Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Cell ; 178(6): 1362-1374.e16, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31447178

ABSTRACT

TRPA1 is a chemosensory ion channel that functions as a sentinel for structurally diverse electrophilic irritants. Channel activation occurs through an unusual mechanism involving covalent modification of cysteine residues clustered within an amino-terminal cytoplasmic domain. Here, we describe a peptidergic scorpion toxin (WaTx) that activates TRPA1 by penetrating the plasma membrane to access the same intracellular site modified by reactive electrophiles. WaTx stabilizes TRPA1 in a biophysically distinct active state characterized by prolonged channel openings and low Ca2+ permeability. Consequently, WaTx elicits acute pain and pain hypersensitivity but fails to trigger efferent release of neuropeptides and neurogenic inflammation typically produced by noxious electrophiles. These findings provide a striking example of convergent evolution whereby chemically disparate animal- and plant-derived irritants target the same key allosteric regulatory site to differentially modulate channel activity. WaTx is a unique pharmacological probe for dissecting TRPA1 function and its contribution to acute and persistent pain.


Subject(s)
Scorpion Venoms/pharmacology , TRPA1 Cation Channel/metabolism , Animals , HEK293 Cells , Humans , Mice, Inbred C57BL , Rats, Sprague-Dawley , Scorpions/metabolism
2.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Article in English | MEDLINE | ID: mdl-35074873

ABSTRACT

The King Baboon spider, Pelinobius muticus, is a burrowing African tarantula. Its impressive size and appealing coloration are tempered by reports describing severe localized pain, swelling, itchiness, and muscle cramping after accidental envenomation. Hyperalgesia is the most prominent symptom after bites from P. muticus, but the molecular basis by which the venom induces pain is unknown. Proteotranscriptomic analysis of P. muticus venom uncovered a cysteine-rich peptide, δ/κ-theraphotoxin-Pm1a (δ/κ-TRTX-Pm1a), that elicited nocifensive behavior when injected into mice. In small dorsal root ganglion neurons, synthetic δ/κ-TRTX-Pm1a (sPm1a) induced hyperexcitability by enhancing tetrodotoxin-resistant sodium currents, impairing repolarization and lowering the threshold of action potential firing, consistent with the severe pain associated with envenomation. The molecular mechanism of nociceptor sensitization by sPm1a involves multimodal actions over several ion channel targets, including NaV1.8, KV2.1, and tetrodotoxin-sensitive NaV channels. The promiscuous targeting of peptides like δ/κ-TRTX-Pm1a may be an evolutionary adaptation in pain-inducing defensive venoms.


Subject(s)
Nociceptors/drug effects , Papio/metabolism , Peptides/pharmacology , Spider Venoms/pharmacology , Spiders/metabolism , Action Potentials/drug effects , Animals , Ganglia, Spinal/drug effects , Hyperalgesia/drug therapy , Ion Channels/metabolism , Mice , Pain/drug therapy , Tetrodotoxin/pharmacology
3.
J Pept Sci ; 30(9): e3600, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38623834

ABSTRACT

Agricultural crops are targeted by various pathogens (fungi, bacteria, and viruses) and pests (herbivorous arthropods). Antimicrobial and insecticidal peptides are increasingly recognized as eco-friendly tools for crop protection due to their low propensity for resistance development and the fact that they are fully biodegradable. However, historical challenges have hindered their development, including poor stability, limited availability, reproducibility issues, high production costs, and unwanted toxicity. Toxicity is a primary concern because crop-protective peptides interact with various organisms of environmental and economic significance. This review focuses on the potential of genetically encoded peptide libraries like the use of two-hybrid-based methods for antimicrobial peptides identification and insecticidal spider venom peptides as two main approaches for targeting plant pathogens and pests. We discuss some key findings and challenges regarding the practical application of each strategy. We conclude that genetically encoded peptide library- and spider venom-derived crop protective peptides offer a sustainable and environmentally responsible approach for addressing modern crop protection needs in the agricultural sector.


Subject(s)
Crops, Agricultural , Peptide Library , Spider Venoms , Spider Venoms/chemistry , Spider Venoms/genetics , Insecticides/chemistry , Insecticides/pharmacology , Animals , Peptides/chemistry , Peptides/genetics , Peptides/pharmacology , Crop Protection/methods
4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731963

ABSTRACT

Venom peptides have evolved to target a wide range of membrane proteins through diverse mechanisms of action and structures, providing promising therapeutic leads for diseases, including pain, epilepsy, and cancer, as well as unique probes of ion channel structure-function. In this work, a high-throughput FLIPR window current screening assay on T-type CaV3.2 guided the isolation of a novel peptide named ω-Buthitoxin-Hf1a from scorpion Hottentotta franzwerneri crude venom. At only 10 amino acid residues with one disulfide bond, it is not only the smallest venom peptide known to target T-type CaVs but also the smallest structured scorpion venom peptide yet discovered. Synthetic Hf1a peptides were prepared with C-terminal amidation (Hf1a-NH2) or a free C-terminus (Hf1a-OH). Electrophysiological characterization revealed Hf1a-NH2 to be a concentration-dependent partial inhibitor of CaV3.2 (IC50 = 1.18 µM) and CaV3.3 (IC50 = 0.49 µM) depolarized currents but was ineffective at CaV3.1. Hf1a-OH did not show activity against any of the three T-type subtypes. Additionally, neither form showed activity against N-type CaV2.2 or L-type calcium channels. The three-dimensional structure of Hf1a-NH2 was determined using NMR spectroscopy and used in docking studies to predict its binding site at CaV3.2 and CaV3.3. As both CaV3.2 and CaV3.3 have been implicated in peripheral pain signaling, the analgesic potential of Hf1a-NH2 was explored in vivo in a mouse model of incision-induced acute post-surgical pain. Consistent with this role, Hf1a-NH2 produced antiallodynia in both mechanical and thermal pain.


Subject(s)
Calcium Channels, T-Type , Disease Models, Animal , Hyperalgesia , Pain, Postoperative , Scorpion Venoms , Animals , Calcium Channels, T-Type/metabolism , Calcium Channels, T-Type/chemistry , Mice , Scorpion Venoms/chemistry , Scorpion Venoms/pharmacology , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Pain, Postoperative/drug therapy , Pain, Postoperative/metabolism , Calcium/metabolism , Male , Humans , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/chemistry
5.
Proc Natl Acad Sci U S A ; 117(21): 11399-11408, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32398368

ABSTRACT

Spiders are one of the most successful venomous animals, with more than 48,000 described species. Most spider venoms are dominated by cysteine-rich peptides with a diverse range of pharmacological activities. Some spider venoms contain thousands of unique peptides, but little is known about the mechanisms used to generate such complex chemical arsenals. We used an integrated transcriptomic, proteomic, and structural biology approach to demonstrate that the lethal Australian funnel-web spider produces 33 superfamilies of venom peptides and proteins. Twenty-six of the 33 superfamilies are disulfide-rich peptides, and we show that 15 of these are knottins that contribute >90% of the venom proteome. NMR analyses revealed that most of these disulfide-rich peptides are structurally related and range in complexity from simple to highly elaborated knottin domains, as well as double-knot toxins, that likely evolved from a single ancestral toxin gene.


Subject(s)
Arthropod Proteins/chemistry , Arthropod Proteins/genetics , Spider Venoms/chemistry , Animals , Arthropod Proteins/analysis , Australia , Diptera/drug effects , Disulfides , Evolution, Molecular , Female , Gene Expression Profiling , Mass Spectrometry , Peptides/analysis , Peptides/chemistry , Peptides/genetics , Phylogeny , Protein Conformation , Proteomics/methods , Spider Venoms/genetics , Spider Venoms/toxicity , Spiders/genetics
6.
Proc Natl Acad Sci U S A ; 117(40): 24920-24928, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32958636

ABSTRACT

Australian funnel-web spiders are infamous for causing human fatalities, which are induced by venom peptides known as δ-hexatoxins (δ-HXTXs). Humans and other primates did not feature in the prey or predator spectrum during evolution of these spiders, and consequently the primate lethality of δ-HXTXs remains enigmatic. Funnel-web envenomations are mostly inflicted by male spiders that wander from their burrow in search of females during the mating season, which suggests a role for δ-HXTXs in self-defense since male spiders rarely feed during this period. Although 35 species of Australian funnel-web spiders have been described, only nine δ-HXTXs from four species have been characterized, resulting in a lack of understanding of the ecological roles and molecular evolution of δ-HXTXs. Here, by profiling venom-gland transcriptomes of 10 funnel-web species, we report 22 δ-HXTXs. Phylogenetic and evolutionary assessments reveal a remarkable sequence conservation of δ-HXTXs despite their deep evolutionary origin within funnel-web spiders, consistent with a defensive role. We demonstrate that δ-HXTX-Ar1a, the lethal toxin from the Sydney funnel-web spider Atrax robustus, induces pain in mice by inhibiting inactivation of voltage-gated sodium (NaV) channels involved in nociceptive signaling. δ-HXTX-Ar1a also inhibited inactivation of cockroach NaV channels and was insecticidal to sheep blowflies. Considering their algogenic effects in mice, potent insecticidal effects, and high levels of sequence conservation, we propose that the δ-HXTXs were repurposed from an initial insecticidal predatory function to a role in defending against nonhuman vertebrate predators by male spiders, with their lethal effects on humans being an unfortunate evolutionary coincidence.


Subject(s)
Evolution, Molecular , Neurotoxins/genetics , Polyamines/chemistry , Spiders/genetics , Amino Acid Sequence/genetics , Animals , Australia , Conserved Sequence/genetics , Female , Humans , Male , Mice , Neurotoxins/chemistry , Neurotoxins/metabolism , Peptides/genetics , Phylogeny , Polyamines/metabolism , Sexual Behavior, Animal/physiology , Spider Venoms/genetics , Spiders/pathogenicity , Transcriptome/genetics , Vertebrates/genetics , Vertebrates/physiology
7.
Nature ; 534(7608): 494-9, 2016 06 23.
Article in English | MEDLINE | ID: mdl-27281198

ABSTRACT

Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibres of the pain pathway. Local anaesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of individual subtypes of these channels and their contributions to chemical, mechanical, or thermal pain. Here we identify and characterize spider (Heteroscodra maculata) toxins that selectively activate the Nav1.1 subtype, the role of which in nociception and pain has not been elucidated. We use these probes to show that Nav1.1-expressing fibres are modality-specific nociceptors: their activation elicits robust pain behaviours without neurogenic inflammation and produces profound hypersensitivity to mechanical, but not thermal, stimuli. In the gut, high-threshold mechanosensitive fibres also express Nav1.1 and show enhanced toxin sensitivity in a mouse model of irritable bowel syndrome. Together, these findings establish an unexpected role for Nav1.1 channels in regulating the excitability of sensory nerve fibres that mediate mechanical pain.


Subject(s)
NAV1.1 Voltage-Gated Sodium Channel/metabolism , Nociception/drug effects , Nociceptors/drug effects , Nociceptors/metabolism , Spider Venoms/pharmacology , Stress, Mechanical , Animals , Disease Models, Animal , Female , Ganglia, Sensory/cytology , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Irritable Bowel Syndrome/metabolism , Male , Myelin Sheath/metabolism , NAV1.1 Voltage-Gated Sodium Channel/chemistry , Nerve Fibers/drug effects , Nerve Fibers/metabolism , Oocytes/metabolism , Pain/chemically induced , Pain/metabolism , Protein Structure, Tertiary , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism , Spiders/chemistry , Substrate Specificity/drug effects , Temperature
8.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36361863

ABSTRACT

Australian funnel-web spiders are amongst the most dangerous venomous animals. Their venoms induce potentially deadly symptoms, including hyper- and hypotension, tachycardia, bradycardia and pulmonary oedema. Human envenomation is more frequent with the ground-dwelling species, including the infamous Sydney funnel-web spider (Atrax robustus); although, only two tree-dwelling species induce more severe envenomation. To unravel the mechanisms that lead to this stark difference in clinical outcomes, we investigated the venom transcriptome and proteome of arboreal Hadronyche cerberea and H. formidabilis. Overall, Hadronyche venoms comprised 44 toxin superfamilies, with 12 being exclusive to tree-dwellers. Surprisingly, the major venom components were neprilysins and uncharacterized peptides, in addition to the well-known ω- and δ-hexatoxins and double-knot peptides. The insecticidal effects of Hadronyche venom on sheep blowflies were more potent than Atrax venom, and the venom of both tree- and ground-dwelling species potently modulated human voltage-gated sodium channels, particularly NaV1.2. Only the venom of tree-dwellers exhibited potent modulation of voltage-gated calcium channels. H. formidabilis appeared to be under less diversifying selection pressure compared to the newly adapted tree-dweller, H. cerberea. Thus, this study contributes to unravelling the fascinating molecular and pharmacological basis for the severe envenomation caused by the Australian tree-dwelling funnel-web spiders.


Subject(s)
Spider Venoms , Spiders , Animals , Humans , Spider Venoms/toxicity , Spider Venoms/chemistry , Trees , Australia , Peptides
9.
Proc Natl Acad Sci U S A ; 115(34): E8077-E8085, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30076230

ABSTRACT

Dravet syndrome is a catastrophic, pharmacoresistant epileptic encephalopathy. Disease onset occurs in the first year of life, followed by developmental delay with cognitive and behavioral dysfunction and substantially elevated risk of premature death. The majority of affected individuals harbor a loss-of-function mutation in one allele of SCN1A, which encodes the voltage-gated sodium channel NaV1.1. Brain NaV1.1 is primarily localized to fast-spiking inhibitory interneurons; thus the mechanism of epileptogenesis in Dravet syndrome is hypothesized to be reduced inhibitory neurotransmission leading to brain hyperexcitability. We show that selective activation of NaV1.1 by venom peptide Hm1a restores the function of inhibitory interneurons from Dravet syndrome mice without affecting the firing of excitatory neurons. Intracerebroventricular infusion of Hm1a rescues Dravet syndrome mice from seizures and premature death. This precision medicine approach, which specifically targets the molecular deficit in Dravet syndrome, presents an opportunity for treatment of this intractable epilepsy.


Subject(s)
Epilepsies, Myoclonic/drug therapy , Interneurons/metabolism , Mutation , NAV1.1 Voltage-Gated Sodium Channel/metabolism , Spider Venoms/pharmacology , Synaptic Transmission/drug effects , Animals , CHO Cells , Cricetulus , Epilepsies, Myoclonic/genetics , Epilepsies, Myoclonic/metabolism , Epilepsies, Myoclonic/pathology , HEK293 Cells , Humans , Interneurons/pathology , Mice , Mice, Mutant Strains , NAV1.1 Voltage-Gated Sodium Channel/genetics
10.
Bioinformatics ; 34(6): 1074-1076, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29069336

ABSTRACT

Summary: ArachnoServer is a manually curated database that consolidates information on the sequence, structure, function and pharmacology of spider-venom toxins. Although spider venoms are complex chemical arsenals, the primary constituents are small disulfide-bridged peptides that target neuronal ion channels and receptors. Due to their high potency and selectivity, these peptides have been developed as pharmacological tools, bioinsecticides and drug leads. A new version of ArachnoServer (v3.0) has been developed that includes a bioinformatics pipeline for automated detection and analysis of peptide toxin transcripts in assembled venom-gland transcriptomes. ArachnoServer v3.0 was updated with the latest sequence, structure and functional data, the search-by-mass feature has been enhanced, and toxin cards provide additional information about each mature toxin. Availability and implementation: http://arachnoserver.org. Contact: support@arachnoserver.org. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Spider Venoms/chemistry , Animals , Automation, Laboratory , Disulfides/chemistry , Insect Proteins/chemistry , Peptides/chemistry , Spider Venoms/analysis
11.
J Nat Prod ; 82(9): 2559-2567, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31532206

ABSTRACT

Animal venoms can play an important role in drug discovery, as they are a rich source of evolutionarily tuned compounds that target a variety of ion channels and receptors. To date, there are six FDA-approved drugs derived from animal venoms, with recent work using high-throughput platforms providing a variety of new therapeutic candidates. However, high-throughput methods for screening animal venoms against purinoceptors, one of the oldest signaling receptor families, have not been reported. Here, we describe a variety of quantitative fluorescent-based high-throughput screening (HTS) cell-based assays for screening animal venoms against ligand-gated P2X receptors. A diverse selection of 180 venoms from arachnids, centipedes, hymenopterans, and cone snails were screened, analyzed, and validated, both analytically and pharmacologically. Using this approach, we performed screens against human P2X3, P2X4, and P2X7 using three different fluorescent-based dyes on stable cell lines and isolated the active venom components. Our HTS assays are performed in 96-well format and allow simultaneous screening of multiple venoms on multiple targets, improving testing characteristics while minimizing costs, specimen material, and testing time. Moreover, utilizing our assays and applying them to the other natural product libraries, rather than venoms, might yield other novel natural products that modulate P2X activity.


Subject(s)
Drug Discovery , High-Throughput Screening Assays/methods , Purinergic P2X Receptor Antagonists/chemistry , Receptors, Purinergic P2X/drug effects , Spectrometry, Fluorescence/methods , Venoms/chemistry , Animals , Cell Line , Humans , Purinergic P2X Receptor Antagonists/pharmacology
12.
Biochim Biophys Acta ; 1860(11 Pt A): 2553-2562, 2016 11.
Article in English | MEDLINE | ID: mdl-27474999

ABSTRACT

BACKGROUND: Most ant venoms consist predominantly of small linear peptides, although some contain disulfide-linked peptides as minor components. However, in striking contrast to other ant species, some Anochetus venoms are composed primarily of disulfide-rich peptides. In this study, we investigated the venom of the ant Anochetus emarginatus with the aim of exploring these novel disulfide-rich peptides. METHODS: The venom peptidome was initially investigated using a combination of reversed-phase HPLC and mass spectrometry, then the amino acid sequences of the major peptides were determined using a combination of Edman degradation and de novo MS/MS sequencing. We focused on one of these peptides, U1-PONTX-Ae1a (Ae1a), because of its novel sequence, which we predicted would form a novel 3D fold. Ae1a was chemically synthesized using Fmoc chemistry and its 3D structure was elucidated using NMR spectroscopy. The peptide was then tested for insecticidal activity and its effect on a range of human ion channels. RESULTS: Seven peptides named poneritoxins (PONTXs) were isolated and sequenced. The three-dimensional structure of synthetic Ae1a revealed a novel, compact scaffold in which a C-terminal ß-hairpin is connected to the N-terminal region via two disulfide bonds. Synthetic Ae1a reversibly paralyzed blowflies and inhibited human L-type voltage-gated calcium channels (CaV1). CONCLUSIONS: Poneritoxins from Anochetus emarginatus venom are a novel class of toxins that are structurally unique among animal venoms. GENERAL SIGNIFICANCE: This study demonstrates that Anochetus ant venoms are a rich source of novel ion channel modulating peptides, some of which might be useful leads for the development of biopesticides.


Subject(s)
Ant Venoms/chemistry , Amino Acid Motifs , Disulfides/chemistry
13.
Mol Pharmacol ; 88(2): 291-303, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25979003

ABSTRACT

Spider venoms are a rich source of ion channel modulators with therapeutic potential. Given the analgesic potential of subtype-selective inhibitors of voltage-gated sodium (NaV) channels, we screened spider venoms for inhibitors of human NaV1.7 (hNaV1.7) using a high-throughput fluorescent assay. Here, we describe the discovery of a novel NaV1.7 inhibitor, µ-TRTX-Tp1a (Tp1a), isolated from the venom of the Peruvian green-velvet tarantula Thrixopelma pruriens. Recombinant and synthetic forms of this 33-residue peptide preferentially inhibited hNaV1.7 > hNaV1.6 > hNaV1.2 > hNaV1.1 > hNaV1.3 channels in fluorescent assays. NaV1.7 inhibition was diminished (IC50 11.5 nM) and the association rate decreased for the C-terminal acid form of Tp1a compared with the native amidated form (IC50 2.1 nM), suggesting that the peptide C terminus contributes to its interaction with hNaV1.7. Tp1a had no effect on human voltage-gated calcium channels or nicotinic acetylcholine receptors at 5 µM. Unlike most spider toxins that modulate NaV channels, Tp1a inhibited hNaV1.7 without significantly altering the voltage dependence of activation or inactivation. Tp1a proved to be analgesic by reversing spontaneous pain induced in mice by intraplantar injection in OD1, a scorpion toxin that potentiates hNaV1.7. The structure of Tp1a as determined using NMR spectroscopy revealed a classic inhibitor cystine knot (ICK) motif. The molecular surface of Tp1a presents a hydrophobic patch surrounded by positively charged residues, with subtle differences from other ICK spider toxins that might contribute to its different pharmacological profile. Tp1a may help guide the development of more selective and potent hNaV1.7 inhibitors for treatment of chronic pain.


Subject(s)
Analgesics/pharmacology , Pain/drug therapy , Spider Venoms/pharmacology , Spiders/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology , Analgesics/chemistry , Analgesics/isolation & purification , Animals , CHO Cells , Cell Line, Tumor , Cricetulus , Disease Models, Animal , HEK293 Cells , Humans , Male , Mass Spectrometry , Mice , Mice, Inbred C57BL , Models, Molecular , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Pain/chemically induced , Scorpion Venoms , Spider Venoms/chemistry , Spider Venoms/isolation & purification , Spiders/classification , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channel Blockers/isolation & purification
14.
Cell Mol Life Sci ; 70(19): 3665-93, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23525661

ABSTRACT

Pest insect species are a burden to humans as they destroy crops and serve as vectors for a wide range of diseases including malaria and dengue. Chemical insecticides are currently the dominant approach for combating these pests. However, the de-registration of key classes of chemical insecticides due to their perceived ecological and human health risks in combination with the development of insecticide resistance in many pest insect populations has created an urgent need for improved methods of insect pest control. The venoms of arthropod predators such as spiders and scorpions are a promising source of novel insecticidal peptides that often have different modes of action to extant chemical insecticides. These peptides have been optimized via a prey-predator arms race spanning hundreds of millions of years to target specific types of insect ion channels and receptors. Here we review the current literature on insecticidal venom peptides, with a particular focus on their structural and pharmacological diversity, and discuss their potential for deployment as insecticides.


Subject(s)
Arthropod Venoms/chemistry , Arthropod Venoms/pharmacology , Insecticides/pharmacology , Peptides/pharmacology , Animals , Humans , Insect Control/methods , Insecta
15.
Toxicon ; 238: 107588, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38147939

ABSTRACT

Pest insects pose a heavy burden on global agricultural industries with small molecule insecticides being predominantly used for their control. Unwanted side effects and resistance development plagues most small molecule insecticides such as the neonicotinoids, which have been reported to be harmful to honeybees. Bioinsecticides like Bacillus thuringiensis (Bt) toxins can be used as environmentally-friendly alternatives. Arachnid venoms comprise another promising source of bioinsecticides, containing a multitude of selective and potent insecticidal toxins. Unfortunately, no standardised insect models are currently available to assess the suitability of insecticidal agents under laboratory conditions. Thus, we aimed to develop a laboratory model that closely mimics field conditions by employing a leaf disk assay (LDA) for oral application of insecticidal agents in a bioassay tray format. Neonate larvae of the cotton bollworm (Helicoverpa armigera) were fed with soybean (Glycine max) leaves that were treated with different insecticidal agents. We observed dose-dependent insecticidal effects for Bt toxin and the neonicotinoid insecticide imidacloprid, with imidacloprid exhibiting a faster response. Furthermore, we identified several insecticidal arachnid venoms that were active when co-applied with sub-lethal doses of Bt toxin. We propose the H. armigera LDA as a suitable tool for assessing the insecticidal effects of insecticidal agents against lepidopterans.


Subject(s)
Arthropod Venoms , Bacillus thuringiensis , Insecticides , Moths , Neonicotinoids , Nitro Compounds , Toxins, Biological , Humans , Infant, Newborn , Animals , Insecticides/toxicity , Glycine max , Helicoverpa armigera , Bacillus thuringiensis Toxins/pharmacology , Larva , Insecta , Toxins, Biological/pharmacology , Arthropod Venoms/pharmacology , Biological Assay , Plant Leaves , Bacterial Proteins/pharmacology , Hemolysin Proteins/toxicity , Endotoxins , Pest Control, Biological , Insecticide Resistance
16.
Nucleic Acids Res ; 39(Database issue): D653-7, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21036864

ABSTRACT

ArachnoServer (www.arachnoserver.org) is a manually curated database providing information on the sequence, structure and biological activity of protein toxins from spider venoms. These proteins are of interest to a wide range of biologists due to their diverse applications in medicine, neuroscience, pharmacology, drug discovery and agriculture. ArachnoServer currently manages 1078 protein sequences, 759 nucleic acid sequences and 56 protein structures. Key features of ArachnoServer include a molecular target ontology designed specifically for venom toxins, current and historic taxonomic information and a powerful advanced search interface. The following significant improvements have been implemented in version 2.0: (i) the average and monoisotopic molecular masses of both the reduced and oxidized form of each mature toxin are provided; (ii) the advanced search feature now enables searches on the basis of toxin mass, external database accession numbers and publication date in ArachnoServer; (iii) toxins can now be browsed on the basis of their phyletic specificity; (iv) rapid BLAST searches based on the mature toxin sequence can be performed directly from the toxin card; (v) private silos can be requested from research groups engaged in venoms-based research, enabling them to easily manage and securely store data during the process of toxin discovery; and (vi) a detailed user manual is now available.


Subject(s)
Databases, Protein , Spider Venoms/chemistry , Animals , Internet , Proteins/chemistry , Proteins/genetics , Proteins/toxicity , Sequence Analysis , Spider Venoms/genetics , Spider Venoms/toxicity , Spiders/classification
17.
Biology (Basel) ; 12(5)2023 May 09.
Article in English | MEDLINE | ID: mdl-37237505

ABSTRACT

Predatory stink bugs capture prey by injecting salivary venom from their venom glands using specialized stylets. Understanding venom function has been impeded by a scarcity of knowledge of their venom composition. We therefore examined the proteinaceous components of the salivary venom of the predatory stink bug Arma custos (Fabricius, 1794) (Hemiptera: Pentatomidae). We used gland extracts and venoms from fifth-instar nymphs or adult females to perform shotgun proteomics combined with venom gland transcriptomics. We found that the venom of A. custos comprised a complex suite of over a hundred individual proteins, including oxidoreductases, transferases, hydrolases, ligases, protease inhibitors, and recognition, transport and binding proteins. Besides the uncharacterized proteins, hydrolases such as venom serine proteases, cathepsins, phospholipase A2, phosphatases, nucleases, alpha-amylases, and chitinases constitute the most abundant protein families. However, salivary proteins shared by and unique to other predatory heteropterans were not detected in the A. custos venom. Injection of the proteinaceous (>3 kDa) venom fraction of A. custos gland extracts or venom into its prey, the larvae of the oriental armyworm Mythimna separata (Walker, 1865), revealed insecticidal activity against lepidopterans. Our data expand the knowledge of heteropteran salivary proteins and suggest predatory asopine bugs as a novel source for bioinsecticides.

18.
Toxins (Basel) ; 15(7)2023 06 27.
Article in English | MEDLINE | ID: mdl-37505687

ABSTRACT

Effective control of diseases transmitted by Aedes aegypti is primarily achieved through vector control by chemical insecticides. However, the emergence of insecticide resistance in A. aegypti undermines current control efforts. Arachnid venoms are rich in toxins with activity against dipteran insects and we therefore employed a panel of 41 spider and 9 scorpion venoms to screen for mosquitocidal toxins. Using an assay-guided fractionation approach, we isolated two peptides from the venom of the tarantula Lasiodora klugi with activity against adult A. aegypti. The isolated peptides were named U-TRTX-Lk1a and U-TRTX-Lk2a and comprised 41 and 49 residues with monoisotopic masses of 4687.02 Da and 5718.88 Da, respectively. U-TRTX-Lk1a exhibited an LD50 of 38.3 pmol/g when injected into A. aegypti and its modeled structure conformed to the inhibitor cystine knot motif. U-TRTX-Lk2a has an LD50 of 45.4 pmol/g against adult A. aegypti and its predicted structure conforms to the disulfide-directed ß-hairpin motif. These spider-venom peptides represent potential leads for the development of novel control agents for A. aegypti.


Subject(s)
Spider Venoms , Venoms , Animals , Venoms/pharmacology , Brazil , Mosquito Vectors , Peptides/pharmacology , Insecta , Spider Venoms/toxicity , Spider Venoms/chemistry
19.
Biol Rev Camb Philos Soc ; 97(1): 163-178, 2022 02.
Article in English | MEDLINE | ID: mdl-34453398

ABSTRACT

Spiders are diverse, predatory arthropods that have inhabited Earth for around 400 million years. They are well known for their complex venom systems that are used to overpower their prey. Spider venoms contain many proteins and peptides with highly specific and potent activities suitable for biomedical or agrochemical applications, but the key role of venoms as an evolutionary innovation is often overlooked, even though this has enabled spiders to emerge as one of the most successful animal lineages. In this review, we discuss these neglected biological aspects of spider venoms. We focus on the morphology of spider venom systems, their major components, biochemical and chemical plasticity, as well as ecological and evolutionary trends. We argue that the effectiveness of spider venoms is due to their unprecedented complexity, with diverse components working synergistically to increase the overall potency. The analysis of spider venoms is difficult to standardize because they are dynamic systems, fine-tuned and modified by factors such as sex, life-history stage and biological role. Finally, we summarize the mechanisms that drive spider venom evolution and highlight the need for genome-based studies to reconstruct the evolutionary history and physiological networks of spider venom compounds with more certainty.


Subject(s)
Spider Venoms , Spiders , Animals , Biology , Spider Venoms/chemistry , Spiders/genetics , Venoms
20.
Biomedicines ; 10(5)2022 May 04.
Article in English | MEDLINE | ID: mdl-35625803

ABSTRACT

Inhibition of T-type calcium channels (CaV3) prevents development of diseases related to cardiovascular and nerve systems. Further, knockout animal studies have revealed that some diseases are mediated by specific subtypes of CaV3. However, subtype-specific CaV3 inhibitors for therapeutic purposes or for studying the physiological roles of CaV3 subtypes are missing. To bridge this gap, we employed our spider venom library and uncovered that Avicularia spec. ("Amazonas Purple", Peru) tarantula venom inhibited specific T-type CaV channel subtypes. By using chromatographic and mass-spectrometric techniques, we isolated and sequenced the active toxin ω-Avsp1a, a C-terminally amidated 36 residue peptide with a molecular weight of 4224.91 Da, which comprised the major peak in the venom. Both native (4.1 µM) and synthetic ω-Avsp1a (10 µM) inhibited 90% of CaV3.1 and CaV3.3, but only 25% of CaV3.2 currents. In order to investigate the toxin binding site, we generated a range of chimeric channels from the less sensitive CaV3.2 and more sensitive CaV3.3. Our results suggest that domain-1 of CaV3.3 is important for the inhibitory effect of ω-Avsp1a on T-type calcium channels. Further studies revealed that a leucine of T-type calcium channels is crucial for the inhibitory effect of ω-Avsp1a.

SELECTION OF CITATIONS
SEARCH DETAIL