Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters

Publication year range
1.
Brain ; 147(6): 1996-2008, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38804604

ABSTRACT

The LRRK2 G2019S variant is the most common cause of monogenic Parkinson's disease (PD); however, questions remain regarding the penetrance, clinical phenotype and natural history of carriers. We performed a 3.5-year prospective longitudinal online study in a large number of 1286 genotyped LRRK2 G2019S carriers and 109 154 controls, with and without PD, recruited from the 23andMe Research Cohort. We collected self-reported motor and non-motor symptoms every 6 months, as well as demographics, family histories and environmental risk factors. Incident cases of PD (phenoconverters) were identified at follow-up. We determined lifetime risk of PD using accelerated failure time modelling and explored the impact of polygenic risk on penetrance. We also computed the genetic ancestry of all LRRK2 G2019S carriers in the 23andMe database and identified regions of the world where carrier frequencies are highest. We observed that despite a 1 year longer disease duration (P = 0.016), LRRK2 G2019S carriers with PD had similar burden of motor symptoms, yet significantly fewer non-motor symptoms including cognitive difficulties, REM sleep behaviour disorder (RBD) and hyposmia (all P-values ≤ 0.0002). The cumulative incidence of PD in G2019S carriers by age 80 was 49%. G2019S carriers had a 10-fold risk of developing PD versus non-carriers. This rose to a 27-fold risk in G2019S carriers with a PD polygenic risk score in the top 25% versus non-carriers in the bottom 25%. In addition to identifying ancient founding events in people of North African and Ashkenazi descent, our genetic ancestry analyses infer that the G2019S variant was later introduced to Spanish colonial territories in the Americas. Our results suggest LRRK2 G2019S PD appears to be a slowly progressive predominantly motor subtype of PD with a lower prevalence of hyposmia, RBD and cognitive impairment. This suggests that the current prodromal criteria, which are based on idiopathic PD, may lack sensitivity to detect the early phases of LRRK2 PD in G2019S carriers. We show that polygenic burden may contribute to the development of PD in the LRRK2 G2019S carrier population. Collectively, the results should help support screening programmes and candidate enrichment strategies for upcoming trials of LRRK2 inhibitors in early-stage disease.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/genetics , Female , Male , Middle Aged , Aged , Longitudinal Studies , Genetic Predisposition to Disease/genetics , Adult , Prospective Studies , Heterozygote , Penetrance , Aged, 80 and over , REM Sleep Behavior Disorder/genetics , Mutation
2.
PLoS Genet ; 16(6): e1008725, 2020 06.
Article in English | MEDLINE | ID: mdl-32603359

ABSTRACT

Risk factors that contribute to inter-individual differences in the age-of-onset of allergic diseases are poorly understood. The aim of this study was to identify genetic risk variants associated with the age at which symptoms of allergic disease first develop, considering information from asthma, hay fever and eczema. Self-reported age-of-onset information was available for 117,130 genotyped individuals of European ancestry from the UK Biobank study. For each individual, we identified the earliest age at which asthma, hay fever and/or eczema was first diagnosed and performed a genome-wide association study (GWAS) of this combined age-of-onset phenotype. We identified 50 variants with a significant independent association (P<3x10-8) with age-of-onset. Forty-five variants had comparable effects on the onset of the three individual diseases and 38 were also associated with allergic disease case-control status in an independent study (n = 222,484). We observed a strong negative genetic correlation between age-of-onset and case-control status of allergic disease (rg = -0.63, P = 4.5x10-61), indicating that cases with early disease onset have a greater burden of allergy risk alleles than those with late disease onset. Subsequently, a multivariate GWAS of age-of-onset and case-control status identified a further 26 associations that were missed by the univariate analyses of age-of-onset or case-control status only. Collectively, of the 76 variants identified, 18 represent novel associations for allergic disease. We identified 81 likely target genes of the 76 associated variants based on information from expression quantitative trait loci (eQTL) and non-synonymous variants, of which we highlight ADAM15, FOSL2, TRIM8, BMPR2, CD200R1, PRKCQ, NOD2, SMAD4, ABCA7 and UBE2L3. Our results support the notion that early and late onset allergic disease have partly distinct genetic architectures, potentially explaining known differences in pathophysiology between individuals.


Subject(s)
Asthma/genetics , Eczema/genetics , Polymorphism, Single Nucleotide , Rhinitis, Allergic, Seasonal/genetics , Adolescent , Adult , Age of Onset , Aged , Asthma/pathology , Child , Eczema/pathology , Female , Genetic Loci , Genome-Wide Association Study/methods , Humans , Male , Middle Aged , Rhinitis, Allergic, Seasonal/pathology
3.
Gut ; 71(6): 1053-1061, 2022 06.
Article in English | MEDLINE | ID: mdl-34187846

ABSTRACT

OBJECTIVE: Gastro-oesophageal reflux disease (GERD) has heterogeneous aetiology primarily attributable to its symptom-based definitions. GERD genome-wide association studies (GWASs) have shown strong genetic overlaps with established risk factors such as obesity and depression. We hypothesised that the shared genetic architecture between GERD and these risk factors can be leveraged to (1) identify new GERD and Barrett's oesophagus (BE) risk loci and (2) explore potentially heterogeneous pathways leading to GERD and oesophageal complications. DESIGN: We applied multitrait GWAS models combining GERD (78 707 cases; 288 734 controls) and genetically correlated traits including education attainment, depression and body mass index. We also used multitrait analysis to identify BE risk loci. Top hits were replicated in 23andMe (462 753 GERD cases, 24 099 BE cases, 1 484 025 controls). We additionally dissected the GERD loci into obesity-driven and depression-driven subgroups. These subgroups were investigated to determine how they relate to tissue-specific gene expression and to risk of serious oesophageal disease (BE and/or oesophageal adenocarcinoma, EA). RESULTS: We identified 88 loci associated with GERD, with 59 replicating in 23andMe after multiple testing corrections. Our BE analysis identified seven novel loci. Additionally we showed that only the obesity-driven GERD loci (but not the depression-driven loci) were associated with genes enriched in oesophageal tissues and successfully predicted BE/EA. CONCLUSION: Our multitrait model identified many novel risk loci for GERD and BE. We present strong evidence for a genetic underpinning of disease heterogeneity in GERD and show that GERD loci associated with depressive symptoms are not strong predictors of BE/EA relative to obesity-driven GERD loci.


Subject(s)
Barrett Esophagus , Esophageal Neoplasms , Esophagitis, Peptic , Gastroesophageal Reflux , Barrett Esophagus/complications , Barrett Esophagus/diagnosis , Barrett Esophagus/genetics , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/genetics , Gastroesophageal Reflux/complications , Gastroesophageal Reflux/diagnosis , Gastroesophageal Reflux/genetics , Genome-Wide Association Study , Humans , Obesity/complications , Obesity/genetics
4.
Am J Hum Genet ; 104(4): 665-684, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30929738

ABSTRACT

The extent to which genetic risk factors are shared between childhood-onset (COA) and adult-onset (AOA) asthma has not been estimated. On the basis of data from the UK Biobank study (n = 447,628), we found that the variance in disease liability explained by common variants is higher for COA (onset at ages between 0 and 19 years; h2g = 25.6%) than for AOA (onset at ages between 20 and 60 years; h2g = 10.6%). The genetic correlation (rg) between COA and AOA was 0.67. Variation in age of onset among COA-affected individuals had a low heritability (h2g = 5%), which we confirmed in independent studies and also among AOA-affected individuals. To identify subtype-specific genetic associations, we performed a genome-wide association study (GWAS) in the UK Biobank for COA (13,962 affected individuals) and a separate GWAS for AOA (26,582 affected individuals) by using a common set of 300,671 controls for both studies. We identified 123 independent associations for COA and 56 for AOA (37 overlapped); of these, 98 and 34, respectively, were reproducible in an independent study (n = 262,767). Collectively, 28 associations were not previously reported. For 96 COA-associated variants, including five variants that represent COA-specific risk factors, the risk allele was more common in COA- than in AOA-affected individuals. Conversely, we identified three variants that are stronger risk factors for AOA. Variants associated with obesity and smoking had a stronger contribution to the risk of AOA than to the risk of COA. Lastly, we identified 109 likely target genes of the associated variants, primarily on the basis of correlated expression quantitative trait loci (up to n = 31,684). GWAS informed by age of onset can identify subtype-specific risk variants, which can help us understand differences in pathophysiology between COA and AOA and so can be informative for drug development.


Subject(s)
Asthma/genetics , Genetic Predisposition to Disease , Adolescent , Adult , Age of Onset , Alleles , Child , Child, Preschool , Female , Genome-Wide Association Study , Humans , Hypersensitivity , Infant , Infant, Newborn , Male , Middle Aged , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Risk Factors , United Kingdom , Young Adult
6.
PLoS Genet ; 14(7): e1007394, 2018 07.
Article in English | MEDLINE | ID: mdl-30001343

ABSTRACT

Preterm birth is a leading cause of morbidity and mortality in infants. Genetic and environmental factors play a role in the susceptibility to preterm birth, but despite many investigations, the genetic basis for preterm birth remain largely unknown. Our objective was to identify rare, possibly damaging, nucleotide variants in mothers from families with recurrent spontaneous preterm births (SPTB). DNA samples from 17 Finnish mothers who delivered at least one infant preterm were subjected to whole exome sequencing. All mothers were of northern Finnish origin and were from seven multiplex families. Additional replication samples of European origin consisted of 93 Danish sister pairs (and two sister triads), all with a history of a preterm delivery. Rare exonic variants (frequency <1%) were analyzed to identify genes and pathways likely to affect SPTB susceptibility. We identified rare, possibly damaging, variants in genes that were common to multiple affected individuals. The glucocorticoid receptor signaling pathway was the most significant (p<1.7e-8) with genes containing these variants in a subgroup of ten Finnish mothers, each having had 2-4 SPTBs. This pathway was replicated among the Danish sister pairs. A gene in this pathway, heat shock protein family A (Hsp70) member 1 like (HSPA1L), contains two likely damaging missense alleles that were found in four different Finnish families. One of the variants (rs34620296) had a higher frequency in cases compared to controls (0.0025 vs. 0.0010, p = 0.002) in a large preterm birth genome-wide association study (GWAS) consisting of mothers of general European ancestry. Sister pairs in replication samples also shared rare, likely damaging HSPA1L variants. Furthermore, in silico analysis predicted an additional phosphorylation site generated by rs34620296 that could potentially affect chaperone activity or HSPA1L protein stability. Finally, in vitro functional experiment showed a link between HSPA1L activity and decidualization. In conclusion, rare, likely damaging, variants in HSPA1L were observed in multiple families with recurrent SPTB.


Subject(s)
Genetic Predisposition to Disease , HSP70 Heat-Shock Proteins/genetics , Premature Birth/genetics , Adenosine Diphosphate/chemistry , Adenosine Diphosphate/metabolism , Case-Control Studies , Cell Line , Exome/genetics , Female , Fibroblasts , Finland , Genome-Wide Association Study , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/metabolism , Humans , Infant, Newborn , Male , Models, Molecular , Phosphorylation/genetics , Polymorphism, Single Nucleotide , Pregnancy , Receptors, Glucocorticoid/metabolism , Recurrence , Risk Factors , Signal Transduction/genetics , Exome Sequencing
7.
Hum Mol Genet ; 27(15): 2762-2772, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29771307

ABSTRACT

Rosacea is a common, chronic skin disease of variable severity with limited treatment options. The cause of rosacea is unknown, but it is believed to be due to a combination of hereditary and environmental factors. Little is known about the genetics of the disease. We performed a genome-wide association study (GWAS) of rosacea symptom severity with data from 73 265 research participants of European ancestry from the 23andMe customer base. Seven loci had variants associated with rosacea at the genome-wide significance level (P < 5 × 10-8). Further analyses highlighted likely gene regions or effector genes including IRF4 (P = 1.5 × 10-17), a human leukocyte antigen (HLA) region flanked by PSMB9 and HLA-DMB (P = 2.2 × 10-15), HERC2-OCA2 (P = 4.2 × 10-12), SLC45A2 (P = 1.7 × 10-10), IL13 (P = 2.8 × 10-9), a region flanked by NRXN3 and DIO2 (P = 4.1 × 10-9), and a region flanked by OVOL1and SNX32 (P = 1.2 × 10-8). All associations with rosacea were novel except for the HLA locus. Two of these loci (HERC-OCA2 and SLC45A2) and another precedented variant (rs1805007 in melanocortin 1 receptor) with an association P value just below the significance threshold (P = 1.3 × 10-7) have been previously associated with skin phenotypes and pigmentation, two of these loci are linked to immuno-inflammation phenotypes (IL13 and PSMB9-HLA-DMA) and one has been associated with both categories (IRF4). Genes within three loci (PSMB9-HLA-DMA, HERC-OCA2 and NRX3-DIO2) were differentially expressed in a previously published clinical rosacea transcriptomics study that compared lesional to non-lesional samples. The identified loci provide specificity of inflammatory mechanisms in rosacea, and identify potential pathways for therapeutic intervention.


Subject(s)
Rosacea/etiology , Skin Pigmentation/genetics , Adult , Cysteine Endopeptidases/genetics , Female , Gene Expression Regulation , Genome-Wide Association Study , Guanine Nucleotide Exchange Factors/genetics , HLA-D Antigens/genetics , Humans , Interferon Regulatory Factors/genetics , Interleukin-13/genetics , Linkage Disequilibrium , Male , Middle Aged , Polymorphism, Single Nucleotide , Rosacea/genetics , Sorting Nexins/genetics , Ubiquitin-Protein Ligases
8.
Am J Hum Genet ; 101(6): 913-924, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29198719

ABSTRACT

The genetic basis of earlobe attachment has been a matter of debate since the early 20th century, such that geneticists argue both for and against polygenic inheritance. Recent genetic studies have identified a few loci associated with the trait, but large-scale analyses are still lacking. Here, we performed a genome-wide association study of lobe attachment in a multiethnic sample of 74,660 individuals from four cohorts (three with the trait scored by an expert rater and one with the trait self-reported). Meta-analysis of the three expert-rater-scored cohorts revealed six associated loci harboring numerous candidate genes, including EDAR, SP5, MRPS22, ADGRG6 (GPR126), KIAA1217, and PAX9. The large self-reported 23andMe cohort recapitulated each of these six loci. Moreover, meta-analysis across all four cohorts revealed a total of 49 significant (p < 5 × 10-8) loci. Annotation and enrichment analyses of these 49 loci showed strong evidence of genes involved in ear development and syndromes with auricular phenotypes. RNA sequencing data from both human fetal ear and mouse second branchial arch tissue confirmed that genes located among associated loci showed evidence of expression. These results provide strong evidence for the polygenic nature of earlobe attachment and offer insights into the biological basis of normal and abnormal ear development.


Subject(s)
Ear/anatomy & histology , Multifactorial Inheritance/genetics , Quantitative Trait Loci/genetics , Adolescent , Adult , Animals , Branchial Region/anatomy & histology , Child , Child, Preschool , DNA-Binding Proteins/genetics , Edar Receptor/genetics , Genome-Wide Association Study , Genotype , Humans , Mice , Middle Aged , Mitochondrial Proteins/genetics , PAX9 Transcription Factor/genetics , Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Ribosomal Proteins/genetics , Transcription Factors/genetics , Young Adult
9.
N Engl J Med ; 377(12): 1156-1167, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28877031

ABSTRACT

BACKGROUND: Despite evidence that genetic factors contribute to the duration of gestation and the risk of preterm birth, robust associations with genetic variants have not been identified. We used large data sets that included the gestational duration to determine possible genetic associations. METHODS: We performed a genomewide association study in a discovery set of samples obtained from 43,568 women of European ancestry using gestational duration as a continuous trait and term or preterm (<37 weeks) birth as a dichotomous outcome. We used samples from three Nordic data sets (involving a total of 8643 women) to test for replication of genomic loci that had significant genomewide association (P<5.0×10-8) or an association with suggestive significance (P<1.0×10-6) in the discovery set. RESULTS: In the discovery and replication data sets, four loci (EBF1, EEFSEC, AGTR2, and WNT4) were significantly associated with gestational duration. Functional analysis showed that an implicated variant in WNT4 alters the binding of the estrogen receptor. The association between variants in ADCY5 and RAP2C and gestational duration had suggestive significance in the discovery set and significant evidence of association in the replication sets; these variants also showed genomewide significance in a joint analysis. Common variants in EBF1, EEFSEC, and AGTR2 showed association with preterm birth with genomewide significance. An analysis of mother-infant dyads suggested that these variants act at the level of the maternal genome. CONCLUSIONS: In this genomewide association study, we found that variants at the EBF1, EEFSEC, AGTR2, WNT4, ADCY5, and RAP2C loci were associated with gestational duration and variants at the EBF1, EEFSEC, and AGTR2 loci with preterm birth. Previously established roles of these genes in uterine development, maternal nutrition, and vascular control support their mechanistic involvement. (Funded by the March of Dimes and others.).


Subject(s)
Genetic Predisposition to Disease , Genetic Variation , Gestational Age , Peptide Elongation Factors/genetics , Premature Birth/genetics , Receptor, Angiotensin, Type 2/genetics , Trans-Activators/genetics , Adenylyl Cyclases/genetics , Datasets as Topic , Female , Genome-Wide Association Study , Humans , Phenotype , Polymorphism, Single Nucleotide , Pregnancy , Regression Analysis , Wnt4 Protein/genetics , ras Proteins/genetics
10.
J Allergy Clin Immunol ; 143(2): 691-699, 2019 02.
Article in English | MEDLINE | ID: mdl-29679657

ABSTRACT

BACKGROUND: A recent genome-wide association study (GWAS) identified 99 loci that contain genetic risk variants shared between asthma, hay fever, and eczema. Many more risk loci shared between these common allergic diseases remain to be discovered, which could point to new therapeutic opportunities. OBJECTIVE: We sought to identify novel risk loci shared between asthma, hay fever, and eczema by applying a gene-based test of association to results from a published GWAS that included data from 360,838 subjects. METHODS: We used approximate conditional analysis to adjust the results from the published GWAS for the effects of the top risk variants identified in that study. We then analyzed the adjusted GWAS results with the EUGENE gene-based approach, which combines evidence for association with disease risk across regulatory variants identified in different tissues. Novel gene-based associations were followed up in an independent sample of 233,898 subjects from the UK Biobank study. RESULTS: Of the 19,432 genes tested, 30 had a significant gene-based association at a Bonferroni-corrected P value of 2.5 × 10-6. Of these, 20 were also significantly associated (P < .05/30 = .0016) with disease risk in the replication sample, including 19 that were located in 11 loci not reported to contain allergy risk variants in previous GWASs. Among these were 9 genes with a known function that is directly relevant to allergic disease: FOSL2, VPRBP, IPCEF1, PRR5L, NCF4, APOBR, IL27, ATXN2L, and LAT. For 4 genes (eg, ATXN2L), a genetically determined decrease in gene expression was associated with decreased allergy risk, and therefore drugs that inhibit gene expression or function are predicted to ameliorate disease symptoms. The opposite directional effect was observed for 14 genes, including IL27, a cytokine known to suppress TH2 responses. CONCLUSION: Using a gene-based approach, we identified 11 risk loci for allergic disease that were not reported in previous GWASs. Functional studies that investigate the contribution of the 19 associated genes to the pathophysiology of allergic disease and assess their therapeutic potential are warranted.


Subject(s)
Asthma/genetics , Eczema/genetics , Genotype , Hypersensitivity/genetics , Rhinitis, Allergic, Seasonal/genetics , Fos-Related Antigen-2/genetics , Gene Frequency , Genetic Association Studies , Genetic Loci/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Interleukin-27/genetics , Polymorphism, Single Nucleotide , Risk , Th1-Th2 Balance/genetics
11.
Hum Mol Genet ; 26(7): 1391-1406, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28199695

ABSTRACT

Understanding the interaction between humans and mosquitoes is a critical area of study due to the phenomenal burdens on public health from mosquito-transmitted diseases. In this study, we conducted the first genome-wide association studies (GWAS) of self-reported mosquito bite reaction size (n = 84,724), itchiness caused by bites (n = 69,057), and perceived attractiveness to mosquitoes (n = 16,576). In total, 15 independent significant (P < 5×10-8) associations were identified. These loci were enriched for immunity-related genes that are involved in multiple cytokine signalling pathways. We also detected suggestive enrichment of these loci in enhancer regions that are active in stimulated T-cells, as well as within loci previously identified as controlling central memory T-cell levels. Egger regression analysis between the traits suggests that perception of itchiness and attractiveness to mosquitoes is driven, at least in part, by the genetic determinants of bite reaction size.Our findings illustrate the complex genetic and immunological landscapes underpinning human interactions with mosquitoes.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Insect Bites and Stings/genetics , Pruritus/genetics , Animals , Culicidae/genetics , Culicidae/pathogenicity , Genotype , Humans , Insect Bites and Stings/pathology , Phenotype , Polymorphism, Single Nucleotide/genetics , Pruritus/pathology , Self Report , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
12.
Hum Mol Genet ; 26(22): 4530-4539, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28973307

ABSTRACT

Neuroticism reflects emotional instability, and is related to various mental and physical health issues. However, the majority of genetic variants associated with neuroticism remain unclear. Inconsistent genetic variants identified by different genome-wide association studies (GWAS) may be attributable to low statistical power. We proposed a novel framework to improve the power for gene discovery by incorporating prior information of single nucleotide polymorphisms (SNPs) and combining two relevant existing tools, relative enrichment score (RES) and conditional false discovery rate (FDR). Here, SNP's conditional FDR was estimated given its RES based on SNP prior information including linkage disequilibrium (LD)-weighted genic annotation scores, total LD scores and heterozygosity. A known significant locus in chromosome 8p was excluded before estimating FDR due to long-range LD structure. Only one significant LD-independent SNP was detected by analyses of unconditional FDR and traditional GWAS in the discovery sample (N = 59 225), and notably four additional SNPs by conditional FDR. Three of the five SNPs, all identified by conditional FDR, were replicated (P < 0.05) in an independent sample (N = 170 911). These three SNPs are located in intronic regions of CADM2, LINGO2 and EP300 which have been reported to be associated with autism, Parkinson's disease and schizophrenia, respectively. Our approach using a combination of RES and conditional FDR improved power of traditional GWAS for gene discovery providing a useful framework for the analysis of GWAS summary statistics by utilizing SNP prior information, and helping to elucidate the links between neuroticism and complex diseases from a genetic perspective.


Subject(s)
Genome-Wide Association Study/methods , Models, Genetic , Neurotic Disorders/genetics , Sequence Analysis, DNA/methods , Genetic Predisposition to Disease , Genetic Variation , Genotype , Humans , Linkage Disequilibrium , Neuroticism/physiology , Polymorphism, Single Nucleotide
13.
Hum Genet ; 138(1): 37-47, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30392061

ABSTRACT

Appendicitis affects 9% of Americans and is the most common diagnosis requiring hospitalization of both children and adults. We performed a genome-wide association study of self-reported appendectomy with 18,773 affected adults and 114,907 unaffected adults of European American ancestry. A significant association with appendectomy was observed at 4q25 near the gene PITX2 (rs2129979, p value = 8.82 × 10-14) and was replicated in an independent sample of Caucasians (59 affected, 607 unaffected; p value = 0.005). Meta-analysis of the associated variant across our two cohorts and cohorts from Iceland and the Netherlands (in which this association had previously been reported) showed strong cumulative evidence of association (OR = 1.12; 95% CI 1.09-1.14; p value = 1.81 × 10-23) and some evidence for effect heterogeneity (p value = 0.03). Eight other loci were identified at suggestive significance in the discovery GWAS. Associations were followed up by measuring gene expression across resected appendices with varying levels of inflammation (N = 75). We measured expression of 27 genes based on physical proximity to the GWAS signals, evidence of being targeted by eQTLs near the signals according to RegulomeDB (score = 1), or both. Four of the 27 genes (including PITX2) showed significant evidence (p values < 0.0033) of differential expression across categories of appendix inflammation. An additional ten genes showed nominal evidence (p value < 0.05) of differential expression, which, together with the significant genes, is more than expected by chance (p value = 6.6 × 10-12). PITX2 impacts morphological development of intestinal tissue, promotes an anti-oxidant response, and its expression correlates with levels of intestinal bacteria and colonic inflammation. Further studies of the role of PITX2 in appendicitis are warranted.


Subject(s)
Appendectomy/adverse effects , Appendicitis/surgery , Biomarkers/analysis , Genetic Association Studies , Homeodomain Proteins/genetics , Inflammation/diagnosis , Polymorphism, Single Nucleotide , Transcription Factors/genetics , Acute Disease , Adolescent , Adult , Appendicitis/pathology , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Inflammation/etiology , Inflammation/pathology , Male , Meta-Analysis as Topic , Middle Aged , Prognosis , Young Adult , Homeobox Protein PITX2
14.
Mov Disord ; 34(12): 1864-1872, 2019 12.
Article in English | MEDLINE | ID: mdl-31659794

ABSTRACT

BACKGROUND: Mendelian randomization is a method for exploring observational associations to find evidence of causality. OBJECTIVE: To apply Mendelian randomization between risk factors/phenotypic traits (exposures) and PD in a large, unbiased manner, and to create a public resource for research. METHODS: We used two-sample Mendelian randomization in which the summary statistics relating to single-nucleotide polymorphisms from 5,839 genome-wide association studies of exposures were used to assess causal relationships with PD. We selected the highest-quality exposure genome-wide association studies for this report (n = 401). For the disease outcome, summary statistics from the largest published PD genome-wide association studies were used. For each exposure, the causal effect on PD was assessed using the inverse variance weighted method, followed by a range of sensitivity analyses. We used a false discovery rate of 5% from the inverse variance weighted analysis to prioritize exposures of interest. RESULTS: We observed evidence for causal associations between 12 exposures and risk of PD. Of these, nine were effects related to increasing adiposity and decreasing risk of PD. The remaining top three exposures that affected PD risk were tea drinking, time spent watching television, and forced vital capacity, but these may have been biased and were less convincing. Other exposures at nominal statistical significance included inverse effects of smoking and alcohol. CONCLUSIONS: We present a new platform which offers Mendelian randomization analyses for a total of 5,839 genome-wide association studies versus the largest PD genome-wide association studies available (https://pdgenetics.shinyapps.io/MRportal/). Alongside, we report further evidence to support a causal role for adiposity on lowering the risk of PD. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Mendelian Randomization Analysis/methods , Parkinson Disease/genetics , Adult , Aged , Aged, 80 and over , Causality , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Middle Aged , Phenotype , Polymorphism, Single Nucleotide/genetics , Risk Factors , Tea , Television , Treatment Outcome , Vital Capacity
15.
Mov Disord ; 34(6): 866-875, 2019 06.
Article in English | MEDLINE | ID: mdl-30957308

ABSTRACT

BACKGROUND: Increasing evidence supports an extensive and complex genetic contribution to PD. Previous genome-wide association studies (GWAS) have shed light on the genetic basis of risk for this disease. However, the genetic determinants of PD age at onset are largely unknown. OBJECTIVES: To identify the genetic determinants of PD age at onset. METHODS: Using genetic data of 28,568 PD cases, we performed a genome-wide association study based on PD age at onset. RESULTS: We estimated that the heritability of PD age at onset attributed to common genetic variation was ∼0.11, lower than the overall heritability of risk for PD (∼0.27), likely, in part, because of the subjective nature of this measure. We found two genome-wide significant association signals, one at SNCA and the other a protein-coding variant in TMEM175, both of which are known PD risk loci and a Bonferroni-corrected significant effect at other known PD risk loci, GBA, INPP5F/BAG3, FAM47E/SCARB2, and MCCC1. Notably, SNCA, TMEM175, SCARB2, BAG3, and GBA have all been shown to be implicated in α-synuclein aggregation pathways. Remarkably, other well-established PD risk loci, such as GCH1 and MAPT, did not show a significant effect on age at onset of PD. CONCLUSIONS: Overall, we have performed the largest age at onset of PD genome-wide association studies to date, and our results show that not all PD risk loci influence age at onset with significant differences between risk alleles for age at onset. This provides a compelling picture, both within the context of functional characterization of disease-linked genetic variability and in defining differences between risk alleles for age at onset, or frank risk for disease. © 2019 International Parkinson and Movement Disorder Society.


Subject(s)
Age of Onset , Genetic Loci , Parkinson Disease/genetics , alpha-Synuclein/genetics , Adult , Aged , Aged, 80 and over , Alleles , Databases, Genetic , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Glucosylceramidase/genetics , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Male , Middle Aged , Polymorphism, Single Nucleotide , Young Adult
16.
PLoS Genet ; 12(8): e1006125, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27494321

ABSTRACT

Disrupted circadian rhythms and reduced sleep duration are associated with several human diseases, particularly obesity and type 2 diabetes, but until recently, little was known about the genetic factors influencing these heritable traits. We performed genome-wide association studies of self-reported chronotype (morning/evening person) and self-reported sleep duration in 128,266 white British individuals from the UK Biobank study. Sixteen variants were associated with chronotype (P<5x10-8), including variants near the known circadian rhythm genes RGS16 (1.21 odds of morningness, 95% CI [1.15, 1.27], P = 3x10-12) and PER2 (1.09 odds of morningness, 95% CI [1.06, 1.12], P = 4x10-10). The PER2 signal has previously been associated with iris function. We sought replication using self-reported data from 89,283 23andMe participants; thirteen of the chronotype signals remained associated at P<5x10-8 on meta-analysis and eleven of these reached P<0.05 in the same direction in the 23andMe study. We also replicated 9 additional variants identified when the 23andMe study was used as a discovery GWAS of chronotype (all P<0.05 and meta-analysis P<5x10-8). For sleep duration, we replicated one known signal in PAX8 (2.6 minutes per allele, 95% CI [1.9, 3.2], P = 5.7x10-16) and identified and replicated two novel associations at VRK2 (2.0 minutes per allele, 95% CI [1.3, 2.7], P = 1.2x10-9; and 1.6 minutes per allele, 95% CI [1.1, 2.2], P = 7.6x10-9). Although we found genetic correlation between chronotype and BMI (rG = 0.056, P = 0.05); undersleeping and BMI (rG = 0.147, P = 1x10-5) and oversleeping and BMI (rG = 0.097, P = 0.04), Mendelian Randomisation analyses, with limited power, provided no consistent evidence of causal associations between BMI or type 2 diabetes and chronotype or sleep duration. Our study brings the total number of loci associated with chronotype to 22 and with sleep duration to three, and provides new insights into the biology of sleep and circadian rhythms in humans.


Subject(s)
Circadian Rhythm/genetics , Diabetes Mellitus, Type 2/genetics , PAX8 Transcription Factor/genetics , Protein Serine-Threonine Kinases/genetics , Sleep/genetics , Body Mass Index , Diabetes Mellitus, Type 2/pathology , Female , Genome-Wide Association Study , Humans , Male , Mendelian Randomization Analysis , Obesity/genetics , Obesity/pathology , Sleep/physiology , White People
17.
Hum Mol Genet ; 25(9): 1867-74, 2016 05 01.
Article in English | MEDLINE | ID: mdl-26908601

ABSTRACT

Thrombotic diseases are among the leading causes of morbidity and mortality in the world. To add insights into the genetic regulation of thrombotic disease, we conducted a genome-wide association study (GWAS) of 6135 self-reported blood clots events and 252 827 controls of European ancestry belonging to the 23andMe cohort of research participants. Eight loci exceeded genome-wide significance. Among the genome-wide significant results, our study replicated previously known venous thromboembolism (VTE) loci near the F5, FGA-FGG, F11, F2, PROCR and ABO genes, and the more recently discovered locus near SLC44A2 In addition, our study reports for the first time a genome-wide significant association between rs114209171, located upstream of the F8 structural gene, and thrombosis risk. Analyses of expression profiles and expression quantitative trait loci across different tissues suggested SLC44A2, ILF3 and AP1M2 as the three most plausible candidate genes for the chromosome 19 locus, our only genome-wide significant thrombosis-related locus that does not harbor likely coagulation-related genes. In addition, we present data showing that this locus also acts as a novel risk factor for stroke and coronary artery disease (CAD). In conclusion, our study reveals novel common genetic risk factors for VTE, stroke and CAD and provides evidence that self-reported data on blood clots used in a GWAS yield results that are comparable with those obtained using clinically diagnosed VTE. This observation opens up the potential for larger meta-analyses, which will enable elucidation of the genetics of thrombotic diseases, and serves as an example for the genetic study of other diseases.


Subject(s)
Genetic Loci/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Thrombosis/genetics , Adaptor Protein Complex 1/genetics , Adaptor Protein Complex mu Subunits/genetics , Adolescent , Adult , Biomarkers/metabolism , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Membrane Glycoproteins/genetics , Membrane Transport Proteins/genetics , Middle Aged , Nuclear Factor 90 Proteins/genetics , Risk Factors , Self Report , Young Adult
18.
Blood ; 128(8): 1121-8, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27365426

ABSTRACT

We conducted a genome-wide association study (GWAS) to identify novel predisposition alleles associated with Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) and JAK2 V617F clonal hematopoiesis in the general population. We recruited a web-based cohort of 726 individuals with polycythemia vera, essential thrombocythemia, and myelofibrosis and 252 637 population controls unselected for hematologic phenotypes. Using a single-nucleotide polymorphism (SNP) array platform with custom probes for the JAK2 V617F mutation (V617F), we identified 497 individuals (0.2%) among the population controls who were V617F carriers. We performed a combined GWAS of the MPN cases plus V617F carriers in the control population (n = 1223) vs the remaining controls who were noncarriers for V617F (n = 252 140). For these MPN cases plus V617F carriers, we replicated the germ line JAK2 46/1 haplotype (rs59384377: odds ratio [OR] = 2.4, P = 6.6 × 10(-89)), previously associated with V617F-positive MPN. We also identified genome-wide significant associations in the TERT gene (rs7705526: OR = 1.8, P = 1.1 × 10(-32)), in SH2B3 (rs7310615: OR = 1.4, P = 3.1 × 10(-14)), and upstream of TET2 (rs1548483: OR = 2.0, P = 2.0 × 10(-9)). These associations were confirmed in a separate replication cohort of 446 V617F carriers vs 169 021 noncarriers. In a joint analysis of the combined GWAS and replication results, we identified additional genome-wide significant predisposition alleles associated with CHEK2, ATM, PINT, and GFI1B All SNP ORs were similar for MPN patients and controls who were V617F carriers. These data indicate that the same germ line variants endow individuals with a predisposition not only to MPN, but also to JAK2 V617F clonal hematopoiesis, a more common phenomenon that may foreshadow the development of an overt neoplasm.


Subject(s)
Genetic Predisposition to Disease , Germ Cells/metabolism , Hematopoiesis/genetics , Janus Kinase 2/genetics , Mutation/genetics , Myeloproliferative Disorders/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Alleles , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Demography , Female , Genome-Wide Association Study , Humans , Infant , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Reproducibility of Results , Young Adult
19.
J Allergy Clin Immunol ; 139(4): 1148-1157, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27554816

ABSTRACT

BACKGROUND: Hundreds of genetic variants are thought to contribute to variation in asthma risk by modulating gene expression. Methods that increase the power of genome-wide association studies (GWASs) to identify risk-associated variants are needed. OBJECTIVE: We sought to develop a method that aggregates the evidence for association with disease risk across expression quantitative trait loci (eQTLs) of a gene and use this approach to identify asthma risk genes. METHODS: We developed a gene-based test and software package called EUGENE that (1) is applicable to GWAS summary statistics; (2) considers both cis- and trans-eQTLs; (3) incorporates eQTLs identified in different tissues; and (4) uses simulations to account for multiple testing. We applied this approach to 2 published asthma GWASs (combined n = 46,044) and used mouse studies to provide initial functional insights into 2 genes with novel genetic associations. RESULTS: We tested the association between asthma and 17,190 genes that were found to have cis- and/or trans-eQTLs across 16 published eQTL studies. At an empirical FDR of 5%, 48 genes were associated with asthma risk. Of these, for 37, the association was driven by eQTLs located in established risk loci for allergic disease, including 6 genes not previously implicated in disease cause (eg, LIMS1, TINF2, and SAFB). The remaining 11 significant genes represent potential novel genetic associations with asthma. The association with 4 of these replicated in an independent GWAS: B4GALT3, USMG5, P2RY13, and P2RY14, which are genes involved in nucleotide synthesis or nucleotide-dependent cell activation. In mouse studies, P2ry13 and P2ry14-purinergic receptors activated by adenosine 5-diphosphate and UDP-sugars, respectively-were upregulated after allergen challenge, notably in airway epithelial cells, eosinophils, and neutrophils. Intranasal exposure with receptor agonists induced the release of IL-33 and subsequent eosinophil infiltration into the lungs. CONCLUSION: We identified novel associations between asthma and eQTLs for 4 genes related to nucleotide synthesis/signaling and demonstrated the power of gene-based analyses of GWASs.


Subject(s)
Asthma/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Nucleotides/genetics , Software , Animals , Genetic Variation/genetics , Humans , Mice , Mice, Inbred C57BL , Mitochondrial Proton-Translocating ATPases/genetics , Nucleotides/biosynthesis , Quantitative Trait Loci/genetics , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2Y/genetics
20.
Hum Mol Genet ; 24(9): 2700-8, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25628336

ABSTRACT

Roughly one in three individuals is highly susceptible to motion sickness and yet the underlying causes of this condition are not well understood. Despite high heritability, no associated genetic factors have been discovered. Here, we conducted the first genome-wide association study on motion sickness in 80 494 individuals from the 23andMe database who were surveyed about car sickness. Thirty-five single-nucleotide polymorphisms (SNPs) were associated with motion sickness at a genome-wide-significant level (P < 5 × 10(-8)). Many of these SNPs are near genes involved in balance, and eye, ear and cranial development (e.g. PVRL3, TSHZ1, MUTED, HOXB3, HOXD3). Other SNPs may affect motion sickness through nearby genes with roles in the nervous system, glucose homeostasis or hypoxia. We show that several of these SNPs display sex-specific effects, with up to three times stronger effects in women. We searched for comorbid phenotypes with motion sickness, confirming associations with known comorbidities including migraines, postoperative nausea and vomiting (PONV), vertigo and morning sickness and observing new associations with altitude sickness and many gastrointestinal conditions. We also show that two of these related phenotypes (PONV and migraines) share underlying genetic factors with motion sickness. These results point to the importance of the nervous system in motion sickness and suggest a role for glucose levels in motion-induced nausea and vomiting, a finding that may provide insight into other nausea-related phenotypes like PONV. They also highlight personal characteristics (e.g. being a poor sleeper) that correlate with motion sickness, findings that could help identify risk factors or treatments.


Subject(s)
Ear, Inner/embryology , Ear, Inner/physiopathology , Genetic Variation , Glucose/metabolism , Homeostasis , Motion Sickness/etiology , Motion Sickness/physiopathology , Adult , Aged , Alleles , Female , Genetic Association Studies , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Phenotype , Polymorphism, Single Nucleotide , Sex Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL