Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Article in English | MEDLINE | ID: mdl-30833429

ABSTRACT

This study aimed to suggest an initial pediatric vancomycin dose regimen through population pharmacokinetic-pharmacodynamic modeling. A population pharmacokinetic approach was used to analyze vancomycin concentration-time data from a large pediatric cohort. Pharmacokinetic target attainment for patients with bloodstream isolates was compared with clinical outcome using logistic regression and classification and regression trees. Change in serum creatinine during treatment was used as an indicator of acute nephrotoxicity. Probability of acute kidney injury (50% increase from baseline) or kidney failure (75% increase from baseline) was evaluated using logistic regression. An initial dosing regimen was derived, personalized by age, weight, and serum creatinine, using stochastic simulations. Data from 785 hospitalized pediatric patients (1 day to 21 years of age) with suspected Gram-positive infections were collected. Estimated (relative standard error) typical clearance, volume of distribution 1, intercompartmental clearance, and volume of distribution 2 were (standardized to 70 kg) 4.84 (2.38) liters/h, 39.9 (8.15) liters, 3.85 (17.3) liters/h, and 37.8 (10.2) liters, respectively. While cumulative vancomycin exposure correlated positively with the development of nephrotoxicity (713 patients), no clear relationship between vancomycin area under the plasma concentration-time curve and efficacy was found (102 patients). Predicted probability of acute kidney injury and kidney failure with the optimized dosing regimen at day 5 was 10 to 15% and 5 to 10%, increasing by approximately 50% on day 7 and roughly 100% on day 10 across all age groups. This study presents the first data-driven pediatric dose selection to date accounting for nephrotoxicity, and it indicates that cumulative vancomycin exposure best describes risk of acute kidney injury and acute kidney failure.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/therapeutic use , Vancomycin/pharmacokinetics , Vancomycin/therapeutic use , Anti-Bacterial Agents/administration & dosage , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Logistic Models , Male , Microbial Sensitivity Tests , Multivariate Analysis , Vancomycin/administration & dosage
2.
Curr Opin Infect Dis ; 29(3): 237-47, 2016 06.
Article in English | MEDLINE | ID: mdl-26895572

ABSTRACT

PURPOSE OF REVIEW: Vancomycin is a first-line agent in the treatment of serious Gram-positive infections in the neonatal population. The published evidence on vancomycin toxicity in neonates is limited. This review summarizes preclinical studies and clinical trials describing vancomycin toxicity. We discuss proposed pathophysiology and summarize evidence supporting dose-response relationships, genetic and environmental determinants, and consider future research required to further define vancomycin toxicity. RECENT FINDINGS: Current dosing regimens for vancomycin result in subtherapeutic levels in a large proportion of patients. Higher daily doses have been proposed, which have led to concerns regarding increased toxicity. Nephrotoxicity occurs in 1-9% of neonates receiving currently recommended doses. The incidence is highest in those receiving concomitant nephrotoxic drugs. Vancomycin-associated ototoxicity is rare in patients of all ages. Exposure-toxicity relationships in relation to nephrotoxicity and ototoxicity have not been clearly defined in neonates receiving vancomycin. SUMMARY: Current evidence supports the favourable safety profile of vancomycin in neonates. Further studies that address safety concerns relating to high-dose intermittent dosing regimens are needed. Such studies must include robust and standardized definitions of renal and hearing impairment, and include follow-up of sufficient length to establish the long-term implications of experimental findings.


Subject(s)
Acute Kidney Injury/chemically induced , Anti-Bacterial Agents , Hearing Loss/chemically induced , Vancomycin , Adult , Animals , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/toxicity , Child , Disease Models, Animal , Gram-Positive Bacterial Infections/drug therapy , Humans , Infant, Newborn , Mice , Vancomycin/adverse effects , Vancomycin/therapeutic use , Vancomycin/toxicity
3.
Lancet Child Adolesc Health ; 6(1): 49-59, 2022 01.
Article in English | MEDLINE | ID: mdl-34843669

