Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.466
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 89: 557-581, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32208767

ABSTRACT

The binding affinity and kinetics of target engagement are fundamental to establishing structure-activity relationships (SARs) for prospective therapeutic agents. Enhancing these binding parameters for operative targets, while minimizing binding to off-target sites, can translate to improved drug efficacy and a widened therapeutic window. Compound activity is typically assessed through modulation of an observed phenotype in cultured cells. Quantifying the corresponding binding properties under common cellular conditions can provide more meaningful interpretation of the cellular SAR analysis. Consequently, methods for assessing drug binding in living cells have advanced and are now integral to medicinal chemistry workflows. In this review, we survey key technological advancements that support quantitative assessments of target occupancy in cultured cells, emphasizing generalizable methodologies able to deliver analytical precision that heretofore required reductionist biochemical approaches.


Subject(s)
Chemistry, Pharmaceutical/methods , Fluorescent Dyes/chemistry , High-Throughput Screening Assays , Molecular Probe Techniques , Molecular Targeted Therapy/methods , Bioluminescence Resonance Energy Transfer Techniques , Cell Survival/drug effects , Cells, Cultured , Genes, Reporter , Humans , Kinetics , Optical Imaging/methods , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
2.
Biochemistry ; 63(10): 1335-1346, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38690768

ABSTRACT

Lipoxygenases (LOXs) from pathogenic fungi are potential therapeutic targets for defense against plant and select human diseases. In contrast to the canonical LOXs in plants and animals, fungal LOXs are unique in having appended N-linked glycans. Such important post-translational modifications (PTMs) endow proteins with altered structure, stability, and/or function. In this study, we present the structural and functional outcomes of removing or altering these surface carbohydrates on the LOX from the devastating rice blast fungus, M. oryzae, MoLOX. Alteration of the PTMs did notinfluence the active site enzyme-substrate ground state structures as visualized by electron-nuclear double resonance (ENDOR) spectroscopy. However, removal of the eight N-linked glycans by asparagine-to-glutamine mutagenesis nonetheless led to a change in substrate selectivity and an elevated activation energy for the reaction with substrate linoleic acid, as determined by kinetic measurements. Comparative hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis of wild-type and Asn-to-Gln MoLOX variants revealed a regionally defined impact on the dynamics of the arched helix that covers the active site. Guided by these HDX results, a single glycan sequon knockout was generated at position 72, and its comparative substrate selectivity from kinetics nearly matched that of the Asn-to-Gln variant. The cumulative data from model glyco-enzyme MoLOX showcase how the presence, alteration, or removal of even a single N-linked glycan can influence the structural integrity and dynamics of the protein that are linked to an enzyme's catalytic proficiency, while indicating that extensive glycosylation protects the enzyme during pathogenesis by protecting it from protease degradation.


Subject(s)
Fungal Proteins , Lipoxygenase , Catalytic Domain , Enzyme Activation , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Fungal Proteins/genetics , Glycosylation , Kinetics , Lipoxygenase/metabolism , Lipoxygenase/chemistry , Lipoxygenase/genetics , Models, Molecular , Polysaccharides/metabolism , Polysaccharides/chemistry , Protein Conformation , Protein Processing, Post-Translational , Substrate Specificity
3.
Biochemistry ; 62(10): 1531-1543, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37115010

ABSTRACT

Lipoxygenase (LOX) enzymes produce important cell-signaling mediators, yet attempts to capture and characterize LOX-substrate complexes by X-ray co-crystallography are commonly unsuccessful, requiring development of alternative structural methods. We previously reported the structure of the complex of soybean lipoxygenase, SLO, with substrate linoleic acid (LA), as visualized through the integration of 13C/1H electron nuclear double resonance (ENDOR) spectroscopy and molecular dynamics (MD) computations. However, this required substitution of the catalytic mononuclear, nonheme iron by the structurally faithful, yet inactive Mn2+ ion as a spin probe. Unlike canonical Fe-LOXs from plants and animals, LOXs from pathogenic fungi contain active mononuclear Mn2+ metallocenters. Here, we report the ground-state active-site structure of the native, fully glycosylated fungal LOX from rice blast pathogen Magnaporthe oryzae, MoLOX complexed with LA, as obtained through the 13C/1H ENDOR-guided MD approach. The catalytically important distance between the hydrogen donor, carbon-11 (C11), and the acceptor, Mn-bound oxygen, (donor-acceptor distance, DAD) for the MoLOX-LA complex derived in this fashion is 3.4 ± 0.1 Å. The difference of the MoLOX-LA DAD from that of the SLO-LA complex, 3.1 ± 0.1 Å, is functionally important, although is only 0.3 Å, despite the MoLOX complex having a Mn-C11 distance of 5.4 Å and a "carboxylate-out" substrate-binding orientation, whereas the SLO complex has a 4.9 Å Mn-C11 distance and a "carboxylate-in" substrate orientation. The results provide structural insights into reactivity differences across the LOX family, give a foundation for guiding development of MoLOX inhibitors, and highlight the robustness of the ENDOR-guided MD approach to describe LOX-substrate structures.


Subject(s)
Lipoxygenase , Molecular Dynamics Simulation , Animals , Lipoxygenase/chemistry , Electron Spin Resonance Spectroscopy , Hydrogen/chemistry , Linoleic Acid/chemistry
4.
Arch Biochem Biophys ; 747: 109740, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37678425

ABSTRACT

Hydrogen tunneling in enzyme reactions has played an important role in linking protein thermal motions to the chemical steps of catalysis. Lipoxygenases (LOXs) have served as model systems for such reactions, showcasing deep hydrogen tunneling mechanisms associated with enzymatic C-H bond cleavage from polyunsaturated fatty acids. Here, we examined the effect of solvent viscosity on the protein thermal motions associated with LOX catalysis using trehalose and glucose as viscogens. Kinetic analysis of the reaction of the paradigm plant orthologue, soybean lipoxygenase (SLO), with linoleic acid revealed no effect on the first-order rate constants, kcat, or activation energy, Ea. Further studies of SLO active site mutants displaying varying Eas, which have been used to probe catalytically relevant motions, likewise provided no evidence for viscogen-dependent motions. Kinetic analyses were extended to a representative fungal LOX from M. oryzae, MoLOX, and a human LOX, 15-LOX-2. While MoLOX behaved similarly to SLO, we show that viscogens inhibit 15-LOX-2 activity. The latter implicates viscogen sensitive, conformational motions in animal LOX reactions. The data provide insight into the role of water hydration layers in facilitating hydrogen (quantum) tunneling in LOX.

5.
Brain Behav Immun ; 114: 3-15, 2023 11.
Article in English | MEDLINE | ID: mdl-37506949

ABSTRACT

INTRODUCTION: High-inflammation subgroups of patients with psychosis demonstrate cognitive deficits and neuroanatomical alterations. Systemic inflammation assessed using IL-6 and C-reactive protein may alter functional connectivity within and between resting-state networks, but the cognitive and clinical implications of these alterations remain unknown. We aim to determine the relationships of elevated peripheral inflammation subgroups with resting-state functional networks and cognition in psychosis spectrum disorders. METHODS: Serum and resting-state fMRI were collected from psychosis probands (schizophrenia, schizoaffective, psychotic bipolar disorder) and healthy controls (HC) from the B-SNIP1 (Chicago site) study who were stratified into inflammatory subgroups based on factor and cluster analyses of 13 cytokines (HC Low n = 32, Proband Low n = 65, Proband High n = 29). Nine resting-state networks derived from independent component analysis were used to assess functional and multilayer connectivity. Inter-network connectivity was measured using Fisher z-transformation of correlation coefficients. Network organization was assessed by investigating networks of positive and negative connections separately, as well as investigating multilayer networks using both positive and negative connections. Cognition was assessed using the Brief Assessment of Cognition in Schizophrenia. Linear regressions, Spearman correlations, permutations tests and multiple comparison corrections were used for analyses in R. RESULTS: Anterior default mode network (DMNa) connectivity was significantly reduced in the Proband High compared to Proband Low (Cohen's d = -0.74, p = 0.002) and HC Low (d = -0.85, p = 0.0008) groups. Inter-network connectivity between the DMNa and the right-frontoparietal networks was lower in Proband High compared to Proband Low (d = -0.66, p = 0.004) group. Compared to Proband Low, the Proband High group had lower negative (d = 0.54, p = 0.021) and positive network (d = 0.49, p = 0.042) clustering coefficient, and lower multiplex network participation coefficient (d = -0.57, p = 0.014). Network findings in high inflammation subgroups correlate with worse verbal fluency, verbal memory, symbol coding, and overall cognition. CONCLUSION: These results expand on our understanding of the potential effects of peripheral inflammatory signatures and/or subgroups on network dysfunction in psychosis and how they relate to worse cognitive performance. Additionally, the novel multiplex approach taken in this study demonstrated how inflammation may disrupt the brain's ability to maintain healthy co-activation patterns between the resting-state networks while inhibiting certain connections between them.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Default Mode Network , Psychotic Disorders/psychology , Cognition , Magnetic Resonance Imaging , Inflammation , Brain , Brain Mapping
6.
Avian Pathol ; 52(5): 289-308, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37565466

ABSTRACT

Avian influenza viruses can cause severe disease in domestic and wild birds and are a pandemic threat. Phylodynamics is the study of how epidemiological, evolutionary, and immunological processes can interact to shape viral phylogenies. This review summarizes how phylodynamic methods have and could contribute to the study of avian influenza viruses. Specifically, we assess how phylodynamics can be used to examine viral spread within and between wild or domestic bird populations at various geographical scales, identify factors associated with virus dispersal, and determine the order and timing of virus lineage movement between geographic regions or poultry production systems. We discuss factors that can complicate the interpretation of phylodynamic results and identify how future methodological developments could contribute to improved control of the virus.


Subject(s)
Influenza A virus , Influenza in Birds , Animals , Influenza A virus/genetics , Birds , Poultry , Animals, Wild , Phylogeny
7.
Nature ; 546(7658): 406-410, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28538727

ABSTRACT

Transmission of Zika virus (ZIKV) in the Americas was first confirmed in May 2015 in northeast Brazil. Brazil has had the highest number of reported ZIKV cases worldwide (more than 200,000 by 24 December 2016) and the most cases associated with microcephaly and other birth defects (2,366 confirmed by 31 December 2016). Since the initial detection of ZIKV in Brazil, more than 45 countries in the Americas have reported local ZIKV transmission, with 24 of these reporting severe ZIKV-associated disease. However, the origin and epidemic history of ZIKV in Brazil and the Americas remain poorly understood, despite the value of this information for interpreting observed trends in reported microcephaly. Here we address this issue by generating 54 complete or partial ZIKV genomes, mostly from Brazil, and reporting data generated by a mobile genomics laboratory that travelled across northeast Brazil in 2016. One sequence represents the earliest confirmed ZIKV infection in Brazil. Analyses of viral genomes with ecological and epidemiological data yield an estimate that ZIKV was present in northeast Brazil by February 2014 and is likely to have disseminated from there, nationally and internationally, before the first detection of ZIKV in the Americas. Estimated dates for the international spread of ZIKV from Brazil indicate the duration of pre-detection cryptic transmission in recipient regions. The role of northeast Brazil in the establishment of ZIKV in the Americas is further supported by geographic analysis of ZIKV transmission potential and by estimates of the basic reproduction number of the virus.


Subject(s)
Zika Virus Infection/transmission , Zika Virus Infection/virology , Zika Virus/isolation & purification , Americas/epidemiology , Basic Reproduction Number , Brazil/epidemiology , Genetic Variation , Genome, Viral/genetics , Humans , Microcephaly/epidemiology , Microcephaly/virology , Molecular Epidemiology , Phylogeography , Spatio-Temporal Analysis , Zika Virus/genetics , Zika Virus Infection/epidemiology
8.
Psychol Med ; 52(13): 2692-2701, 2022 10.
Article in English | MEDLINE | ID: mdl-33622437

ABSTRACT

BACKGROUND: Antisaccade tasks can be used to index cognitive control processes, e.g. attention, behavioral inhibition, working memory, and goal maintenance in people with brain disorders. Though diagnoses of schizophrenia (SZ), schizoaffective (SAD), and bipolar I with psychosis (BDP) are typically considered to be distinct entities, previous work shows patterns of cognitive deficits differing in degree, rather than in kind, across these syndromes. METHODS: Large samples of individuals with psychotic disorders were recruited through the Bipolar-Schizophrenia Network on Intermediate Phenotypes 2 (B-SNIP2) study. Anti- and pro-saccade task performances were evaluated in 189 people with SZ, 185 people with SAD, 96 people with BDP, and 279 healthy comparison participants. Logistic functions were fitted to each group's antisaccade speed-performance tradeoff patterns. RESULTS: Psychosis groups had higher antisaccade error rates than the healthy group, with SZ and SAD participants committing 2 times as many errors, and BDP participants committing 1.5 times as many errors. Latencies on correctly performed antisaccade trials in SZ and SAD were longer than in healthy participants, although error trial latencies were preserved. Parameters of speed-performance tradeoff functions indicated that compared to the healthy group, SZ and SAD groups had optimal performance characterized by more errors, as well as less benefit from prolonged response latencies. Prosaccade metrics did not differ between groups. CONCLUSIONS: With basic prosaccade mechanisms intact, the higher speed-performance tradeoff cost for antisaccade performance in psychosis cases indicates a deficit that is specific to the higher-order cognitive aspects of saccade generation.


Subject(s)
Bipolar Disorder , Psychotic Disorders , Schizophrenia , Humans , Schizophrenia/diagnosis , Bipolar Disorder/psychology , Psychotic Disorders/psychology , Reaction Time/physiology , Phenotype
9.
Mol Psychiatry ; 26(7): 3430-3443, 2021 07.
Article in English | MEDLINE | ID: mdl-33060818

ABSTRACT

Elevations in peripheral inflammatory markers have been reported in patients with psychosis. Whether this represents an inflammatory process defined by individual or subgroups of markers is unclear. Further, relationships between peripheral inflammatory marker elevations and brain structure, cognition, and clinical features of psychosis remain unclear. We hypothesized that a pattern of plasma inflammatory markers, and an inflammatory subtype established from this pattern, would be elevated across the psychosis spectrum and associated with cognition and brain structural alterations. Clinically stable psychosis probands (Schizophrenia spectrum, n = 79; Psychotic Bipolar disorder, n = 61) and matched healthy controls (HC, n = 60) were assessed for 15 peripheral inflammatory markers, cortical thickness, subcortical volume, cognition, and symptoms. A combination of unsupervised exploratory factor analysis and hierarchical clustering was used to identify inflammation subtypes. Levels of IL6, TNFα, VEGF, and CRP were significantly higher in psychosis probands compared to HCs, and there were marker-specific differences when comparing diagnostic groups. Individual and/or inflammatory marker patterns were associated with neuroimaging, cognition, and symptom measures. A higher inflammation subgroup was defined by elevations in a group of 7 markers in 36% of Probands and 20% of HCs. Probands in the elevated inflammatory marker group performed significantly worse on cognitive measures of visuo-spatial working memory and response inhibition, displayed elevated hippocampal, amygdala, putamen and thalamus volumes, and evidence of gray matter thickening compared to the proband group with low inflammatory marker levels. These findings specify the nature of peripheral inflammatory marker alterations in psychotic disorders and establish clinical, neurocognitive and neuroanatomic associations with increased inflammatory activation in psychosis. The identification of a specific subgroup of patients with inflammatory alteration provides a potential means for targeting treatment with anti-inflammatory medications.


Subject(s)
Bipolar Disorder , Psychotic Disorders , Schizophrenia , Brain/diagnostic imaging , Cognition , Humans , Magnetic Resonance Imaging
10.
Anal Chem ; 93(26): 9041-9048, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34165299

ABSTRACT

Measurements of protein higher order structure (HOS) provide important information on stability, potency, efficacy, immunogenicity, and biosimilarity of biopharmaceuticals, with a significant number of techniques and methods available to perform these measurements. The comparison of the analytical performance of HOS methods and the standardization of the results is, however, not a trivial task, due to the lack of reference protocols and reference measurement procedures. Here, we developed a protocol to structurally alter and compare samples of somatropin, a recombinant biotherapeutic, and describe the results obtained by using a number of techniques, methods and in different laboratories. This, with the final aim to provide tools and generate a pool of data to compare and benchmark analytical platforms and define method sensitivity to structural changes. Changes in somatropin HOS, induced by the presence of zinc at increasing concentrations, were observed, both globally and at more localized resolution, across many of the methods utilized in this study and with different sensitivities, suggesting the suitability of the protocol to improve understanding of inter- and cross-platform measurement comparability and assess analytical performance as appropriate.


Subject(s)
Laboratories , Reference Standards
11.
Diabet Med ; 38(4): e14386, 2021 04.
Article in English | MEDLINE | ID: mdl-32794618

ABSTRACT

AIM: To develop and evaluate an artificial intelligence triage system with high sensitivity for detecting referable diabetic retinopathy and maculopathy, while maintaining high specificity for non-referable disease, for clinical implementation within the New Zealand national diabetic retinopathy screening programme. METHODS: The THEIA™ artificial intelligence system for retinopathy and maculopathy screening, was developed at Toku Eyes using routinely collected retinal screening datasets from two of the largest district health boards in Auckland, New Zealand: the Auckland District Health Board and the Counties Manukau District Health Board. All retinal images from consecutive individuals receiving retinal screening between January 2009 and December 2018 were used. Images were labelled as non-sight-threatening, potentially referable or sight-threatening for New Zealand implementation, or as referable (potentially referable + sight-threatening)/non-referable (non-sight-threatening) for global comparison. RESULTS: Data from 32 354 unique people with diabetes (63 843 when including multiple visits) were available, of which 95-97%, 0.9-2.4% and 1.1-3.1% were categorized as non-sight-threatening, potentially referable and sight-threatening, respectively. Using the referable/non-referable categories, THEIA achieved overall sensitivity of 94% (95% CI 92-95) in the Auckland District Health Board and 95% (95% CI 92-97) in the Counties Manukau District Health Board datasets, while preserving specificity of 63% (95% CI 62-64) for the Auckland District Health Board and 61% (95% CI 60-62) for the Counties Manukau District Health Board. Implementing THEIA into a New Zealand national diabetic screening programme could significantly reduce the manual grading load. CONCLUSION: THEIA, an artificial intelligence tool to assist in clinical decision-making, tailored to the needs of the New Zealand national diabetic screening programme, delivered high sensitivity for detecting referable retinopathy within the multi-ethnic New Zealand population with diabetes.


Subject(s)
Artificial Intelligence , Diabetic Retinopathy/diagnosis , Image Processing, Computer-Assisted/methods , Mass Screening/methods , Triage/methods , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Child , Diabetes Mellitus/diagnosis , Diabetes Mellitus/epidemiology , Diabetes Mellitus/pathology , Diabetic Retinopathy/epidemiology , Diabetic Retinopathy/pathology , Female , Humans , Image Processing, Computer-Assisted/standards , Implementation Science , Male , Middle Aged , New Zealand/epidemiology , Retina/diagnostic imaging , Retina/pathology , Retrospective Studies , Sensitivity and Specificity , Young Adult
12.
Bipolar Disord ; 22(6): 602-611, 2020 09.
Article in English | MEDLINE | ID: mdl-31721386

ABSTRACT

OBJECTIVES: Smooth pursuit eye movement deficits are an established psychosis biomarker across schizophrenia, schizoaffective and psychotic bipolar disorder (BPwP). Whether smooth pursuit deficits are also seen in bipolar disorder without psychosis (BPwoP) is unclear. Here we present data from the Psychosis and Affective Research Domains and Intermediate Phenotypes (PARDIP) study comparing bipolar patients with and without psychotic features. METHODS: Probands with BPwP (N = 49) and BPwoP (N = 36), and healthy controls (HC, N = 71) performed eye tracking tasks designed to evaluate specific sensorimotor components relevant for pursuit initiation and pursuit maintenance. RESULTS: While BPwoP did not differ from either BPwP or HC on initial eye acceleration, they performed significantly better than BPwP on early (P < .01) and predictive (P = .02) pursuit maintenance measures, both without differing from HC. BPwP were impaired compared to HC on initial eye acceleration, and on early and predictive pursuit maintenance (all P < .01). In contrast to the three pursuit measures, BPwP and BPwoP were both impaired on general neurocognitive assessments in relation to HC (both P < .001), without a significant difference between the two bipolar patient groups. CONCLUSIONS: Our findings support the model that impairments of sensorimotor and cognitive processing as required for early and later predictive smooth pursuit maintenance are relatively specific to those bipolar patients with a history of psychosis. This suggests that the neural circuitry for developing feed-forward predictive models for accurate pursuit maintenance is associated with the occurrence of psychotic features in bipolar patients. In contrast, generalized neuropsychological impairments did not differentiate the two bipolar patient groups.


Subject(s)
Bipolar Disorder/physiopathology , Bipolar Disorder/psychology , Psychotic Disorders/physiopathology , Pursuit, Smooth/physiology , Adult , Biomarkers , Bipolar Disorder/diagnosis , Female , Humans , Male , Middle Aged , Phenotype , Schizophrenia
13.
Cereb Cortex ; 29(11): 4463-4487, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31157363

ABSTRACT

Distributed neural dysconnectivity is considered a hallmark feature of schizophrenia (SCZ), yet a tension exists between studies pinpointing focal disruptions versus those implicating brain-wide disturbances. The cerebellum and the striatum communicate reciprocally with the thalamus and cortex through monosynaptic and polysynaptic connections, forming cortico-striatal-thalamic-cerebellar (CSTC) functional pathways that may be sensitive to brain-wide dysconnectivity in SCZ. It remains unknown if the same pattern of alterations persists across CSTC systems, or if specific alterations exist along key functional elements of these networks. We characterized connectivity along major functional CSTC subdivisions using resting-state functional magnetic resonance imaging in 159 chronic patients and 162 matched controls. Associative CSTC subdivisions revealed consistent brain-wide bi-directional alterations in patients, marked by hyper-connectivity with sensory-motor cortices and hypo-connectivity with association cortex. Focusing on the cerebellar and striatal components, we validate the effects using data-driven k-means clustering of voxel-wise dysconnectivity and support vector machine classifiers. We replicate these results in an independent sample of 202 controls and 145 patients, additionally demonstrating that these neural effects relate to cognitive performance across subjects. Taken together, these results from complementary approaches implicate a consistent motif of brain-wide alterations in CSTC systems in SCZ, calling into question accounts of exclusively focal functional disturbances.


Subject(s)
Brain/physiopathology , Neural Pathways/physiopathology , Schizophrenia/physiopathology , Adult , Brain Mapping , Cerebellum/physiopathology , Cerebral Cortex/physiopathology , Corpus Striatum/physiopathology , Female , Humans , Magnetic Resonance Imaging , Male , Thalamus/physiopathology
14.
Tech Coloproctol ; 24(9): 971-975, 2020 09.
Article in English | MEDLINE | ID: mdl-32601752

ABSTRACT

BACKGROUND: The exact pathophysiology of diverticulitis is not well understood and may be multifactorial. Recent studies highlight dysbiosis as a plausible mechanism. FMT is a safe strategy to restore commensal colon microbiota and has proven to be an effective treatment for gastrointestinal dysbiosis such as Clostridium difficile infection (CDI). There have been no studies reporting the treatment of diverticulitis with FMT. Our aim was to describe the novel application of fecal microbiota transplantation (FMT) for the treatment of recurrent diverticulitis. CASE: We report a case of a 63-year-old woman who had a 13-year history of multiply recurrent and multifocal diverticulitis previously treated with numerous short courses of intravenous and oral antibiotics for acute flares, two segmental colon resections, and suppressive antibiotic therapy for recurrent disease. Secondary to multiple courses of antibiotics , the patient developed CDI. She was treated with a single round of FMT and subsequently stopped all antibiotics at the time of FMT. RESULTS: In 20 months of follow-up, the patient has had no further recurrence of diverticulitis or CDI. CONCLUSIONS: FMT could prove to be a novel therapy for refractory diverticulitis but requires further investigation.


Subject(s)
Clostridioides difficile , Clostridium Infections , Diverticulitis , Fecal Microbiota Transplantation , Feces , Female , Humans , Middle Aged , Recurrence , Treatment Outcome
15.
J Vac Sci Technol A ; 38(6)2020 Dec.
Article in English | MEDLINE | ID: mdl-34446983

ABSTRACT

Carbon contamination induced by ultraviolet (UV) radiation affects precision optics in applications as diverse as semiconductor lithography and satellite observations of the Sun. Our previous experiments have shown that low-intensity UV-induced surface contamination depends quasi-logarithmically on the partial pressure of the organic contaminant due to the poly-dispersive nature of the surface-adsorbate system. This complex dependence presents difficulties because, without a physically motivated model, it cannot be extrapolated to low pressures. We present measurements and a model of carbon growth induced by UV exposure in the presence of tetradecane vapor. The model, which includes a coverage-dependent adsorption energy, describes the measurements over four orders of magnitude in pressure, and we expect that it can be extrapolated to the lower pressures of interest to the extreme ultraviolet (EUV) lithography and solar astronomy communities. Our experience with other contaminants leads us to expect that other organic contaminants will behave similar to tetradecane. The results also provide insights into the kinetics governing coverage isotherms at extremely low partial pressures.

16.
Foot Ankle Surg ; 26(7): 797-800, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31699639

ABSTRACT

BACKGROUND: Motocross is a recreational and competitive sport involving motorcycle racing on off-road circuits. Participants have enjoyed their sport worldwide for over 100 years. In the United Kingdom, there are over 200 clubs, with over 900 events annually. Unfortunately, little evidence exists on motocross injuries and their prevention. The aim of this study is to report and to quantify the different foot and ankle injuries observed in motocross. METHODS: Data was collected prospectively between August 2010 to August 2015 at our regional trauma unit, regardless of whether the sport was performed competitively or recreationally. RESULTS: Foot and ankle related injuries were identified in 210 patients (age range 4-78 years), with the majority being male participants (189, 90%). The majority of injuries occurred within the 21- to 30-year-old-age group. Most injuries were sustained around the start of the motocross season, in early spring and the summer months. A total of 76 patients (36%) required operative intervention. The most common injury was ankle fracture (49, 23%), followed by ankle sprain (44, 21%). CONCLUSION: This is the first epidemiological study in the United Kingdom documenting foot and ankle injuries in motocross. The frequency and severity of motocross-related injuries is presented. This may serve to provide recommendations and guidelines in the governing bodies of this sport. The surge in motocross popularity is correlates with an increase in injuries and inevitably the resources required to treat them. LEVEL OF EVIDENCE: Prospective descriptive epidemiological study. Level 1.


Subject(s)
Ankle Injuries/epidemiology , Athletic Injuries/epidemiology , Motorcycles , Trauma Centers/statistics & numerical data , Adult , Ankle Injuries/etiology , Epidemiologic Studies , Female , Foot Injuries/epidemiology , Foot Injuries/etiology , Humans , Incidence , Male , Prospective Studies , United Kingdom/epidemiology , Young Adult
18.
Int J Neurosci ; 128(12): 1135-1142, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29883231

ABSTRACT

Research suggests that increasing delays in stimulus read-out can trigger declines in serial order recall accuracy due to increases in cognitive demand imposed by the delay; however, the exact neural mechanisms associated with this decline are unclear. Changes in neural resource allocation present as the ideal target and can easily be monitored by examining changes in the amplitude of an ERP component known as the P3. Changes in P3 amplitude secondary to exogenous pacing of stimulus read-out via increased target-to-target intervals (TTIs) during recall could reflect decreased neural resource allocation due to increased cognitive demand. This shift in resource allocation could result in working memory storage decay and the declines in serial order accuracy described by prior research. In order to examine this potential effect, participants were administered a spatial serial order processing task, with the recall series consisting of a series of correct ('match') or incorrect ('non-match' or 'oddball') stimuli. Moreover, the recall series included either a brief (500 ms) or extended (2000 ms) delay between stimuli. Results were significant for the presence of a P3 response to non-match stimuli for both experimental conditions, and attenuation of P3 amplitude secondary to the increase in TTI. These findings suggest that extending the delay between target recognition could increase cognitive demand and trigger a decrease in neural resource allocation that results in a decay of working memory stores.


Subject(s)
Brain/physiology , Event-Related Potentials, P300 , Memory, Short-Term/physiology , Mental Recall/physiology , Spatial Processing/physiology , Adult , Electroencephalography , Humans , Pattern Recognition, Visual/physiology , Photic Stimulation , Young Adult
19.
N Engl J Med ; 371(6): 507-518, 2014 08 07.
Article in English | MEDLINE | ID: mdl-25029335

ABSTRACT

BACKGROUND: The study of autoinflammatory diseases has uncovered mechanisms underlying cytokine dysregulation and inflammation. METHODS: We analyzed the DNA of an index patient with early-onset systemic inflammation, cutaneous vasculopathy, and pulmonary inflammation. We sequenced a candidate gene, TMEM173, encoding the stimulator of interferon genes (STING), in this patient and in five unrelated children with similar clinical phenotypes. Four children were evaluated clinically and immunologically. With the STING ligand cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), we stimulated peripheral-blood mononuclear cells and fibroblasts from patients and controls, as well as commercially obtained endothelial cells, and then assayed transcription of IFNB1, the gene encoding interferon-ß, in the stimulated cells. We analyzed IFNB1 reporter levels in HEK293T cells cotransfected with mutant or nonmutant STING constructs. Mutant STING leads to increased phosphorylation of signal transducer and activator of transcription 1 (STAT1), so we tested the effect of Janus kinase (JAK) inhibitors on STAT1 phosphorylation in lymphocytes from the affected children and controls. RESULTS: We identified three mutations in exon 5 of TMEM173 in the six patients. Elevated transcription of IFNB1 and other gene targets of STING in peripheral-blood mononuclear cells from the patients indicated constitutive activation of the pathway that cannot be further up-regulated with stimulation. On stimulation with cGAMP, fibroblasts from the patients showed increased transcription of IFNB1 but not of the genes encoding interleukin-1 (IL1), interleukin-6 (IL6), or tumor necrosis factor (TNF). HEK293T cells transfected with mutant constructs show elevated IFNB1 reporter levels. STING is expressed in endothelial cells, and exposure of these cells to cGAMP resulted in endothelial activation and apoptosis. Constitutive up-regulation of phosphorylated STAT1 in patients' lymphocytes was reduced by JAK inhibitors. CONCLUSIONS: STING-associated vasculopathy with onset in infancy (SAVI) is an autoinflammatory disease caused by gain-of-function mutations in TMEM173. (Funded by the Intramural Research Program of the National Institute of Arthritis and Musculoskeletal and Skin Diseases; ClinicalTrials.gov number, NCT00059748.).


Subject(s)
Inflammation/genetics , Membrane Proteins/genetics , Mutation , Skin Diseases, Vascular/genetics , Age of Onset , Cytokines/genetics , Cytokines/metabolism , Female , Fibroblasts/metabolism , Genes, Dominant , Humans , Infant , Infant, Newborn , Inflammation/metabolism , Interferon-gamma/genetics , Interferon-gamma/metabolism , Janus Kinases/antagonists & inhibitors , Lung Diseases/genetics , Male , Pedigree , Phosphorylation , STAT1 Transcription Factor/metabolism , Sequence Analysis, DNA , Skin Diseases, Vascular/metabolism , Syndrome , Transcription, Genetic , Up-Regulation
20.
Epidemiol Infect ; 145(15): 3106-3114, 2017 11.
Article in English | MEDLINE | ID: mdl-29061208

ABSTRACT

The Middle East respiratory syndrome coronavirus (MERS-CoV) is caused by a novel coronavirus discovered in 2012. Since then, 1806 cases, including 564 deaths, have been reported by the Kingdom of Saudi Arabia (KSA) and affected countries as of 1 June 2016. Previous literature attributed increases in MERS-CoV transmission to camel breeding season as camels are likely the reservoir for the virus. However, this literature review and subsequent analysis indicate a lack of seasonality. A retrospective, epidemiological cluster analysis was conducted to investigate increases in MERS-CoV transmission and reports of household and nosocomial clusters. Cases were verified and associations between cases were substantiated through an extensive literature review and the Armed Forces Health Surveillance Branch's Tiered Source Classification System. A total of 51 clusters were identified, primarily nosocomial (80·4%) and most occurred in KSA (45·1%). Clusters corresponded temporally with the majority of periods of greatest incidence, suggesting a strong correlation between nosocomial transmission and notable increases in cases.


Subject(s)
Coronavirus Infections/epidemiology , Epidemics/statistics & numerical data , Middle East Respiratory Syndrome Coronavirus , Cluster Analysis , Coronavirus Infections/transmission , Coronavirus Infections/virology , Cross Infection/epidemiology , Female , Humans , Male , Middle Aged , Retrospective Studies , Saudi Arabia/epidemiology , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL