ABSTRACT
Bone healing is a tissue process after a surgical operation. Many formulated materials have been designed for improving these procedures. The purpose of this study was to evaluate the effectiveness of nanocomposite tricalcium phosphate scaffolds combined with Titanium dioxide scaffold (TCP/TiO2) for femoral defects regeneration in rabbits. We studied 80 mature male New Zealand white rabbits weighing between 3 and 3.5 kg. Rabbits were subdivided into four groups. Anesthesia was performed before surgical operation by 50 mg/kg Ketamine 10% and 5 mg/kg xylazine 5% intramuscularly. We inducted a 6 × 5 mm diameter cylinder defect on the femur. Animals were separated into four trial groups of 20 animals each. After defecting, the experimental groups include control, autograft, hydroxyapatite, and TCP/TiO2 (received pure nanocomposite TCP/TiO2 material). A pathologist evaluated the sections on days 15, 30, 45, and 60 after surgery. The improvement of new and lamellar bone formation was the best in the nanocomposite TCP/TiO2 group at various point times, especially 60 days after surgery. We found that TCP/TiO2 nanocomposite has a significant improving function in the remodeling of bone in the defect areas. Graphical abstract.
Subject(s)
Durapatite , Animals , Male , RabbitsABSTRACT
Recent research has attempted to direct superantigens towards tumors by means of tumor-targeted superantigen (TTS) strategy. In this study, we explored the antitumor property of TTS by fusing the third loop of transforming growth factor α (TGFαL3) to staphylococcal enterotoxin type B (SEB) and investigated the possibility of the therapeutic application of TGFαL3-SEB as a novel antitumor candidate in mice bearing breast cancer. Treatment was performed through intratumoral and intravenous injection of TGFαL3-SEB. Tumor size/volume, long-term survival, and cytokine secretion were assessed. In addition, the toxicity of each treatment on liver and kidneys was examined. Our results indicated that the relative tumor volume significantly increased in the mice receiving intratumoral TGFaL3-SEB (p < 0.05). Surprisingly, 5 out of the 14 mice were cleared from the tumor thoroughly in 10-25 days after intratumoral administration of TGFaL3-SEB. Quantification of cytokines clearly showed that the mice receiving intratumoral SEB significantly secreted higher interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α) compared with the other groups (p < 0.05). The antitumor effect was followed by inhibition of cell proliferation (Ki-67) and micro vascularization (CD31). The highest and lowest levels of tumor necrosis were observed in the intratumoral administration of TGFαL3-SEB (85 %) and PBS (14 %), respectively. Intratumoral injection of TGFαL3-SEB increased the lifespan of the mice so 37.5 % of them could survive for more than 6 months (p < 0.05). Overall, our findings indicated that intratumoral administration of TGFαL3-SEB effectively inhibited the growth of breast tumors through induction of necrosis and suppressing proliferation and angiogenesis without systemic toxicity.
Subject(s)
Breast Neoplasms/therapy , Cell Proliferation/drug effects , Enterotoxins/administration & dosage , Neovascularization, Pathologic/therapy , Tumor Necrosis Factor-alpha/administration & dosage , Animals , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Enterotoxins/genetics , Enterotoxins/immunology , Female , Humans , Immunotherapy/methods , Interferon-gamma/metabolism , Mice , Neovascularization, Pathologic/immunology , Oncogene Proteins, Fusion , Superantigens/administration & dosage , Superantigens/immunology , Transforming Growth Factor alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Xenograft Model Antitumor AssaysABSTRACT
In this work, a rapid and simple colorimetric method based on the surface plasmon resonance of silver nanoparticles (AgNPs) was developed for the detection of the drug Timolol. The method used is based on the interaction of Timolol with the surface of the as-synthesized AgNPs, which promotes aggregation of the nanoparticles. This aggregation exploits the surface plasmon resonance through the electric dipole-dipole interaction and coupling among the agglomerated particles, hence bringing forth distinctive changes in the spectra as well as the color of colloidal silver. UV-vis spectrophotometery was used to monitor the changes of the localized surface plasmon resonance of AgNPs at wavelengths of 400 and 550 nm. The developed colorimetric sensor has a wide dynamic range of 1.0 × 10(-7) M-1.0 × 10(-3) M for detection of Timolol with a low detection limit of 1.2 × 10(-6) M. The proposed method was successfully applied for the determination of Timolol concentration in ophthalmic eye-drop solution with a response time lower than 40 s.
ABSTRACT
Composite pastes composed of various amounts of melt-derived bioactive glass 52S4 (MG5) and polycaprolactone (PCL) microspheres in sodium alginate solution were prepared. Rheological properties in both rotatory and oscillatory modes were evaluated. Injectability was measured as injection force versus piston displacement. In vitro calcium phosphate precipitation was also studied in simulated body fluid (SBF) and tracked using scanning electron microscopy, X-ray diffraction and FTIR analyses. All composite pastes were thixotropic in nature and exhibited shear thinning behavior. The magnitude of thixotropy decreased by adding 10-30 wt% PCL, while further amounts of PCL increased it again. Moreover, the composites were viscoelastic materials in which the elastic modulus was higher than viscous term. The pastes which were just made of MG5 or PCL had poor injectability, whereas the composites containing both of these constituents exhibited reasonable injectability. All pastes revealed adequate structural stability in contact with SBF solution. In vitro calcium phosphate precipitation was well observed on the paste made of MG5 and somewhat on the pastes with 10-40 wt% PCL, however the precipitated layer was amorphous in nature. Overall, the produced composites may be appropriate as injectable biomaterials for non-invasive surgeries but more biological evaluations are essential.
Subject(s)
Alginates/chemistry , Glass/chemistry , Polyesters/chemistry , Rheology/methods , Biocompatible Materials/chemistry , Calcium Phosphates/chemistry , Elasticity , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Materials Testing , Microspheres , Oscillometry , Powders , Shear Strength , Spectroscopy, Fourier Transform Infrared , Stress, Mechanical , Viscosity , X-Ray DiffractionABSTRACT
Tendon repair is still one of the challenges for rehabilitation. Various treatments for tendon injuries have been used in recent decade. This study was established to investigate the effects of low-level laser therapy (LLLT), platelet-rich plasma (PRP) treatment alone, and using combined method on the healing of Achilles tendon in rabbits. Seventy-two healthy mature male white New Zealand rabbits were divided randomly into four groups of 18 animals each: control: partial tenotomy with no treatment, only 1 mL normal saline was injected on days 1, 8, and 15 at the site of splitting; PRP: partial tenotomy with PRP treatment on days 1, 8, and 15 at the site of splitting; LLLT: partial tenotomy with LLLT (K30 hand-held probe, AZOR, Technica, Russia, 650 nm, 30 mW, surface area = 1 cm(2), 60 S/cm(2), energy density = 1.8 J/cm(2)) for 15 consecutive days; LLLT + PRP: partial tenotomy with LLLT + PRP. At the end of trial, the rabbits were euthanatized and tendon specimens were harvested and were submitted for histopathological evaluation, hydroxyproline levels, and biomechanical measurement. The Tukey post hoc test was performed. The results for these parameters showed that PRP or LLLT alone has significant advantages over untreated animals (P < 0.05). Furthermore, it was found that the combined treatment with PRP and LLLT is even more efficient. There was no significant difference (P > 0.05) between the two groups of LLLT and PRP. However, the treatments combining PRP and LLLT showed significant results in comparison of PRP or LLLT alone (P < 0.05). Our results demonstrate that the healing time of injured tendon decreases by using the two therapies combined.
Subject(s)
Achilles Tendon/radiation effects , Low-Level Light Therapy , Tendon Injuries/radiotherapy , Achilles Tendon/injuries , Achilles Tendon/physiopathology , Animals , Biomechanical Phenomena , Combined Modality Therapy , Male , Platelet-Rich Plasma , Rabbits , Treatment Outcome , Wound Healing/radiation effectsABSTRACT
In the present study, different amounts (0.5-5 wt%) of a sol gel-derived zinc-containing nano-bioactive glass (NBG-Zn) powder were added to biphasic calcium phosphate (BCP). The mixtures were sintered at 1,100-1,300 °C and physical characteristics, mechanical properties, phase composition and morphology of them were studied. The samples were also soaked in human blood plasma for 15 days to evaluate variations in their surface morphologies. Rat calvarium-derived osteoblastic cells were seeded on tops of various samples and cell adhesion, proliferation, and alkaline phosphatase activity were evaluated at different culturing periods. The maximum bending strength (62 MPa) was obtained for BCP containing 0.5 wt% NBG-Zn at temperature 1,200 °C. This value was approximately 80% higher than that of pure BCP. The bending strength failed when both sintering temperature and amount of added NBG-Zn increased. At 1,100 °C, NBG-Zn additive did not change the phase composition of BCP. At temperatures 1,200 and 1,300 °C, both alpha-tricalcium calcium phosphate (α-TCP) and beta-tricalcium phosphate (ß-TCP and) phases were detected. However, adding higher amount of NBG-Zn to BCP resulted in elevation of ß-TCP at 1,200 °C and progression of α-TCP at 1,300 °C. Based on the microscopic observations, adding 0.5 wt% NBG-Zn to BCP led to disappearance of grain boundaries, reduction of micropores and formation of a monolithic microstructure. No calcium phosphate precipitation was observed on sample surfaces after soaking in blood plasma, but some pores were produced by phase dissolution. The size and volume of these pores were directly proportional to NBG-Zn content. Based on the cell studies, both BCP and NBG-Zn-added BCP samples supported attachment and proliferation of osteoblasts, but higher alkaline phosphatase enzyme was synthesized within the cells cultured on NBG-Zn-added BCP. Overall, biphasic calcium phosphate materials with improved mechanical and biological properties can be produced by using small quantity of zinc-containing bioactive glass particles.
Subject(s)
Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Glass/chemistry , Hydroxyapatites/chemistry , Hydroxyapatites/pharmacology , Zinc/chemistry , Zinc/pharmacology , Alkaline Phosphatase/metabolism , Animals , Biomechanical Phenomena , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Elastic Modulus , Hot Temperature , Humans , Materials Testing , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/enzymology , Porosity , Rats , Surface Properties , X-Ray DiffractionABSTRACT
The need for bone repair has increased as the population ages. In this research, calcium phosphate cements, with and without chitosan (CS) and hyaluronic acid (HA), were synthesized. The composition and morphological properties of cements were evaluated by X-ray diffraction and scanning electron microscopy. The acellular in vitro bioactivity revealed that different apatite morphologies were formed on the surfaces of cements after soaking in simulated body fluid. The in vitro osteoblastic cell biocompatibility of in situ forming cements was evaluated and compared with those of conventional calcium phosphate cements (CPCs). The viability and growth rate of the cells were similar for all CPCs, but better alkaline phosphatase activity was observed for CPC with CS and HA. Calcium phosphate cements supported attachment of osteoblastic cells on their surfaces. Spindle-shaped osteoblasts with developed cytoplasmic membrane were found on the surfaces of cement samples after 7 days of culture. These results reveal the potential of the CPC-CS/HA composites to be used in bone tissue engineering.
Subject(s)
Bone Cements , Calcium Phosphates , Chitosan , Hyaluronic Acid , Materials Testing , Osteoblasts/metabolism , Animals , Bone Cements/chemistry , Bone Cements/pharmacology , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Cell Adhesion/drug effects , Cells, Cultured , Chitosan/chemistry , Chitosan/pharmacology , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Osteoblasts/cytology , RatsABSTRACT
Injectable pastes based on bioactive compounds and natural polymers are of interest in non-invasive bone surgeries. Several quantities of quercetin (100, 150, and 200 µM) were added to a sol-gel derived mesoporous bioactive glass. Injectable pastes based on quercetin-loaded bioactive glass, sodium alginate, and hyaluronic acid were prepared. Aggregated nanoparticles of bioactive glass and quercetin-loaded bioactive glass with mesoporous morphologies were confirmed by TEM and BET techniques. The quercetin release study was assessed in phosphate-buffered solution medium over 200 h and the obtained data were fitted by different eqs. A sustained release of quercetin was found, in which a better regression coefficient was achieved using Weibull equation. Human-derived mesenchymal stem cells were utilized to determine alkaline phosphatase activity and bone-related protein expression by western blotting and real-time PCR evaluations. Quercetin-loaded pastes increased the levels of alkaline phosphatase activity and the expression of Collagen-1, Osteopontin, Osteocalcin, and Runx2 proteins in a concentration-dependent manner. Due to the mesoporous architecture and high specific surface area of bioactive glass, the paste made of these particles and sodium alginate/hyaluronic acid macromolecules is appropriate matrix for quercetin release, resulting in promoted osteogenesis. The further in vivo studies can support the osteogenesis capacity of the quercetin-loaded paste.
ABSTRACT
Asthma is a pulmonary disease and its pathophysiology includes inflammation, obstruction, edema of the airways, and mucus secretions in the airways. Mesenchymal stem cells (MSCs) are self-renewal that use the therapeutic potential of these cells can be applied as treatments of asthma. In this study, the effect of Mesenchyme stem cells on asthma was investigated. MSCs were administrated for asthmatic mice and then, percentage of eosinophils in blood and bronchoalveolar lavage fluid (BALF), levels of interleukine (IL)-4 and Immunoglubolin (Ig)E were measured. Also histopathological study of lung tissue was done. MSCs administration could control percentage of eosinophils in blood and BALF, levels of IgE and IL-4, eosinophilic inflammation, mucin realizing and goblet cell hyper-plasia. Administration of MSCs as treatment of asthma can be a useful and applicable therapy in control of asthma symptoms.
ABSTRACT
Beta-tricalcium phosphate (ß-TCP) scaffolds manufactured through the foam replication method are widely employed in bone tissue regeneration. The mechanical strength of these scaffolds is a significant challenge, partly due to the rheological properties of the original suspension. Various strategies have been explored to enhance the mechanical properties. In this research, ß-TCP scaffolds containing varying concentrations (0.25-1.00 wt%) of multi-walled carbon nanotubes (MWCNT) were developed. The findings indicate that the addition of MWCNTs led to a concentration-dependent improvement in the viscosity of ß-TCP suspensions. All the prepared slurries exhibited viscoelastic behavior, with the storage modulus surpassing the loss modulus. The three time interval tests revealed that MWCNT-incorporated ß-TCP suspensions exhibited faster structural recovery compared to pure ß-TCP slurries. Introducing MWCNT modified compressive strength, and the optimal improvement was obtained using 0.75 wt% MWCNT. The in vitro degradation of ß-TCP was also reduced by incorporating MWCNT. While the inclusion of carbon nanotubes had a marginal negative impact on the viability and attachment of MC3T3-E1 cells, the number of viable cells remained above 70% of the control group. Additionally, the results demonstrated that the scaffold increased the expression level of osteocalcin, osteoponthin, and alkaline phosphatase genes of adiposed-derived stem cells; however, higher levels of gene expersion were obtained by using MWCNT. The suitability of MWCNT-modified ß-TCP suspensions for the foam replication method can be assessed by evaluating their rheological behavior, aiding in determining the critical additive concentration necessary for a successful coating process.
Subject(s)
Calcium Phosphates , Nanotubes, Carbon , Tissue Engineering , Tissue Scaffolds , Calcium Phosphates/chemistry , Nanotubes, Carbon/chemistry , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Animals , Mice , Cell Line , Bone and Bones/metabolism , Cell Survival/drug effects , Materials Testing , Bone Regeneration/drug effects , Osteoblasts/metabolism , Osteoblasts/drug effects , Osteoblasts/cytology , ViscosityABSTRACT
Non-cement pastes in the form of injectable materials have gained considerable attention in non-invasive regenerative medicine. Different osteoconductive bioceramics have been used as the solid phase of these bone pastes. Mesoporous bioactive glass can be used as an alternative bioceramic for paste preparation because of its osteogenic qualities. Plant-derived osteogenic agents can also be used in paste formulation to improve osteogenesis; however, their side effects on physical and physicochemical properties should be investigated. In this study, nano-bioactive glass powder was synthesized by a sol-gel method, loaded with different amounts of quercetin (0, 100, 150, and 200 µM), an antioxidant flavonoid with osteogenesis capacity. The loaded powder was then homogenized with a mixture of hyaluronic acid and sodium alginate solution to form a paste. We subsequently evaluated the rheological behavior, injectability, washout resistance, and in vitro bioactivity of the quercetin-loaded pastes. The washout resistance was found to be more than 96% after 14 days of immersion in simulated body fluid (SBF) as well as tris-buffered and citric acid-buffered solutions at 25 °C and 37 °C. All pastes exhibited viscoelastic behavior, in which the elastic modulus exceeded the viscous modulus. The pastes displayed shear-thinning behavior, in which viscosity was more influenced by angular frequency when the quercetin content increased. Results indicated that injectability was much improved using quercetin and the injection force was in the range 20-150 N. Following 14 days of SBF soaking, the formation of a nano-structured apatite phase on the surfaces of quercetin-loaded pastes was confirmed through scanning electron microscopy, X-ray diffractometry, and Fourier-transform infrared spectroscopy. Overall, quercetin, an antioxidant flavonoid osteogenic agent, can be loaded onto the nano-bioactive glass/hyaluronic acid/sodium alginate paste system to enhance injectability, rheological properties, and bioactivity.
ABSTRACT
BACKGROUND: The bone defects cannot heal by themselves when their range exceeds the critical size defect (CSD). In clinical treatment, significant bone defects are often caused by trauma, developmental deformity, tumour resection and infection. OBJECTIVES: The purpose of this study was to investigate the effect of green synthesis of TiO2 from propolis extract/collagen/HA (Hydroxyapatite) scaffolds on bone regeneration in rats. METHODS: Water uptake, biodegradability, porosity and biodegradation of the scaffolds were evaluated after they were synthesised using freeze-dry method. Cell viability by MTT assay was then evaluated. During the 4, 8 and 12 weeks following the scaffold implantation, the bone regeneration was evaluated using macroscopic and microscopic tests to determine the effectiveness of green synthesis of TiO2 from propolis extract/collagen/HA scaffolds. RESULTS: Compared to the HA/Coll scaffold, ProTiO2 /HA/Coll scaffold was reduced porosity, water absorption and degradability porosity. Based on in vitro tests, both synthetic scaffolds induced cell growth and were less toxic and stimulated cell growth. Based on histopathological testing, the ProTiO2 /HA/Coll scaffolds formed high levels of bone during 12 weeks in comparison with HA/Coll and control group. CONCLUSIONS: ProTiO2 /HA/Coll composite can be used in regenerative medicine, bone fillers and scaffolds. As a result, this research suggests that ProTiO2 /HA/Coll composites could be promising candidates for bone regeneration.
Subject(s)
Nanoparticles , Propolis , Rats , Animals , Tissue Scaffolds , Collagen , Bone Regeneration , Animals, Laboratory , WaterABSTRACT
This research aims to introduce a new wound dressing with antibacterial and anti-inflammatory properties made from chitosan and copper-containing Janus nanoparticles (JNPs). The JNPs were synthesized by attaching copper to PDA nanospheres, which were then embedded in Chitosan at different concentrations. The resulting spherical JNPs had a mean size of 208 ± 96 nm, and EDX mapping showed successful adhesion of Cu2+ ions to PDA nanospheres with a total Cu2+ content of 16.5 wt%. The samples exhibited interconnected porous structures, increasing JNPs concentration resulting in larger pore size and higher porosity. The addition of JNPs to 10 % (Ch-JNP 10) resulted in the highest strength, young modulus, and crystallinity, while a reverse trend was observed at higher JNPs content. JNPs improve the antibacterial activity of chitosan-based dressing, especially against E. coli. All samples were biocompatible and did not exhibit any cytotoxic effects. Ch-JNP10 had higher cellular density, confluency, and collagen secretion than other samples. The in vivo study demonstrated that Ch-JNP10 induced epithelialization and oriented collagen fiber formation while reducing inflammation. Overall, Ch-JNP10 may be a potential wound dressing for chronic wounds.
ABSTRACT
In this study, a Gelatin/Tragacanth/Nano-hydroxyapatite scaffold was fabricated via freeze-drying method. A highly porous scaffold with an average pore diameter of 142 µm and porosity of 86% was found by the micro-computed tomography. The mean compressive strength of the scaffold was about 1.5 MPa, a value in the range of the spongy bone. The scaffold lost 10 wt.% of its initial weight after 28 days soaking in PBS that shows a fair degradation rate for a bone tissue engineering scaffold. Apatite formation ability of the scaffold was confirmed via scanning electron microscopy, X-ray diffraction and Fourier transforming infrared spectroscopy, after 28 days soaking in simulated body fluid. The scaffold was able to deliver 93% of the loaded drug, Quercetin, during 120 h in phosphate-buffered solution, in a sustainable manner. The MTT assay using human bone mesenchymal stem cells showed 84% cell viability of the Quercetin-loaded scaffold. The expression of the osteogenic genes including Col I, Runx-2, BGLAP (gene of osteocalcin), bFGF, SP7 (gene of osterix) and SPP1 (gene of osteopontin) were all upregulated when Quercetin was loaded on the scaffold, which indicates the synergetic effect of the drug and the scaffold.
Subject(s)
Tissue Engineering , Tragacanth , Humans , Durapatite/chemistry , Quercetin/pharmacology , Gelatin/chemistry , Tragacanth/pharmacology , X-Ray Microtomography , Delayed-Action Preparations/pharmacology , Tissue Scaffolds/chemistry , Osteogenesis , Porosity , Gene Expression , Cell ProliferationABSTRACT
In the present study, a novel composite bone cement based on calcium sulfate hemihydrate (CSH) and Mg, Sr-containing bioactive glass (BG) as solid phase, and solution of chitosan as liquid phase were developed. The phase composition, morphology, setting time, injectability, viscosity, and cellular responses of the composites with various contents of BG (0, 10, 20, and 30 wt.%) were investigated. The pure calcium sulfate cement was set at approximately 180 min, whereas the setting time was drastically decreased to 6 min by replacing 30 wt.% glass powder for CSH in the cement solid phase. BG changed the microscopic morphology of the set cement and decreased the size and compaction of the precipitated gypsum phase. Replacing the CSH phase with BG increased injection force of the produced cement; however, all the cements were injected at a nearly constant force, lower than 20 N. The viscosity measurements in oscillatory mode determined the shear-thinning behavior of the pastes. Although the viscosity of the pastes increased with increasing BG content, it was influenced by the frequency extent. Pure calcium sulfate cement exhibited some transient cytotoxicity on human-derived bone mesenchymal stem cells and it was compensated by introducing BG phase. Moreover, BG improved the cell proliferation and mineralization of extracellular matrix as shown by calcein measurements. The results indicate the injectable composite cement comprising 70 wt.% CSH and 30 wt.% Mg, Sr-doped BG has better setting, mechanical and cellular behaviors and hence, is a potential candidate for bone repair, however more animal and human clinical evaluations are essential.
ABSTRACT
Calcium phosphate cements (CPCs) offer a promising solution for treating bone defects due to their osteoconductive, injectable, biocompatible, and bone replacement properties. However, their brittle nature restricts their utilization to non-load-bearing applications. In this study, the impact of hybrid silk fibroin (SF) and kappa-carrageenan (k-CG) nanofibers as reinforcements in CPC was investigated. The CPC composite was fabricated by incorporating electrospun nanofibers in 1, 3, and 5% volume fractions. The morphology, mineralization, mechanical properties, setting time, injectability, cell adhesion, and mineralization of the CPC composites were analyzed. The results demonstrated that the addition of the nanofibers improved the CPC mixture, leading to an increase in compressive strength (14.8 ± 0.3 MPa compared to 8.1 ± 0.4 MPa of the unreinforced CPC). Similar improvements were seen in the bending strength and work fracture (WOF). The MC3T3-E1 cell culture experiments indicated that cells attached well to the surfaces of all cement samples and tended to join their adjacent cells. Additionally, the CPC composites showed higher cell mineralization after a culture period of 14 days, indicating that the SF/k-CG combination has potential for applications as a CPC reinforcement and bone cell regeneration promoter.
ABSTRACT
This paper describes some physical, structural, and biological properties of gypsum bioceramics doped with various amounts of strontium ions (0.19-2.23 wt%) and compares these properties with those of a pure gypsum as control. Strontium-doped gypsum (gypsum:Sr) was obtained by mixing calcium sulfate hemihydrate powder and solutions of strontium nitrate followed by washing the specimens with distilled water to remove residual salts. Gypsum was the only phase found in the composition of both pure and gypsum:Sr, meanwhile a shift into lower diffraction angles was observed in the X-ray diffraction patterns of doped specimens. Microstructure of all gypsum specimens consisted of many rod-like small crystals entangled to each other with more elongation and higher thickness in the case of gypsum:Sr. The Sr-doped sample exhibited higher compressive strength and lower solubility than pure gypsum. A continuous release of strontium ions was observed from the gypsum:Sr during soaking it in simulated body fluid for 14 days. Compared to pure gypsum, the osteoblasts cultured on strontium-doped samples showed better proliferation rate and higher alkaline phosphatase activity, depending on Sr concentration. These observations can predict better in vivo behavior of strontium-doped gypsum compared to pure one.
ABSTRACT
Polymeric and tetracalcium phosphate (TTCP)-containing polymeric scaffolds were fabricated using a freeze-drying technique, with a homogenous solution of hydroxyethyl cellulose (HEC)/hyaluronic acid (HA)/gelatin (G) or suspension of 15 or 20% TTCP) particles in HEC/HA/G solution. The morphology, phase composition, chemical bands, and swelling behavior of the scaffold were determined. In vitro fibroblast cell viability and migration potential of the scaffolds were determined by MTT, live/dead staining, and scratch assay for wound healing. The in vivo chick embryo angiogenesis test was also carried out. Finally, the initial antibacterial activity of the scaffolds was determined using Staphylococcus aureus. The scaffolds exhibited an enormous porous structure in which the size of pores increased by the presence of TTCP particles. While the polymeric scaffold was amorphous, the formation of low crystalline hydroxyapatite phase and the initial TTCP particles was determined in the composition of TTCP-added scaffolds. TTCP increased swelling behavior of the polymeric scaffold in PBS. The results demonstrated that the amount of TTCP was a crucial factor in cell life. A high concentration of TTCP could restrict cell viability, although all the scaffolds were nontoxic. The scratch assessments determined better cell migration and wound closure in treating with TTCP-containing scaffolds so that after 24 h, a wound closure of 100% was observed. Furthermore, TTCP-incorporated scaffolds significantly improved the angiogenesis, in the chick embryo test. The presence of TTCP had a significant effect on reducing the bacterial activity and 20% TTCP-containing scaffold exhibited better antibacterial activity than the others.
Subject(s)
Gelatin , Hyaluronic Acid , Animals , Anti-Bacterial Agents/pharmacology , Calcium Phosphates , Cellulose , Chick Embryo , Gelatin/chemistry , Hyaluronic Acid/chemistry , Tissue Scaffolds/chemistryABSTRACT
In this study, a novel nanofibrous hybrid scaffold based on silk fibroin (SF) and different weight ratios of kappa-carrageenan (k-CG) (1, 3, and 5 mg of k-CG in 1 mL of 12 wt% SF solution) was prepared using electrospinning and genipin (GP) as a crosslinker. The presence of k-CG in SF nanofibers was analyzed and confirmed using Fourier transform infrared spectroscopy (FTIR). In addition, X-ray diffraction (XRD) analysis confirmed that GP could cause SF conformation to shift from random coils or α-helices to ß-sheets and thereby facilitate a more crystalline and stable structure. The ultimate tensile strength (UTS) and Young's modulus of the SF mats were enhanced after crosslinking with GP from 3.91 ± 0.2 MPa to 8.50 ± 0.3 MPa and from 9.17 ± 0.3 MPa to 31.2 ± 1.2 MP, respectively. Notably, while the mean fiber diameter, wettability, and biodegradation rate of the SF nanofibers increased with increasing k-CG content, a decreasing effect was determined in terms of UTS and Young's modulus. Additionally, better cell viability and proliferation were observed on hybrid scaffolds with the highest k-CG content. Osteogenic differentiation was determined from alkaline phosphatase (ALP) activity and Alizarin Red staining and expression of osteogenic marker genes. To this end, we noticed that k-CG enhanced ALP activity, calcium deposition, and expression of osteogenic genes on the hybrid scaffolds. Overall, hybridization of SF and k-CG can introduce a promising scaffold for bone regeneration; however, more biological evaluations are required.
ABSTRACT
Phoenixin-14 (PNX -14 ) is a newly identified neuropeptide with potential anti-inflammatory effects in the gastrointestinal tract. In this study, we evaluated the protective effect of PNX-14 against the formation of experimental indomethacin (IND)-induced duodenal ulcer. Thirty-two male Sprague-Dawley rats were randomly assigned to the four following study groups: (1) negative control (2) IND (7.5 mg/kg subcutaneous IND), (3) famotidine (FA) (7.5 mg/kg subcutaneous IND followed by 40 mg/kg intraperitoneal FA), and (4) PNX-14 (7.5 mg/kg subcutaneous IND followed by 50 µ/kg intraperitoneal PNX-14). Outcome measures included macroscopic evaluation of duodenal lesion, serum levels of IL-1ß, TNF-α, IL-6, and IL-12, and tissue biochemical parameters of oxidative stress, including malondialdehyde (MDA) , myeloperoxidase (MPO) activity, superoxide dismutase (SOD) activity, and catalase activity. Results The macroscopic grade of duodenal lesions were significantly smaller in the PNX-14 group than in the IND group (p < 0.001). Serum inflammatory cytokines were significantly increased in the IND group. PNX-14 treatment significantly decreased the serum levels of inflammatory cytokines (p < 0.0001). Oxidative contents (MDA and MPO activity) were significantly smaller in the PNX-14 group compared with the IND group (p < 0.0001), while anti-oxidative contents (SOD and catalase activity) were significantly more (p < 0.0001). PNX-14 was superior to FA in several anti-inflammatory properties, such as inhibiting the release of inflammatory cytokines and increasing the catalase activity. PNX-14 showed significant protective effects against the formation of IND-induced duodenal ulcers. These results suggest a promising therapeutic implication for PNX-14 in the treatment of gastrointestinal inflammatory disorders.