ABSTRACT

BACKGROUND: Vancomycin is the most widely used antibiotic for neonatal Gram-positive sepsis, but clinical outcome data of dosing strategies are scarce. The NeoVanc programme comprised extensive preclinical studies to inform a randomised controlled trial to assess optimised vancomycin dosing. We compared the efficacy of an optimised regimen to a standard regimen in infants with late onset sepsis that was known or suspected to be caused by Gram-positive microorganisms. METHODS: NeoVanc was an open-label, multicentre, phase 2b, parallel-group, randomised, non-inferiority trial comparing the efficacy and toxicity of an optimised regimen of vancomycin to a standard regimen in infants aged 90 days or younger. Infants with at least three clinical or laboratory sepsis criteria or confirmed Gram-positive sepsis with at least one clinical or laboratory criterion were enrolled from 22 neonatal intensive care units in Greece, Italy, Estonia, Spain, and the UK. Infants were randomly assigned (1:1) to either the optimised regimen (25 mg/kg loading dose, followed by 15 mg/kg every 12 h or 8 h dependent on postmenstrual age, for 5 ± 1 days) or the standard regimen (no loading dose; 15 mg/kg every 24 h, 12 h, or 8 h dependent on postmenstrual age for 10 ± 2 days). Vancomycin was administered intravenously via 60 min infusion. Group allocation was not masked to local investigators or parents. The primary endpoint was success at the test of cure visit (10 ± 1 days after the end of actual vancomycin therapy) in the per-protocol population, where success was defined as the participant being alive at the test of cure visit, having a successful outcome at the end of actual vancomycin therapy, and not having a clinically or microbiologically significant relapse or new infection requiring antistaphylococcal antibiotics for more than 24 h within 10 days of the end of actual vancomycin therapy. The non-inferiority margin was -10%. Safety was assessed in the intention-to-treat population. This trial is registered at ClinicalTrials.gov (NCT02790996). FINDINGS: Between March 3, 2017, and July 29, 2019, 242 infants were randomly assigned to the standard regimen group (n=122) or the optimised regimen group (n=120). Primary outcome data in the per-protocol population were available for 90 infants in the optimised group and 92 in the standard group. 64 (71%) of 90 infants in the optimised group and 73 (79%) of 92 in the standard group had success at test of cure visit; non-inferiority was not confirmed (adjusted risk difference -7% [95% CI -15 to 2]). Incomplete resolution of clinical or laboratory signs after 5 ± 1 days of vancomycin therapy was the main factor contributing to clinical failure in the optimised group. Abnormal hearing test results were recorded in 25 (30%) of 84 infants in the optimised group and 12 (15%) of 79 in the standard group (adjusted risk ratio 1·96 [95% CI 1·07 to 3·59], p=0·030). There were six vancomycin-related adverse events in the optimised group (one serious adverse event) and four in the standard group (two serious adverse events). 11 infants in the intention-to-treat population died (six [6%] of 102 infants in the optimised group and five [5%] of 98 in the standard group). INTERPRETATION: In the largest neonatal vancomycin efficacy trial yet conducted, no clear clinical impact of a shorter duration of treatment with a loading dose was demonstrated. The use of the optimised regimen cannot be recommended because a potential hearing safety signal was identified; long-term follow-up is being done. These results emphasise the importance of robust clinical safety assessments of novel antibiotic dosing regimens in infants. FUNDING: EU Seventh Framework Programme for research, technological development and demonstration.


Subject(s)
Anti-Bacterial Agents , Equivalence Trials as Topic , Intensive Care Units, Neonatal , Sepsis/drug therapy , Vancomycin , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Europe , Humans , Infant , Infant, Newborn , Infusions, Intravenous , Sepsis/mortality , Spain , Time Factors , Treatment Outcome , United Kingdom , Vancomycin/administration & dosage , Vancomycin/adverse effects
4.
Trials ; 21(1): 329, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32293527

ABSTRACT

BACKGROUND: Vancomycin has been used in clinical practice for over 50 years; however, validated, pharmacokinetic (PK) data relating clinical outcomes to different dosing regimens in neonates are lacking. Coagulase negative staphylococci (CoNS) are the most commonly isolated organisms in neonatal, late-onset sepsis (LOS). Optimised use to maximise efficacy while minimising toxicity and resistance selection is imperative to ensure vancomycin's continued efficacy. METHODS: NeoVanc is a European, open-label, Phase IIb, randomised, controlled, non-inferiority trial comparing an optimised vancomycin regimen to a standard vancomycin regimen when treating LOS known/suspected to be caused by Gram-positive organisms (excluding Staphylococcus aureus) in infants aged ≤ 90 days. Three hundred infants will be recruited and randomised in a 1:1 ratio. Infants can be recruited if they have culture confirmed (a positive culture from a normally sterile site and at least one clinical/laboratory criterion) or clinical sepsis (presence of any ≥ 3 clinical/laboratory criteria) in the 24 h before randomisation. The optimised regimen consists of a vancomycin loading dose (25 mg/kg) followed by 5 ± 1 days of 15 mg/kg q12h or q8h, dependent on postmenstrual age (PMA). The standard regimen is a 10 ± 2 day vancomycin course at 15 mg/kg q24h, q12h or q8h, dependent on PMA. The primary endpoint is a successful outcome at the test of cure visit (10 ± 1 days after the end of vancomycin therapy). A successful outcome consists of the patient being alive, having successfully completed study vancomycin therapy and having not had a clinical/microbiological relapse/new infection requiring treatment with vancomycin or other anti-staphylococcal antibiotic for > 24 h. Secondary endpoints include clinical/microbiological relapse/new infection at the short-term follow-up visit (30 ± 5 days after the initiation of vancomycin), evaluation of safety (renal/hearing), vancomycin PK and assessment of a host biomarker panel over the course of vancomycin therapy. DISCUSSION: Based on previous pre-clinical data and a large meta-analysis of neonatal, PK/pharmacodynamic data, NeoVanc was set up to provide evidence on whether a loading dose followed by a short vancomycin course is non-inferior, regarding efficacy, when compared to a standard, longer course. If non-inferiority is demonstrated, this would support adoption of the optimised regimen as a way of safely reducing vancomycin exposure when treating neonatal, Gram-positive LOS. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02790996. Registered on 7 April 2016. EudraCT, 2015-000203-89. Entered on 18 July 2016.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Clinical Protocols/classification , Gram-Positive Bacterial Infections/drug therapy , Neonatal Sepsis/drug therapy , Vancomycin/therapeutic use , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Clinical Protocols/standards , Dose-Response Relationship, Drug , Equivalence Trials as Topic , Humans , Infant , Infant, Newborn , Neonatal Sepsis/diagnosis , Neonatal Sepsis/microbiology , Safety , Staphylococcal Infections/prevention & control , Vancomycin/administration & dosage , Vancomycin/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL