Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Ecol Lett ; 27(6): e14463, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924275

ABSTRACT

Understanding the interactions among anthropogenic stressors is critical for effective conservation and management of ecosystems. Freshwater scientists have invested considerable resources in conducting factorial experiments to disentangle stressor interactions by testing their individual and combined effects. However, the diversity of stressors and systems studied has hindered previous syntheses of this body of research. To overcome this challenge, we used a novel machine learning framework to identify relevant studies from over 235,000 publications. Our synthesis resulted in a new dataset of 2396 multiple-stressor experiments in freshwater systems. By summarizing the methods used in these studies, quantifying trends in the popularity of the investigated stressors, and performing co-occurrence analysis, we produce the most comprehensive overview of this diverse field of research to date. We provide both a taxonomy grouping the 909 investigated stressors into 31 classes and an open-source and interactive version of the dataset (https://jamesaorr.shinyapps.io/freshwater-multiple-stressors/). Inspired by our results, we provide a framework to help clarify whether statistical interactions detected by factorial experiments align with stressor interactions of interest, and we outline general guidelines for the design of multiple-stressor experiments relevant to any system. We conclude by highlighting the research directions required to better understand freshwater ecosystems facing multiple stressors.


Subject(s)
Ecosystem , Fresh Water , Human Activities , Stress, Physiological
2.
J Environ Manage ; 351: 119991, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171132

ABSTRACT

Submerged macrophytes are vital in shallow lakes, as they provide critical ecosystem functions and services and can stabilize the clear-water conditions by various mechanisms. Nutrient enrichment reduces the resilience of macrophyte dominance in shallow lakes, thereby making them susceptible to shifts towards phytoplankton dominance following perturbations. Here, we conducted a mesocosm experiment to examine the individual and combined effects of nutrient enrichment and the addition of grass carp (Ctenopharyngodon idella) on the abundance of submerged macrophytes, epiphyton, and phytoplankton. We hypothesized that moderate nutrient enrichment facilitates macrophyte abundance, but also phytoplankton abundance after macrophyte removal by herbivorous fish. Our data showed that herbivory by grass carp could trigger a shift from macrophytes to algal dominance in mesocosms with moderate nutrient concentrations, but not in those with low nutrient concentrations. Moderate nutrient enrichment alone promoted submerged macrophyte growth, whereas the introduction of grass carp induced a collapse of submerged macrophytes regardless of nutrient conditions. Moreover, the introduction of grass carp showed more negative effects on light conditions of the water column in mesocosms with moderate nutrient concentrations compared to those with low nutrient concentrations. A recovery of submerged macrophytes might thus be limited by low light availability in lakes with moderate nutrient conditions suffering grass carp perturbation. Our results suggest that submerged macrophyte-dominated shallow lakes with moderate nutrient conditions are vulnerable to perturbation by herbivorous fish such as grass carp. In turn, managing the abundance of herbivores in these lakes can support the dominance of macrophytes and associated clear water conditions.


Subject(s)
Carps , Ecosystem , Animals , Lakes , Herbivory , Phytoplankton , Water , Nutrients , Eutrophication , Phosphorus
3.
Sci Total Environ ; 931: 172960, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38710393

ABSTRACT

Aquatic plants (macrophytes) are important for ecosystem structure and function. Macrophyte mass developments are, however, often perceived as a nuisance and are commonly managed by mechanical removal. This is costly and often ineffective due to macrophyte regrowth. There is insufficient understanding about what causes macrophyte mass development, what people who use water bodies consider to be a nuisance, or the potential negative effects of macrophyte removal on the structure and function of ecosystems. To address these gaps, we performed a standardized set of in situ experiments and questionnaires at six sites (lakes, reservoirs, and rivers) on three continents where macrophyte mass developments occur. We then derived monetary values of ecosystem services for different scenarios of macrophyte management ("do nothing", "current practice", "maximum removal"), and developed a decision support system for the management of water courses experiencing macrophyte mass developments. We found that (a) macrophyte mass developments often occur in ecosystems which (unintentionally) became perfect habitats for aquatic plants, that (b) reduced ecosystem disturbance can cause macrophyte mass developments even if nutrient concentrations are low, that (c) macrophyte mass developments are indeed perceived negatively, but visitors tend to regard them as less of a nuisance than residents do, that (d) macrophyte removal lowers the water level of streams and adjacent groundwater, but this may have positive or negative overall societal effects, and that (e) the effects of macrophyte removal on water quality, greenhouse gas emissions, and biodiversity vary, and likely depend on ecosystem characteristics and macrophyte life form. Overall, we found that aquatic plant management often does not greatly affect the overall societal value of the ecosystem, and we suggest that the "do nothing" option should not be easily discarded in the management of perceived nuisance mass developments of aquatic plants.


Subject(s)
Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/methods , Plants , Rivers , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL