Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Development ; 151(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38276966

ABSTRACT

Cell shape is a powerful readout of cell state, fate and function. We describe a custom workflow to perform semi-automated, 3D cell and nucleus segmentation, and spherical harmonics and principal components analysis to distill cell and nuclear shape variation into discrete biologically meaningful parameters. We apply these methods to analyze shape in the neuromast cells of the zebrafish lateral line system, finding that shapes vary with cell location and identity. The distinction between hair cells and support cells accounted for much of the variation, which allowed us to train classifiers to predict cell identity from shape features. Using transgenic markers for support cell subpopulations, we found that subtypes had different shapes from each other. To investigate how loss of a neuromast cell type altered cell shape distributions, we examined atoh1a mutants that lack hair cells. We found that mutant neuromasts lacked the cell shape phenotype associated with hair cells, but did not exhibit a mutant-specific cell shape. Our results demonstrate the utility of using 3D cell shape features to characterize, compare and classify cells in a living developing organism.


Subject(s)
Lateral Line System , Zebrafish , Animals , Zebrafish/genetics , Cell Shape , Animals, Genetically Modified , Hair Cells, Auditory/physiology
3.
Elife ; 122023 01 17.
Article in English | MEDLINE | ID: mdl-36648063

ABSTRACT

Touch system function requires precise interactions between specialized skin cells and somatosensory axons, as exemplified by the vertebrate mechanosensory Merkel cell-neurite complex. Development and patterning of Merkel cells and associated neurites during skin organogenesis remain poorly understood, partly due to the in utero development of mammalian embryos. Here, we discover Merkel cells in the zebrafish epidermis and identify Atonal homolog 1a (Atoh1a) as a marker of zebrafish Merkel cells. We show that zebrafish Merkel cells derive from basal keratinocytes, express neurosecretory and mechanosensory machinery, extend actin-rich microvilli, and complex with somatosensory axons, all hallmarks of mammalian Merkel cells. Merkel cells populate all major adult skin compartments, with region-specific densities and distribution patterns. In vivo photoconversion reveals that Merkel cells undergo steady loss and replenishment during skin homeostasis. Merkel cells develop concomitant with dermal appendages along the trunk and loss of Ectodysplasin signaling, which prevents dermal appendage formation, reduces Merkel cell density by affecting cell differentiation. By contrast, altering dermal appendage morphology changes the distribution, but not density, of Merkel cells. Overall, our studies provide insights into touch system maturation during skin organogenesis and establish zebrafish as an experimentally accessible in vivo model for the study of Merkel cell biology.


Subject(s)
Merkel Cells , Zebrafish , Animals , Skin , Epidermis , Keratinocytes , Mammals
4.
Protein Sci ; 27(4): 839-847, 2018 04.
Article in English | MEDLINE | ID: mdl-29318690

ABSTRACT

The short 8-10 amino acid "hinge" sequence in lactose repressor (LacI), present in other LacI/GalR family members, links DNA and inducer-binding domains. Structural studies of full-length or truncated LacI-operator DNA complexes demonstrate insertion of the dimeric helical "hinge" structure at the center of the operator sequence. This association bends the DNA ∼40° and aligns flanking semi-symmetric DNA sites for optimal contact by the N-terminal helix-turn-helix (HtH) sequences within each dimer. In contrast, the hinge region remains unfolded when bound to nonspecific DNA sequences. To determine ability of the hinge helix alone to mediate DNA binding, we examined (i) binding of LacI variants with deletion of residues 1-50 to remove the HtH DNA binding domain or residues 1-58 to remove both HtH and hinge domains and (ii) binding of a synthetic peptide corresponding to the hinge sequence with a Val52Cys substitution that allows reversible dimer formation via a disulfide linkage. Binding affinity for DNA is orders of magnitude lower in the absence of the helix-turn-helix domain with its highly positive charge. LacI missing residues 1-50 binds to DNA with ∼4-fold greater affinity for operator than for nonspecific sequences with minimal impact of inducer presence; in contrast, LacI missing residues 1-58 exhibits no detectable affinity for DNA. In oxidized form, the dimeric hinge peptide alone binds to O1 and nonspecific DNA with similarly small difference in affinity; reduction to monomer diminished binding to both O1 and nonspecific targets. These results comport with recent reports regarding LacI hinge interaction with DNA sequences.


Subject(s)
DNA/metabolism , Lac Repressors/chemistry , Lac Repressors/metabolism , Collodion/metabolism , Electrophoretic Mobility Shift Assay , Lac Repressors/genetics , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Domains , Protein Multimerization , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL