice , Mice, Knockout , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/pathology , Random Allocation , Transforming Growth Factor beta1/pharmacology , Vascular Remodeling/drug effects , Vascular Remodeling/physiology
14.
Cereb Cortex ; 30(3): 1688-1707, 2020 03 14.
Article in English | MEDLINE | ID: mdl-31667489

ABSTRACT

Reelin is an extracellular matrix protein, known for its dual role in neuronal migration during brain development and in synaptic plasticity at adult stages. During the perinatal phase, Reelin expression switches from Cajal-Retzius (CR) cells, its main source before birth, to inhibitory interneurons (IN), the main source of Reelin in the adult forebrain. IN-derived Reelin has been associated with schizophrenia and temporal lobe epilepsy; however, the functional role of Reelin from INs is presently unclear. In this study, we used conditional knockout mice, which lack Reelin expression specifically in inhibitory INs, leading to a substantial reduction in total Reelin expression in the neocortex and dentate gyrus. Our results show that IN-specific Reelin knockout mice exhibit normal neuronal layering and normal behavior, including spatial reference memory. Although INs are the major source of Reelin within the adult stem cell niche, Reelin from INs does not contribute substantially to normal adult neurogenesis. While a closer look at the dentate gyrus revealed some unexpected alterations at the cellular level, including an increase in the number of Reelin expressing CR cells, overall our data suggest that Reelin derived from INs is less critical for cortex development and function than Reelin expressed by CR cells.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Dentate Gyrus/metabolism , Extracellular Matrix Proteins/metabolism , Interneurons/metabolism , Neocortex/metabolism , Nerve Tissue Proteins/metabolism , Serine Endopeptidases/metabolism , Animals , Behavior, Animal/physiology , Cell Movement/physiology , Dentate Gyrus/physiopathology , Hippocampus/metabolism , Interneurons/drug effects , Mice, Inbred C57BL , Mice, Knockout , Neurogenesis/physiology , Neurons/metabolism , Plant Leaves/metabolism , Reelin Protein
15.
Blood ; 131(19): 2097-2110, 2018 05 10.
Article in English | MEDLINE | ID: mdl-29500169

ABSTRACT

In the antiphospholipid syndrome (APS), antiphospholipid antibody (aPL) recognition of ß2 glycoprotein I promotes thrombosis, and preclinical studies indicate that this is due to endothelial nitric oxide synthase (eNOS) antagonism via apolipoprotein E receptor 2 (apoER2)-dependent processes. How apoER2 molecularly links these events is unknown. Here, we show that, in endothelial cells, the apoER2 cytoplasmic tail serves as a scaffold for aPL-induced assembly and activation of the heterotrimeric protein phosphatase 2A (PP2A). Disabled-2 (Dab2) recruitment to the apoER2 NPXY motif promotes the activating L309 methylation of the PP2A catalytic subunit by leucine methyl transferase-1. Concurrently, Src homology domain-containing transforming protein 1 (SHC1) recruits the PP2A scaffolding subunit to the proline-rich apoER2 C terminus along with 2 distinct regulatory PP2A subunits that mediate inhibitory dephosphorylation of Akt and eNOS. In mice, the coupling of these processes in endothelium is demonstrated to underlie aPL-invoked thrombosis. By elucidating these intricacies in the pathogenesis of APS-related thrombosis, numerous potential new therapeutic targets have been identified.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Antibodies, Antiphospholipid/immunology , Autoantibodies/immunology , Endothelium/metabolism , LDL-Receptor Related Proteins/metabolism , Protein Phosphatase 2/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Apoptosis Regulatory Proteins , Endothelial Cells/metabolism , Endothelium/immunology , Endothelium, Vascular/metabolism , Humans , Male , Mice , Models, Biological , Multiprotein Complexes , Nitric Oxide Synthase Type III/antagonists & inhibitors , Nitric Oxide Synthase Type III/metabolism , Thrombosis/etiology , Thrombosis/metabolism , Thrombosis/pathology
16.
J Biol Chem ; 293(25): 9674-9684, 2018 06 22.
Article in English | MEDLINE | ID: mdl-29752404

ABSTRACT

Reduced low-density lipoprotein receptor-related protein-1 (LRP1) expression in the liver is associated with poor prognosis of liver cirrhosis and hepatocellular carcinoma. Previous studies have shown that hepatic LRP1 deficiency exacerbates palmitate-induced steatosis and toxicity in vitro and also promotes high-fat diet-induced hepatic insulin resistance and hepatic steatosis in vivo The current study examined the impact of liver-specific LRP1 deficiency on disease progression to steatohepatitis. hLrp1+/+ mice with normal LRP1 expression and hLrp1-/- mice with hepatocyte-specific LRP1 inactivation were fed a high-fat, high-cholesterol (HFHC) diet for 16 weeks. Plasma lipid levels and body weights were similar between both groups. However, the hLrp1-/- mice displayed significant increases in liver steatosis, inflammation, and fibrosis compared with the hLrp1+/+ mice. Hepatocyte cell size, liver weight, and cell death, as measured by serum alanine aminotransferase levels, were also significantly increased in hLrp1-/- mice. The accelerated liver pathology observed in HFHC-fed hLrp1-/- mice was associated with reduced expression of cholesterol excretion and bile acid synthesis genes, leading to elevated immune cell infiltration and inflammation. Additional in vitro studies revealed that cholesterol loading induced significantly higher expression of genes responsible for hepatic stellate cell activation and fibrosis in hLrp1-/- hepatocytes than in hLrp1+/+ hepatocytes. These results indicate that hepatic LRP1 deficiency accelerates liver disease progression by increasing hepatocyte death, thereby causing inflammation and increasing sensitivity to cholesterol-induced pro-fibrotic gene expression to promote steatohepatitis. Thus, LRP1 may be a genetic variable that dictates individual susceptibility to the effects of dietary cholesterol on liver diseases.


Subject(s)
Cholesterol, Dietary/adverse effects , Hepatocytes/pathology , Inflammation/etiology , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Receptors, LDL/physiology , Tumor Suppressor Proteins/physiology , Animals , Cells, Cultured , Disease Progression , Hepatocytes/metabolism , Inflammation/metabolism , Inflammation/pathology , Low Density Lipoprotein Receptor-Related Protein-1 , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism
17.
J Immunol ; 198(10): 3775-3789, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28483986

ABSTRACT

Scavenger receptors constitute a large family of proteins that are structurally diverse and participate in a wide range of biological functions. These receptors are expressed predominantly by myeloid cells and recognize a diverse variety of ligands including endogenous and modified host-derived molecules and microbial pathogens. There are currently eight classes of scavenger receptors, many of which have multiple names, leading to inconsistencies and confusion in the literature. To address this problem, a workshop was organized by the United States National Institute of Allergy and Infectious Diseases, National Institutes of Health, to help develop a clear definition of scavenger receptors and a standardized nomenclature based on that definition. Fifteen experts in the scavenger receptor field attended the workshop and, after extensive discussion, reached a consensus regarding the definition of scavenger receptors and a proposed scavenger receptor nomenclature. Scavenger receptors were defined as cell surface receptors that typically bind multiple ligands and promote the removal of nonself or altered-self targets. They often function by mechanisms that include endocytosis, phagocytosis, adhesion, and signaling that ultimately lead to the elimination of degraded or harmful substances. Based on this definition, nomenclature and classification of these receptors into 10 classes were proposed. This classification was discussed at three national meetings and input from participants at these meetings was requested. The following manuscript is a consensus statement that combines the recommendations of the initial workshop and incorporates the input received from the participants at the three national meetings.


Subject(s)
Receptors, Scavenger/classification , Receptors, Scavenger/physiology , Animals , Endocytosis , Humans , Ligands , Mice , National Institute of Allergy and Infectious Diseases (U.S.)/standards , Phagocytosis , Receptors, Immunologic/physiology , Scavenger Receptors, Class A/physiology , Signal Transduction , Terminology as Topic , United States
18.
J Biol Chem ; 292(4): 1330-1338, 2017 01 27.
Article in English | MEDLINE | ID: mdl-27994051

ABSTRACT

Over half a century ago, D. S. Falconer first reported a mouse with a reeling gate. Four decades later, the Reln gene was isolated and identified as the cause of the reeler phenotype. Initial studies found that loss of Reelin, a large, secreted glycoprotein encoded by the Reln gene, results in abnormal neuronal layering throughout several regions of the brain. In the years since, the known functions of Reelin signaling in the brain have expanded to include multiple postdevelopmental neuromodulatory roles, revealing an ever increasing body of evidence to suggest that Reelin signaling is a critical player in the modulation of synaptic function. In writing this review, we intend to highlight the most fundamental aspects of Reelin signaling and integrate how these various neuromodulatory effects shape and protect synapses.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Matrix Proteins/metabolism , Homeostasis/physiology , Nerve Tissue Proteins/metabolism , Neurogenesis/physiology , Serine Endopeptidases/metabolism , Signal Transduction/physiology , Synapses/metabolism , Animals , Cell Adhesion Molecules, Neuronal/genetics , Extracellular Matrix Proteins/genetics , Humans , Mice , Nerve Tissue Proteins/genetics , Reelin Protein , Serine Endopeptidases/genetics , Synapses/genetics
19.
N Engl J Med ; 383(23): 2294, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33264554
20.
Angew Chem Int Ed Engl ; 57(42): 13696-13697, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30039913

ABSTRACT

"… Achieving our core mission, namely progress through knowledge, now requires two kinds of communication: one to our scientific peers, but another, more fraught yet critical, to the broader public. As scientists, we need to forge a better relationship between the world of research and the general public …" Read more in the Guest Editorial by K. Boele-Woelki, J. S. Francisco, U. Hahn, and J. Herz.

SELECTION OF CITATIONS
SEARCH DETAIL