Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 176(1-2): 127-143.e24, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30633903

ABSTRACT

DNA damage provokes mutations and cancer and results from external carcinogens or endogenous cellular processes. However, the intrinsic instigators of endogenous DNA damage are poorly understood. Here, we identify proteins that promote endogenous DNA damage when overproduced: the DNA "damage-up" proteins (DDPs). We discover a large network of DDPs in Escherichia coli and deconvolute them into six function clusters, demonstrating DDP mechanisms in three: reactive oxygen increase by transmembrane transporters, chromosome loss by replisome binding, and replication stalling by transcription factors. Their 284 human homologs are over-represented among known cancer drivers, and their RNAs in tumors predict heavy mutagenesis and a poor prognosis. Half of the tested human homologs promote DNA damage and mutation when overproduced in human cells, with DNA damage-elevating mechanisms like those in E. coli. Our work identifies networks of DDPs that provoke endogenous DNA damage and may reveal DNA damage-associated functions of many human known and newly implicated cancer-promoting proteins.


Subject(s)
DNA Damage/genetics , DNA Damage/physiology , DNA Repair/physiology , Bacterial Proteins/metabolism , Chromosomal Instability/physiology , DNA Replication/physiology , DNA-Binding Proteins/metabolism , Escherichia coli/metabolism , Genomic Instability , Humans , Membrane Transport Proteins/physiology , Mutagenesis , Mutation , Transcription Factors/metabolism
2.
Cell ; 144(5): 703-18, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21376233

ABSTRACT

Among breast cancers, triple-negative breast cancer (TNBC) is the most poorly understood and is refractory to current targeted therapies. Using a genetic screen, we identify the PTPN12 tyrosine phosphatase as a tumor suppressor in TNBC. PTPN12 potently suppresses mammary epithelial cell proliferation and transformation. PTPN12 is frequently compromised in human TNBCs, and we identify an upstream tumor-suppressor network that posttranscriptionally controls PTPN12. PTPN12 suppresses transformation by interacting with and inhibiting multiple oncogenic tyrosine kinases, including HER2 and EGFR. The tumorigenic and metastatic potential of PTPN12-deficient TNBC cells is severely impaired upon restoration of PTPN12 function or combined inhibition of PTPN12-regulated tyrosine kinases, suggesting that TNBCs are dependent on the proto-oncogenic tyrosine kinases constrained by PTPN12. Collectively, these data identify PTPN12 as a commonly inactivated tumor suppressor and provide a rationale for combinatorially targeting proto-oncogenic tyrosine kinases in TNBC and other cancers based on their profile of tyrosine-phosphatase activity.


Subject(s)
Breast Neoplasms/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 12/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 12/metabolism , Tumor Suppressor Proteins/metabolism , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Transformation, Neoplastic , ErbB Receptors/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , MAP Kinase Signaling System , MicroRNAs/metabolism , Mutation , Neoplasm Metastasis , Protein Processing, Post-Translational
3.
Lancet Oncol ; 25(4): 488-500, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38547893

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma is characterised by low immunogenicity and an immunosuppressive tumour microenvironment. LOAd703, an oncolytic adenovirus with transgenes encoding TMZ-CD40L and 4-1BBL, lyses cancer cells selectively, activates cytotoxic T cells, and induces tumour regression in preclinical models. The aim of this study was to evaluate the safety and feasibility of combining LOAd703 with chemotherapy for advanced pancreatic ductal adenocarcinoma. METHODS: LOKON001 was a non-randomised, phase 1/2 study conducted at the Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA, and consisted of two arms conducted sequentially; the results of arm 1 are presented here. In arm 1, patients 18 years or older with previously treated or treatment-naive unresectable or metastatic pancreatic ductal adenocarcinoma were treated with standard 28-day cycles of intravenous nab-paclitaxel 125 mg/m2 plus gemcitabine 1000 mg/m2 (up to 12 cycles) and intratumoural injections of LOAd703 every 2 weeks. Patients were assigned using Bayesian optimal interval design to receive 500 µL of LOAd703 at 5 × 1010 (dose 1), 1 × 1011 (dose 2), or 5 × 1011 (dose 3) viral particles per injection, injected endoscopically or percutaneously into the pancreatic tumour or a metastasis for six injections. The primary endpoints were safety and treatment-emergent immune response in patients who received at least one dose of LOAd703, and antitumour activity was a secondary endpoint. This study was registered with ClinicalTrials.gov, NCT02705196, arm 2 is ongoing and open to new participants. FINDINGS: Between Dec 2, 2016, and Oct 17, 2019, 23 patients were assessed for eligibility, leading to 22 patients being enrolled. One patient withdrew consent, resulting in 21 patients (13 [62%] men and eight [38%] women) assigned to a dose group (three to dose 1, four to dose 2, and 14 to dose 3). 21 patients were evaluable for safety. Median follow-up time was 6 months (IQR 4-10), and data cutoff was Jan 5, 2023. The most common treatment-emergent adverse events overall were anaemia (96 [8%] of 1237 events), lymphopenia (86 [7%] events), hyperglycaemia (70 [6%] events), leukopenia (63 [5%] events), hypertension (62 [5%] events), and hypoalbuminaemia (61 [5%] events). The most common adverse events attributed to LOAd703 were fever (14 [67%] of 21 patients), fatigue (eight [38%]), chills (seven [33%]), and elevated liver enzymes (alanine aminotransferase in five [24%], alkaline phosphatase in four [19%], and aspartate aminotransferase in four [19%]), all of which were grade 1-2, except for a transient grade 3 aminotransferase elevation occurring at dose 3. A maximum tolerated dose was not reached, thereby establishing dose 3 as the highest-evaluated safe dose when combined with nab-paclitaxel plus gemcitabine. Proportions of CD8+ effector memory cells and adenovirus-specific T cells increased after LOAd703 injections in 15 (94%) of 16 patients for whom T-cell assays could be performed. Eight (44%, 95% CI 25-66) of 18 patients evaluable for activity had an objective response. INTERPRETATION: Combining LOAd703 with nab-paclitaxel plus gemcitabine in patients with advanced pancreatic ductal adenocarcinoma was feasible and safe. To build upon this novel chemoimmunotherapeutic approach, arm 2 of LOKON001, which combines LOAd703, nab-paclitaxel plus gemcitabine, and atezolizumab, is ongoing. FUNDING: Lokon Pharma, the Swedish Cancer Society, and the Swedish Research Council.


Subject(s)
Adenocarcinoma , Anemia , Oncolytic Viruses , Pancreatic Neoplasms , Thrombocytopenia , Male , Humans , Female , Gemcitabine , Oncolytic Viruses/genetics , Bayes Theorem , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/drug therapy , Paclitaxel , Anemia/chemically induced , Thrombocytopenia/chemically induced , Adenocarcinoma/therapy , Adenocarcinoma/drug therapy , Albumins , Genetic Therapy/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Tumor Microenvironment
4.
Breast Cancer Res ; 26(1): 23, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38317231

ABSTRACT

BACKGROUND: The most aggressive form of breast cancer is triple-negative breast cancer (TNBC), which lacks expression of the estrogen receptor (ER) and progesterone receptor (PR), and does not have overexpression of the human epidermal growth factor receptor 2 (HER2). Treatment options for women with TNBC tumors are limited, unlike those with ER-positive tumors that can be treated with hormone therapy, or those with HER2-positive tumors that can be treated with anti-HER2 therapy. Therefore, we have sought to identify novel targeted therapies for TNBC. In this study, we investigated the potential of a novel phosphatase, NUDT5, as a potential therapeutic target for TNBC. METHODS: The mRNA expression levels of NUDT5 in breast cancers were investigated using TCGA and METABRIC (Curtis) datasets. NUDT5 ablation was achieved through siRNA targeting and NUDT5 inhibition with the small molecule inhibitor TH5427. Xenograft TNBC animal models were employed to assess the effect of NUDT5 inhibition on in vivo tumor growth. Proliferation, death, and DNA replication assays were conducted to investigate the cellular biological effects of NUDT5 loss or inhibition. The accumulation of 8-oxo-guanine (8-oxoG) and the induction of γH2AX after NUDT5 loss was determined by immunofluorescence staining. The impact of NUDT5 loss on replication fork was assessed by measuring DNA fiber length. RESULTS: In this study, we demonstrated the significant role of an overexpressed phosphatase, NUDT5, in regulating oxidative DNA damage in TNBCs. Our findings indicate that loss of NUDT5 results in suppressed growth of TNBC both in vitro and in vivo. This growth inhibition is not attributed to cell death, but rather to the suppression of proliferation. The loss or inhibition of NUDT5 led to an increase in the oxidative DNA lesion 8-oxoG, and triggered the DNA damage response in the nucleus. The interference with DNA replication ultimately inhibited proliferation. CONCLUSIONS: NUDT5 plays a crucial role in preventing oxidative DNA damage in TNBC cells. The loss or inhibition of NUDT5 significantly suppresses the growth of TNBCs. These biological and mechanistic studies provide the groundwork for future research and the potential development of NUDT5 inhibitors as a promising therapeutic approach for TNBC patients.


Subject(s)
Pyrophosphatases , Triple Negative Breast Neoplasms , Animals , Female , Humans , Cell Line, Tumor , Cell Proliferation , Pyrophosphatases/genetics , Receptors, Estrogen/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
5.
J Pathol ; 256(2): 186-201, 2022 02.
Article in English | MEDLINE | ID: mdl-34714554

ABSTRACT

Due to widespread adoption of screening mammography, there has been a significant increase in new diagnoses of ductal carcinoma in situ (DCIS). However, DCIS prognosis remains unclear. To address this gap, we developed an in vivo model, Mouse-INtraDuctal (MIND), in which patient-derived DCIS epithelial cells are injected intraductally and allowed to progress naturally in mice. Similar to human DCIS, the cancer cells formed in situ lesions inside the mouse mammary ducts and mimicked all histologic subtypes including micropapillary, papillary, cribriform, solid, and comedo. Among 37 patient samples injected into 202 xenografts, at median duration of 9 months, 20 samples (54%) injected into 95 xenografts showed in vivo invasive progression, while 17 (46%) samples injected into 107 xenografts remained non-invasive. Among the 20 samples that showed invasive progression, nine samples injected into 54 xenografts exhibited a mixed pattern in which some xenografts showed invasive progression while others remained non-invasive. Among the clinically relevant biomarkers, only elevated progesterone receptor expression in patient DCIS and the extent of in vivo growth in xenografts predicted an invasive outcome. The Tempus XT assay was used on 16 patient DCIS formalin-fixed, paraffin-embedded sections including eight DCISs that showed invasive progression, five DCISs that remained non-invasive, and three DCISs that showed a mixed pattern in the xenografts. Analysis of the frequency of cancer-related pathogenic mutations among the groups showed no significant differences (KW: p > 0.05). There were also no differences in the frequency of high, moderate, or low severity mutations (KW; p > 0.05). These results suggest that genetic changes in the DCIS are not the primary driver for the development of invasive disease. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Breast Neoplasms/pathology , Carcinoma, Intraductal, Noninfiltrating/pathology , Epithelial Cells/pathology , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/metabolism , Cell Movement , Cell Proliferation , Disease Progression , Epithelial Cells/metabolism , Epithelial Cells/transplantation , Female , Heterografts , Humans , Mice, Inbred NOD , Mice, SCID , Mutation , Neoplasm Invasiveness , Neoplasm Transplantation , Receptors, Progesterone/metabolism , Time Factors
6.
Gynecol Oncol ; 165(3): 642-649, 2022 06.
Article in English | MEDLINE | ID: mdl-35410732

ABSTRACT

OBJECTIVE: To optimize the use of confirmatory endoscopic exams (cystoscopy/proctoscopy) in the staging of locally advanced cervical cancer (LACC), the present study evaluates the predictive value of radiological exams (CT and MRI) to detect bladder/rectum invasion. METHODS: A systematic search of databases (PubMed and EMBASE) was performed (CRD42021270329). The inclusion criteria were: a) cervix cancer diagnosis; b) staging CT and/or MRI (index test); c) staging cystoscopy and/or proctoscopy (standard test); and d) numbers of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) provided. A random-effects bivariate meta-analysis of positive predictive value (PPV) and negative predictive value (NPV) was performed with moderator analyses by imaging modality (CT and MRI) and prevalence. RESULTS: Nineteen studies met the inclusion criteria, totaling 3480 and 1641 patients for bladder and rectum analyses, respectively. For bladder invasion (prevalence ranged from 0.9% to 34.5%), the overall PPV was 45% (95% confidence interval, 33%-57%, based on 19 studies). Per subgroup, the PPV was 31% for MRI/prevalence ≤6%, 33% for CT/prevalence ≤6%, and 69% for CT/prevalence >6%. For rectal invasion (prevalence ranged from 0.4% to 20.0%), the overall PPV was 30% (95% confidence interval, 17%-47%, based on 8 studies). Per subgroup, the PPV was 36% for MRI/prevalence ≤1%, 17% for MRI/prevalence >1%, and 38% for CT/prevalence >1%. The overall NPV for bladder invasion and rectal invasion were 98% (95% confidence interval, 97%-99%) and 100% (95% confidence interval, 99%-100%), respectively. Considering prevalence and radiological modality, the point estimate of NPV varied from 95% to 100% for bladder invasion and from 99% to 100% for rectum invasion. CONCLUSIONS: Due to low PPV (<50%) of radiological staging, endoscopic exams may be necessary to correctly assess radiological stage IVA LACC. However, they are not necessary after negative radiological exam (NPV ≥95%).


Subject(s)
Uterine Cervical Neoplasms , Algorithms , Cystoscopy , Female , Humans , Magnetic Resonance Imaging/methods , Neoplasm Staging , Radiography , Uterine Cervical Neoplasms/pathology
7.
Pediatr Blood Cancer ; 69(10): e29812, 2022 10.
Article in English | MEDLINE | ID: mdl-35726868

ABSTRACT

Current therapies for relapsed/refractory (R/R) pediatric myeloid neoplasms are inadequately effective. Real-world data (RWD) can improve care by augmenting traditional studies and include individuals not eligible for clinical trials. The Therapeutic Advances in Childhood Leukemia and Lymphoma (TACL) consortium recently completed T2016-003, a phase 1 study of decitabine, vorinostat, fludarabine, cytarabine, and granulocyte colony-stimulating factor (G-CSF) in R/R acute myeloid leukemia (AML), which added epigenetic drugs to a cytotoxic backbone. We report results of RWD from six centers that treated 28 pediatric patients (26 with AML, two with other myeloid neoplasms) identically to the TACL study but who were not enrolled. This allowed unique analyses and the ability to compare data with the 35 TACL study patients. The overall response rate (ORR) (complete response [CR] plus CR with incomplete count recovery) among 26 RWD evaluable patients was 65%. The ORR of 13 patients with relapsed AML with epigenetic alterations was 69% (T2016-003 + RWD: 68%, n = 25), of eight patients with refractory AML was 38% (T2016-003 + RWD: 41%, n = 17) and of five patients with therapy-related AML (t-AML) was 80% (T2016-003 + RWD: 75%, n = 8). The mean number of Grade 3/4 toxicities experienced by the T2016-003-eligible RWD population (n = 22) (one per patient-cycle) was not meaningfully different than those (n = 6) who would have been TACL study-ineligible secondary to comorbidities (two per patient-cycle). Overall, this therapy was well tolerated and effective in pediatric patients with R/R myeloid neoplasms, particularly those with epigenetic alterations, t-AML, and refractory disease.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Leukemia, Myeloid, Acute , Neoplasm Recurrence, Local , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Child , Cytarabine , Decitabine/therapeutic use , Granulocyte Colony-Stimulating Factor , Humans , Leukemia, Myeloid, Acute/drug therapy , Neoplasm Recurrence, Local/drug therapy , Vidarabine , Vorinostat/therapeutic use
9.
Br J Cancer ; 120(3): 331-339, 2019 02.
Article in English | MEDLINE | ID: mdl-30555156

ABSTRACT

BACKGROUND: The oestrogen receptor (ER) is an important therapeutic target in ER-positive (ER+) breast cancer. The selective ER degrader (SERD), fulvestrant, is effective in patients with metastatic breast cancer, but its intramuscular route of administration and low bioavailability are major clinical limitations. METHODS: Here, we studied the pharmacology of a new oral SERD, AZD9496, in a panel of in vitro and in vivo endocrine-sensitive and -resistant breast cancer models. RESULTS: In endocrine-sensitive models, AZD9496 inhibited cell growth and blocked ER activity in the presence or absence of oestrogen. In vivo, in the presence of oestrogen, short-term AZD9496 treatment, like fulvestrant, resulted in tumour growth inhibition and reduced expression of ER-dependent genes. AZD9496 inhibited cell growth in oestrogen deprivation-resistant and tamoxifen-resistant cell lines and xenograft models that retain ER expression. AZD9496 effectively reduced ER levels and ER-induced transcription. Expression analysis of short-term treated tumours showed that AZD9496 potently inhibited classic oestrogen-induced gene transcription, while simultaneously increasing expression of genes negatively regulated by ER, including genes potentially involved in escape pathways of endocrine resistance. CONCLUSIONS: These data suggest that AZD9496 is a potent anti-oestrogen that antagonises and degrades ER with anti-tumour activity in both endocrine-sensitive and endocrine-resistant models.


Subject(s)
Breast Neoplasms/drug therapy , Cinnamates/administration & dosage , Indoles/administration & dosage , Neoplasms, Hormone-Dependent/drug therapy , Receptors, Estrogen/antagonists & inhibitors , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Estradiol/genetics , Estradiol/metabolism , Estrogens/genetics , Estrogens/metabolism , Female , Fulvestrant/administration & dosage , Heterografts , Humans , MCF-7 Cells , Mice , Neoplasms, Hormone-Dependent/genetics , Receptors, Estrogen/genetics , Tamoxifen/administration & dosage
10.
Biostatistics ; 19(1): 71-86, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28541380

ABSTRACT

Identification of clinically relevant tumor subtypes and omics signatures is an important task in cancer translational research for precision medicine. Large-scale genomic profiling studies such as The Cancer Genome Atlas (TCGA) Research Network have generated vast amounts of genomic, transcriptomic, epigenomic, and proteomic data. While these studies have provided great resources for researchers to discover clinically relevant tumor subtypes and driver molecular alterations, there are few computationally efficient methods and tools for integrative clustering analysis of these multi-type omics data. Therefore, the aim of this article is to develop a fully Bayesian latent variable method (called iClusterBayes) that can jointly model omics data of continuous and discrete data types for identification of tumor subtypes and relevant omics features. Specifically, the proposed method uses a few latent variables to capture the inherent structure of multiple omics data sets to achieve joint dimension reduction. As a result, the tumor samples can be clustered in the latent variable space and relevant omics features that drive the sample clustering are identified through Bayesian variable selection. This method significantly improve on the existing integrative clustering method iClusterPlus in terms of statistical inference and computational speed. By analyzing TCGA and simulated data sets, we demonstrate the excellent performance of the proposed method in revealing clinically meaningful tumor subtypes and driver omics features.


Subject(s)
Bayes Theorem , Genomics/methods , Models, Statistical , Neoplasms/diagnosis , Cluster Analysis , Humans
11.
Breast Cancer Res Treat ; 177(2): 427-435, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31218477

ABSTRACT

PURPOSE: Half of hormone receptor-positive (HR+) breast cancer patients will develop joint pain, termed aromatase inhibitor-induced arthralgia (AIA), while taking aromatase inhibitor therapy. Though there is no universally accepted effective treatment for AIA, there has been some evidence to support high-dose vitamin D as a treatment. METHODS: We randomized post-menopausal women who were beginning adjuvant AI therapy to receive standard-dose vitamin D3 (800 IU daily for 52 weeks), or high-dose vitamin D3 (50,000 IU weekly for 12 weeks, followed by 2000 IU daily for 40 weeks). The primary end point was development of AIA. The trial was designed to enroll 184 patients. This futility analysis was performed after 93 patients were enrolled. RESULTS: The high-dose vitamin D regimen was effective in raising serum vitamin D levels, but there was no significant difference in development of AIA between the two arms. In the high-dose arm, 25 patients (54%) developed AIA, compared to 27 patients (57%) in the standard-dose arm. The planned futility analysis was positive; thus, the study was terminated. Neither baseline vitamin D nor 12-week vitamin D level was predictive of AIA development. CONCLUSION: Although vitamin D levels were increased in the high-dose arm, there was no significant signal for benefit of high-dose vitamin D supplementation for AIA prevention in this unblinded trial. This study, along with several others, implies that vitamin D likely does not play a significant role in AIA for the majority of patients.


Subject(s)
Antineoplastic Agents, Hormonal/adverse effects , Aromatase Inhibitors/adverse effects , Arthralgia/etiology , Arthralgia/prevention & control , Breast Neoplasms/complications , Cholecalciferol/administration & dosage , Adult , Aged , Aged, 80 and over , Antineoplastic Agents, Hormonal/therapeutic use , Aromatase Inhibitors/therapeutic use , Arthralgia/diagnosis , Breast Neoplasms/diagnosis , Breast Neoplasms/drug therapy , Dietary Supplements , Female , Humans , Medication Adherence , Middle Aged , Neoplasm Staging , Risk Factors , Treatment Outcome
13.
Proc Natl Acad Sci U S A ; 113(43): E6600-E6609, 2016 10 25.
Article in English | MEDLINE | ID: mdl-27791031

ABSTRACT

Forkhead box protein A1 (FOXA1) is a pioneer factor of estrogen receptor α (ER)-chromatin binding and function, yet its aberration in endocrine-resistant (Endo-R) breast cancer is unknown. Here, we report preclinical evidence for a role of FOXA1 in Endo-R breast cancer as well as evidence for its clinical significance. FOXA1 is gene-amplified and/or overexpressed in Endo-R derivatives of several breast cancer cell line models. Induced FOXA1 triggers oncogenic gene signatures and proteomic profiles highly associated with endocrine resistance. Integrated omics data reveal IL8 as one of the most perturbed genes regulated by FOXA1 and ER transcriptional reprogramming in Endo-R cells. IL-8 knockdown inhibits tamoxifen-resistant cell growth and invasion and partially attenuates the effect of overexpressed FOXA1. Our study highlights a role of FOXA1 via IL-8 signaling as a potential therapeutic target in FOXA1-overexpressing ER-positive tumors.


Subject(s)
Breast Neoplasms/genetics , Estrogen Receptor alpha/genetics , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 3-alpha/genetics , Interleukin-8/genetics , Transcriptome , Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/diagnosis , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Estrogen Receptor alpha/metabolism , Female , Hepatocyte Nuclear Factor 3-alpha/metabolism , Humans , Interleukin-8/antagonists & inhibitors , Interleukin-8/metabolism , Prognosis , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Survival Analysis , Tamoxifen/therapeutic use
14.
Breast Cancer Res Treat ; 167(3): 731-740, 2018 02.
Article in English | MEDLINE | ID: mdl-29110152

ABSTRACT

PURPOSE: Aberrant activation of the PI3K pathway has been implicated in resistance to HER2-targeted therapy, but results of clinical trials are confounded by the co-administration of chemotherapy. We investigated the effect of perturbations of this pathway in breast cancers from patients treated with neoadjuvant anti-HER2-targeted therapy without chemotherapy. PATIENTS AND METHODS: Baseline tumor samples from patients with HER2-positive breast cancer enrolled in TBCRC006 (NCT00548184), a 12-week neoadjuvant clinical trial with lapatinib plus trastuzumab [plus endocrine therapy for estrogen receptor (ER)-positive tumors], were assessed for PTEN status by immunohistochemistry and PIK3CA mutations by sequencing. Results were correlated with pathologic complete response (pCR). RESULTS: Of 64 evaluable patients, PTEN immunohistochemistry and PIK3CA mutation analysis were performed for 59 and 46 patients, respectively. PTEN status (dichotomized by H-score median) was correlated with pCR (32% in high PTEN vs. 9% in low PTEN, p = 0.04). PIK3CA mutations were identified in 14/46 tumors at baseline (30%) and did not correlate with ER or PTEN status. One patient whose tumor harbored a PIK3CA mutation achieved pCR (p = 0.14). When considered together (43 cases), 1/25 cases (4%) with a PIK3CA mutation and/or low PTEN expression levels had a pCR compared to 7/18 cases (39%) with wild-type PI3KCA and high PTEN expression levels (p = 0.006). CONCLUSION: PI3K pathway activation is associated with resistance to lapatinib and trastuzumab in breast cancers, without chemotherapy. Further studies are warranted to investigate how to use these biomarkers to identify upfront patients who may respond to anti-HER2 alone, without chemotherapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Breast Neoplasms/drug therapy , Class I Phosphatidylinositol 3-Kinases/genetics , PTEN Phosphohydrolase/genetics , Adult , Aged , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lapatinib , Middle Aged , Mutation , Neoadjuvant Therapy/adverse effects , Quinazolines/administration & dosage , Quinazolines/adverse effects , Receptor, ErbB-2/genetics , Trastuzumab/administration & dosage , Trastuzumab/adverse effects
15.
Pediatr Hematol Oncol ; 35(4): 257-267, 2018 May.
Article in English | MEDLINE | ID: mdl-30537887

ABSTRACT

BACKGROUND: Craniospinal irradiation (CSI) often results in endocrine deficiencies in children with medulloblastoma due to irradiation of the hypothalamic-pituitary axis (HPA) or the thyroid gland. CSI with Proton radiation therapy (PRT) has the potential to decrease the risk of hypothyroidism by reduction in radiation dose to these organs. This study compares the risk for hypothyroidism in patients with medulloblastoma treated with Photon radiation therapy (XRT) or PRT. METHODS: The records of patients with medulloblastoma diagnosed at a single institution between 1997 and 2014 who received CSI were, retrospectively, reviewed. Ninety-five patients (54 XRT and 41 PRT) who had baseline and yearly follow-up thyroid studies were included. We used interval censored Cox regression to calculate hazard ratios of developing any, primary, and central hypothyroidism. RESULTS: With a median time to last thyroid studies post radiation of 3.8 years in PRT and 9.6 years in XRT, 33/95 (34.7%) patients developed hypothyroidism (median time to hypothyroidism: 2.6 years). Hypothyroidism developed in 25/54 (46.3%) who received XRT vs. 8/41 (19%) in the PRT group (HR =1.85, p = .14). Primary hypothyroidism developed in 15/95 (15.8%) patients: 12/54 (22.2%) after XRT and 3/41 (7.3%) after PRT (HR =2.1, p = .27). Central hypothyroidism developed in 17/95 (18.0%) patients: 13/54 (24.0%) after XRT and 4/41 (9.8%) after PRT (HR =2.16, p = .18). CONCLUSIONS: The use of PRT in patients with medulloblastoma was associated with numerically lower but not significantly lower risk of hypothyroidism. Further studies including larger numbers and longer follow up must be performed to assess whether lower radiation doses achieved with PRT show statistically significant differences.


Subject(s)
Craniospinal Irradiation/adverse effects , Hypothyroidism/etiology , Medulloblastoma/complications , Medulloblastoma/radiotherapy , Protons/adverse effects , Adolescent , Child , Child, Preschool , Craniospinal Irradiation/methods , Female , Humans , Hypothyroidism/pathology , Male , Medulloblastoma/pathology , Retrospective Studies
16.
Breast Cancer Res Treat ; 163(1): 191-195, 2017 May.
Article in English | MEDLINE | ID: mdl-28224382

ABSTRACT

PURPOSE: Tumor genomic testing has become widely available in many clinical settings. However, we do not yet understand how to best harness the information yielded from this testing. We retrospectively investigated the clinical courses of 24 patients who underwent tumor genomic testing to determine whether targeted therapy is associated with improved progression free survival (PFS) compared to standard therapy. METHODS: The patient population comprised metastatic breast cancer patients who underwent tumor genomic testing (testing biopsy specimens of primary or metastatic lesions for 50 commonly mutated genes) at our institution between September 1, 2010 and June 1, 2015. Through retrospective chart review, we compared PFS for those patients who received targeted therapy based on their genomic testing results, and those who did not. RESULTS: The median PFS was 5.7 months for those who received targeted therapy versus 5.4 months for those who did not (p = 0.6). There was no statistically significant difference in PFS between the two groups. CONCLUSIONS: In this relatively small group, the PFS was markedly similar between the targeted therapy and standard therapy groups. Currently, there is no clear evidence to incorporate tumor genomic testing into routine clinical practice.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Genetic Testing/methods , Molecular Targeted Therapy/methods , Mutation , Adult , Aged , Disease-Free Survival , Female , Genomics/methods , Humans , Kaplan-Meier Estimate , Middle Aged , Retrospective Studies , Treatment Outcome
17.
Proc Natl Acad Sci U S A ; 111(3): 1008-13, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24395789

ABSTRACT

Pituitary tumor transforming gene 1 (Pttg1) encodes the mammalian securin, which is an inhibitor of separase (a protease required for the separation of sister chromatids in mitosis and meiosis). PTTG1 is overexpressed in a number of human cancers and has been suggested to be an oncogene. However, we found that, in Pttg1-mutant females, the mammary epithelial cells showed increased proliferation and precocious branching morphogenesis. In accord with these phenotypic changes, progesterone receptor, cyclin D1, and Mmp2 were up-regulated whereas p21 (Cdkn1a) was down-regulated. These molecular changes provide explanation for the observed developmental defects, and suggest that Pttg1 is a tumor suppressor. Indeed, mice lacking Pttg1 developed spontaneous mammary tumors. Furthermore, in human breast tumors, PTTG1 protein levels were down-regulated and the reduction was significantly correlated with the tumor grade.


Subject(s)
Gene Expression Regulation, Developmental , Gene Expression Regulation, Neoplastic , Mammary Glands, Animal/physiology , Mammary Neoplasms, Animal/metabolism , Securin/physiology , Animals , Apoptosis , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Chromatids/chemistry , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Epithelial Cells/cytology , Female , Gene Expression Profiling , Humans , Mammary Glands, Animal/growth & development , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Proteins/metabolism , Securin/genetics , Securin/metabolism , Time Factors
18.
Proc Natl Acad Sci U S A ; 111(51): 18261-6, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25489091

ABSTRACT

The androgen receptor (AR) is a key driver of prostate cancer (PC), even in the state of castration-resistant PC (CRPC) and frequently even after treatment with second-line hormonal therapies such as abiraterone and enzalutamide. The persistence of AR activity via both ligand-dependent and ligand-independent mechanisms (including constitutively active AR splice variants) highlights the unmet need for alternative approaches to block AR signaling in CRPC. We investigated the transcription factor GATA-binding protein 2 (GATA2) as a regulator of AR signaling and an actionable therapeutic target in PC. We demonstrate that GATA2 directly promotes expression of both full-length and splice-variant AR, resulting in a strong positive correlation between GATA2 and AR expression in both PC cell lines and patient specimens. Conversely, GATA2 expression is repressed by androgen and AR, suggesting a negative feedback regulatory loop that, upon androgen deprivation, derepresses GATA2 to contribute to AR overexpression in CRPC. Simultaneously, GATA2 is necessary for optimal transcriptional activity of both full-length and splice-variant AR. GATA2 colocalizes with AR and Forkhead box protein A1 on chromatin to enhance recruitment of steroid receptor coactivators and formation of the transcriptional holocomplex. In agreement with these important functions, high GATA2 expression and transcriptional activity predicted worse clinical outcome in PC patients. A GATA2 small molecule inhibitor suppressed the expression and transcriptional function of both full-length and splice-variant AR and exerted potent anticancer activity against PC cell lines. We propose pharmacological inhibition of GATA2 as a first-in-field approach to target AR expression and function and improve outcomes in CRPC.


Subject(s)
GATA2 Transcription Factor/physiology , Nuclear Receptor Coactivators/metabolism , Receptors, Androgen/metabolism , Cell Proliferation , Chromatin/metabolism , Enhancer Elements, Genetic , Hepatocyte Nuclear Factor 3-alpha/metabolism , Humans , Male , Prognosis , Receptors, Androgen/physiology , Signal Transduction , Transcription, Genetic/physiology
19.
Breast Cancer Res Treat ; 158(3): 441-54, 2016 08.
Article in English | MEDLINE | ID: mdl-27393618

ABSTRACT

Estrogen receptor (ER)-negative cancers have a poor prognosis, and few targeted therapies are available for their treatment. Our previous analyses have identified potential kinase targets critical for the growth of ER-negative, progesterone receptor (PR)-negative and HER2-negative, or "triple-negative" breast cancer (TNBC). Because phosphatases regulate the function of kinase signaling pathways, in this study, we investigated whether phosphatases are also differentially expressed in ER-negative compared to those in ER-positive breast cancers. We compared RNA expression in 98 human breast cancers (56 ER-positive and 42 ER-negative) to identify phosphatases differentially expressed in ER-negative compared to those in ER-positive breast cancers. We then examined the effects of one selected phosphatase, dual specificity phosphatase 4 (DUSP4), on proliferation, cell growth, migration and invasion, and on signaling pathways using protein microarray analyses of 172 proteins, including phosphoproteins. We identified 48 phosphatase genes are significantly differentially expressed in ER-negative compared to those in ER-positive breast tumors. We discovered that 31 phosphatases were more highly expressed, while 11 were underexpressed specifically in ER-negative breast cancers. The DUSP4 gene is underexpressed in ER-negative breast cancer and is deleted in approximately 50 % of breast cancers. Induced DUSP4 expression suppresses both in vitro and in vivo growths of breast cancer cells. Our studies show that induced DUSP4 expression blocks the cell cycle at the G1/S checkpoint; inhibits ERK1/2, p38, JNK1, RB, and NFkB p65 phosphorylation; and inhibits invasiveness of TNBC cells. These results suggest that that DUSP4 is a critical regulator of the growth and invasion of triple-negative breast cancer cells.


Subject(s)
Breast Neoplasms/metabolism , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Mitogen-Activated Protein Kinase Phosphatases/genetics , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Protein Array Analysis/methods , Receptors, Estrogen/metabolism , Animals , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Mice , Neoplasm Invasiveness , Neoplasm Transplantation , Phosphorylation , Receptors, Estrogen/deficiency , Signal Transduction
20.
Breast Cancer Res ; 17: 141, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26581390

ABSTRACT

INTRODUCTION: Despite advances in early detection and adjuvant targeted therapies, breast cancer is still the second most common cause of cancer mortality among women. Tumor recurrence is one of the major contributors to breast cancer mortality. However, the mechanisms underlying this process are not completely understood. In this study, we investigated the mechanisms of tumor dormancy and recurrence in a preclinical mouse model of breast cancer. METHODS: To elucidate the mechanisms driving tumor recurrence, we employed a transplantable Wnt1/inducible fibroblast growth factor receptor (FGFR) 1 mouse mammary tumor model and utilized an FGFR specific inhibitor, BGJ398, to study the recurrence after treatment. Histological staining was performed to analyze the residual tumor cells and tumor stroma. Reverse phase protein array was performed to compare primary and recurrent tumors to investigate the molecular mechanisms leading to tumor recurrence. RESULTS: Treatment with BGJ398 resulted in rapid tumor regression, leaving a nonpalpable mass of dormant tumor cells organized into a luminal and basal epithelial layer similar to the normal mammary gland, but surrounded by dense stroma with markedly reduced levels of myeloid-derived tumor suppressor cells (MDSCs) and decreased tumor vasculature. Following cessation of treatment the tumors recurred over a period of 1 to 4 months. The recurrent tumors displayed dense stroma with increased collagen, tenascin-C expression, and MDSC infiltration. Activation of the epidermal growth factor receptor (EGFR) pathway was observed in recurrent tumors, and inhibition of EGFR with lapatinib in combination with BGJ398 resulted in a significant delay in tumor recurrence accompanied by reduced stroma, yet there was no difference observed in initial tumor regression between the groups treated with BGJ398 alone or in combination with lapatinib. CONCLUSION: These studies have revealed a correlation between tumor recurrence and changes of stromal microenvironment accompanied by altered EGFR signaling.


Subject(s)
Breast Neoplasms/genetics , ErbB Receptors/genetics , Neoplasm Recurrence, Local/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Signal Transduction/genetics , Stromal Cells/pathology , Up-Regulation/genetics , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Collagen/genetics , Female , Lapatinib , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/genetics , Mice , Phenylurea Compounds/pharmacology , Pyrimidines/pharmacology , Quinazolines/pharmacology , Signal Transduction/drug effects , Stromal Cells/drug effects , Tenascin/genetics , Up-Regulation/drug effects , Wnt1 Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL