Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 281
Filter
Add more filters

Publication year range
1.
J Infect Dis ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626170

ABSTRACT

BACKGROUND: We evaluated long-term trajectories of circulating hepatitis B virus (HBV)-RNA and hepatitis B core-related antigen (HBcrAg) in persons with and without hepatitis B surface antigen (HBsAg) loss during tenofovir therapy in the Swiss HIV Cohort Study. METHODS: We included 29 persons with HIV (PWH) with HBsAg loss and 29 matched PWH without loss. We compared HBV-RNA and HBcrAg decline and assessed the cumulative proportions with undetectable HBV-RNA and HBcrAg levels during tenofovir therapy using Kaplan-Meier estimates. RESULTS: HBsAg loss occurred after a median of 4 years (IQR 1 - 8). All participants with HBsAg loss achieved suppressed HBV-DNA and undetectable HBV-RNA preceding undetectable qHBsAg levels, whereas 79% achieved negative HBcrAg. In comparison, 79% of the participants without HBsAg loss achieved undetectable HBV-RNA and 48% negative HBcrAg. After two years on tenofovir, an HBV RNA decline ≥1 log10 copies/ml had 100% sensitivity and 36.4% specificity for HBsAg loss, whereas an HBcrAg decline ≥1 log10 U/ml had 91.0% sensitivity and 64.5% specificity. CONCLUSIONS: HBV-RNA suppression preceded undetectable qHBsAg levels, and had high sensitivity but low specificity for HBsAg loss during tenofovir therapy in PWH. HBcrAg remained detectable in approximately 20% of persons with, and 50% of persons without HBsAg loss.

2.
Clin Infect Dis ; 78(2): 312-323, 2024 02 17.
Article in English | MEDLINE | ID: mdl-37738676

ABSTRACT

BACKGROUND: The use of assays detecting cytomegalovirus (CMV)-specific T cell-mediated immunity may individualize the duration of antiviral prophylaxis after transplantation. METHODS: In this randomized trial, kidney and liver transplant recipients from 6 centers in Switzerland were enrolled if they were CMV-seronegative with seropositive donors or CMV-seropositive receiving antithymocyte globulins. Patients were randomized to a duration of antiviral prophylaxis based on immune monitoring (intervention) or a fixed duration (control). Patients in the control group were planned to receive 180 days (CMV-seronegative) or 90 days (CMV-seropositive) of valganciclovir. Patients were assessed monthly with a CMV ELISpot assay (T-Track CMV); prophylaxis in the intervention group was stopped if the assay was positive. The co-primary outcomes were the proportion of patients with clinically significant CMV infection and reduction in days of prophylaxis. Between-group differences were adjusted for CMV serostatus. RESULTS: Overall, 193 patients were randomized (92 in the immune-monitoring group and 101 in the control group), of whom 185 had evaluation of the primary outcome (87 and 98 patients). CMV infection occurred in 26 of 87 (adjusted percentage, 30.9%) in the immune-monitoring group and in 32 of 98 (adjusted percentage, 31.1%) in the control group (adjusted risk difference, -0.1; 95% confidence interval [CI], -13.0% to 12.7%; P = .064). The duration of prophylaxis was shorter in the immune-monitoring group (adjusted difference, -26.0 days; 95%, CI, -41.1 to -10.8 days; P < .001). CONCLUSIONS: Immune monitoring resulted in a significant reduction of antiviral prophylaxis, but we were unable to establish noninferiority of this approach on the co-primary outcome of CMV infection. CLINICAL TRIALS REGISTRATION: NCT02538172.


Subject(s)
Cytomegalovirus Infections , Organ Transplantation , Humans , Cytomegalovirus , Antiviral Agents/therapeutic use , Monitoring, Immunologic , Cytomegalovirus Infections/diagnosis , Transplant Recipients , Organ Transplantation/adverse effects , Ganciclovir/therapeutic use
3.
J Med Virol ; 96(6): e29649, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38812416

ABSTRACT

Persistent infection with high-risk human papillomavirus (HPV) is recognized as the main cause for the development of anogenital cancers. This study prospectively evaluated the diagnostic performance of the novel Allplex-HPV28 assay with the Anyplex-II-HPV28 to detect and genotype HPV in 234 consecutive swabs and 32 biopsies of the anogenital tract from 265 patients with atypical findings in cytomorphological screening. Agreement in HPV-DNA detection between the Anyplex-II and Allplex-HPV28 assays was 99%. There was a notable diversity in the HPV-virome, with the most prevalent high-risk HPV types being 16, 53, 66, and 68. The agreement rates for detecting these genotypes exceeded 93% between the Anyplex-II and Allplex-HPV28 assays. Discrepancies in test results were solely noted for Anyplex-II-HPV28 results with a low signal intensity of "+", and for Allplex-HPV28 results with cycle thresholds of ≥36. The semi-quantitative analysis of HPV-DNA loads showed significant agreement between the Anyplex-II-HPV28 and Allplex-HPV28 assays (p < 0.001). Furthermore, HPV-DNA detection rates and mean HPV-DNA loads significantly correlated with the grade of abnormal changes identified in cytopathological assessment, being highest in cases of HSIL, condyloma accuminatum, and squamous cell carcinoma. Overall agreement rates for detecting specific HPV-types among the Anyplex-II and Allplex-HPV28 assays exceeded 99.5% in cases of atypical squamous cells, condyloma accuminatum, and squamous cell carcinoma. The novel Allplex-HPV28 assay shows good diagnostic performance in detecting and genotyping HPV commonly associated with anogenital cancers. Consequently, this assay could offer substantial potential for incorporation into future molecular screening programs for anogenital cancers in clinical settings.


Subject(s)
Early Detection of Cancer , Genotype , Papillomaviridae , Papillomavirus Infections , Humans , Papillomavirus Infections/virology , Papillomavirus Infections/diagnosis , Female , Male , Papillomaviridae/genetics , Papillomaviridae/classification , Papillomaviridae/isolation & purification , Middle Aged , Early Detection of Cancer/methods , Adult , Aged , Prospective Studies , Molecular Diagnostic Techniques/methods , DNA, Viral/genetics , Genotyping Techniques/methods , Young Adult , Sensitivity and Specificity , Anus Neoplasms/virology , Anus Neoplasms/diagnosis , Human Papillomavirus Viruses , Alphapapillomavirus
4.
Pathobiology ; 91(2): 158-168, 2024.
Article in English | MEDLINE | ID: mdl-37490884

ABSTRACT

BACKGROUND: Transcriptomic data on bronchoalveolar lavage (BAL) from COVID-19 patients are currently scarce. OBJECTIVES: This case series seeks to characterize the intra-alveolar immunopathology of COVID-19. METHOD: BALs were performed on 14 patients (5 COVID-19, of which 3 mild and 2 largely asymptomatic, 9 controls). Controls included asthma (n = 1), unremarkable BALs (n = 3), infections with respiratory syncytial virus (n = 1), influenza B (n = 1), and infections with other coronaviruses (n = 3). SARS-CoV-2 RNA load was measured by quantitative nucleic acid testing, while the detection of other pathogens was performed by immunofluorescence or multiplex NAT. RESULTS: Gene expression profiling showed 71 significantly downregulated and 5 upregulated transcripts in SARS-CoV-2-positive lavages versus controls. Downregulated transcripts included genes involved in macrophage development, polarization, and crosstalk (LGALS3, MARCO, ERG2, BTK, RAC1, CD83), and genes involved in chemokine signaling and immunometabolism (NUPR1, CEBPB, CEBPA, PECAM1, CCL18, PPARG, ALOX5, ALOX5AP). Upregulated transcripts featured genes involved in NK-T cell signaling (GZMA, GZMH, GNLY, PRF1, CD3G). Patients with mild COVID-19 showed a significant upregulation of genes involved in blood mononuclear cell/leukocyte function (G0S2, ANXA6, FCGR2B, ADORA3), coagulation (von Willebrand factor [VWF]), interferon response (IFRD1, IL12RB2), and a zinc metalloprotease elevated in asthma (CPA3) compared to asymptomatic cases. In-silico comparison of the 5 COVID-19 BAL cases to a published cohort of lethal COVID-19 showed a significant upregulation of "antigen processing and presentation" and "lysosome" pathways in lethal cases. CONCLUSIONS: These data underscore the heterogeneity of immune response in COVID-19. Further studies with a larger dataset are required to gain a better understanding of the hallmarks of SARS-CoV-2 immunological response.


Subject(s)
Asthma , COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2 , RNA, Viral , Bronchoalveolar Lavage , Transcriptome
5.
J Infect Dis ; 227(7): 888-900, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36409589

ABSTRACT

BACKGROUND: High-level BK polyomavirus (BKPyV) replication in allogeneic hematopoietic cell transplantation (HCT) predicts failing immune control and BKPyV-associated hemorrhagic cystitis. METHODS: To identify molecular markers of BKPyV replication and disease, we scrutinized BKPyV DNA-loads in longitudinal urine and plasma pairs from 20 HCT patients using quantitative nucleic acid testing (QNAT), DNase-I treatment prior to QNAT, next-generation sequencing (NGS), and tested cell-mediated immunity. RESULTS: We found that larger QNAT amplicons led to under-quantification and false-negatives results (P < .001). DNase-I reduced urine and plasma BKPyV-loads by >90% (P < .001), indicating non-encapsidated BKPyV genomes. DNase-resistant urine BKPyV-loads remained infectious in cell culture. BKPyV genome fragmentation of ≤250 bp impaired NGS coverage of genetic variation using 1000-bp and 5000-bp amplicons. Conversely, 250-bp amplicons captured viral minority variants. We identified genotype-specific and genotype-independent changes in capsid Vp1 or T-antigen predicted to escape from antibody neutralization or cytotoxic CD8 T-cells, respectively. Genotype-specific changes in immunodominant 9mers were associated with reduced or absent CD8 T-cell responses. Thus, failure to control BKPyV replication in HCT Patients may involve insufficient genotype-specific cytotoxic CD8 T-cell responses, potentially predictable by low neutralizing antibodies as well as genotype-independent immune escape. CONCLUSIONS: Our results provide new insights for patient evaluation and for designing immune protection through neutralizing antibodies, adoptive T-cell therapy, or vaccines.


Subject(s)
BK Virus , Hematopoietic Stem Cell Transplantation , Polyomavirus Infections , Humans , BK Virus/genetics , CD8-Positive T-Lymphocytes , Antibodies, Neutralizing
6.
J Infect Dis ; 227(4): 554-564, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36433831

ABSTRACT

BACKGROUND: Despite effective prevention approaches, ongoing human immunodeficiency virus 1 (HIV-1) transmission remains a public health concern indicating a need for identifying its drivers. METHODS: We combined a network-based clustering method using evolutionary distances between viral sequences with statistical learning approaches to investigate the dynamics of HIV transmission in the Swiss HIV Cohort Study and to predict the drivers of ongoing transmission. RESULTS: We found that only a minority of clusters and patients acquired links to new infections between 2007 and 2020. While the growth of clusters and the probability of individual patients acquiring new links in the transmission network was associated with epidemiological, behavioral, and virological predictors, the strength of these associations decreased substantially when adjusting for network characteristics. Thus, these network characteristics can capture major heterogeneities beyond classical epidemiological parameters. When modeling the probability of a newly diagnosed patient being linked with future infections, we found that the best predictive performance (median area under the curve receiver operating characteristic AUCROC = 0.77) was achieved by models including characteristics of the network as predictors and that models excluding them performed substantially worse (median AUCROC = 0.54). CONCLUSIONS: These results highlight the utility of molecular epidemiology-based network approaches for analyzing and predicting ongoing HIV transmission dynamics. This approach may serve for real-time prospective assessment of HIV transmission.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV-1/genetics , Switzerland/epidemiology , Cohort Studies , Prospective Studies , Phylogeny , Cluster Analysis
7.
Clin Infect Dis ; 77(9): 1303-1311, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37257071

ABSTRACT

BACKGROUND: People with human immunodeficiency virus type 1 (HIV-1) (PWH) are frequently coinfected with Mycobacterium tuberculosis (MTB) and at risk for progressing from asymptomatic latent TB infection (LTBI) to active tuberculosis (TB). LTBI testing and preventive treatment (TB specific prevention) are recommended, but its efficacy in low transmission settings is unclear. METHODS: We included PWH enrolled from 1988 to 2022 in the Swiss HIV Cohort study (SHCS). The outcome, incident TB, was defined as TB ≥6 months after SHCS inclusion. We assessed its risk factors using a time-updated hazard regression, modeled the potential impact of modifiable factors on TB incidence, performed mediation analysis to assess underlying causes of time trends, and evaluated preventive measures. RESULTS: In 21 528 PWH, LTBI prevalence declined from 15.1% in 2001% to 4.6% in 2021. Incident TB declined from 90.8 cases/1000 person-years in 1989 to 0.1 in 2021. A positive LTBI test showed a higher risk for incident TB (hazard ratio [HR] 9.8, 5.8-16.5) but only 10.5% of PWH with incident TB were tested positive. Preventive treatment reduced the risk in LTBI test positive PWH for active TB (relative risk reduction, 28.1%, absolute risk reduction 0.9%). On population level, the increase of CD4 T-cells and reduction of HIV viral load were the main driver of TB decrease. CONCLUSIONS: TB specific prevention is effective in selected patient groups. On a population level, control of HIV-1 remains the most important factor for incident TB reduction. Accurate identification of PWH at highest risk for TB is an unmet clinical need.


Subject(s)
HIV Infections , HIV-1 , Latent Tuberculosis , Tuberculosis , Humans , Switzerland/epidemiology , Cohort Studies , HIV Infections/complications , HIV Infections/epidemiology , Tuberculosis/epidemiology , Tuberculosis/drug therapy , Latent Tuberculosis/epidemiology
8.
Mol Biol Evol ; 39(8)2022 08 03.
Article in English | MEDLINE | ID: mdl-35921544

ABSTRACT

Infectious diseases are particularly challenging for genome-wide association studies (GWAS) because genetic effects from two organisms (pathogen and host) can influence a trait. Traditional GWAS assume individual samples are independent observations. However, pathogen effects on a trait can be heritable from donor to recipient in transmission chains. Thus, residuals in GWAS association tests for host genetic effects may not be independent due to shared pathogen ancestry. We propose a new method to estimate and remove heritable pathogen effects on a trait based on the pathogen phylogeny prior to host GWAS, thus restoring independence of samples. In simulations, we show this additional step can increase GWAS power to detect truly associated host variants when pathogen effects are highly heritable, with strong phylogenetic correlations. We applied our framework to data from two different host-pathogen systems, HIV in humans and X. arboricola in A. thaliana. In both systems, the heritability and thus phylogenetic correlations turn out to be low enough such that qualitative results of GWAS do not change when accounting for the pathogen shared ancestry through a correction step. This means that previous GWAS results applied to these two systems should not be biased due to shared pathogen ancestry. In summary, our framework provides additional information on the evolutionary dynamics of traits in pathogen populations and may improve GWAS if pathogen effects are highly phylogenetically correlated amongst individuals in a cohort.


Subject(s)
Communicable Diseases , Genome-Wide Association Study , Communicable Diseases/genetics , Genome-Wide Association Study/methods , Humans , Phenotype , Phylogeny , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable
9.
J Antimicrob Chemother ; 78(3): 656-664, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36738248

ABSTRACT

BACKGROUND: Next-generation sequencing (NGS) is gradually replacing Sanger sequencing (SS) as the primary method for HIV genotypic resistance testing. However, there are limited systematic data on comparability of these methods in a clinical setting for the presence of low-abundance drug resistance mutations (DRMs) and their dependency on the variant-calling thresholds. METHODS: To compare the HIV-DRMs detected by SS and NGS, we included participants enrolled in the Swiss HIV Cohort Study (SHCS) with SS and NGS sequences available with sample collection dates ≤7 days apart. We tested for the presence of HIV-DRMs and compared the agreement between SS and NGS at different variant-calling thresholds. RESULTS: We included 594 pairs of SS and NGS from 527 SHCS participants. Males accounted for 80.5% of the participants, 76.3% were ART naive at sample collection and 78.1% of the sequences were subtype B. Overall, we observed a good agreement (Cohen's kappa >0.80) for HIV-DRMs for variant-calling thresholds ≥5%. We observed an increase in low-abundance HIV-DRMs detected at lower thresholds [28/417 (6.7%) at 10%-25% to 293/812 (36.1%) at 1%-2% threshold]. However, such low-abundance HIV-DRMs were overrepresented in ART-naive participants and were in most cases not detected in previously sampled sequences suggesting high sequencing error for thresholds <3%. CONCLUSIONS: We found high concordance between SS and NGS but also a substantial number of low-abundance HIV-DRMs detected only by NGS at lower variant-calling thresholds. Our findings suggest that a substantial fraction of the low-abundance HIV-DRMs detected at thresholds <3% may represent sequencing errors and hence should not be overinterpreted in clinical practice.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Male , Humans , HIV Infections/drug therapy , Cohort Studies , Drug Resistance, Viral/genetics , Viral Load , HIV Seropositivity/drug therapy , Mutation , High-Throughput Nucleotide Sequencing/methods , Genotype , Anti-HIV Agents/therapeutic use
10.
PLoS Pathog ; 17(3): e1009374, 2021 03.
Article in English | MEDLINE | ID: mdl-33740028

ABSTRACT

The first case of SARS-CoV-2 in Basel, Switzerland was detected on February 26th 2020. We present a phylogenetic study to explore viral introduction and evolution during the exponential early phase of the local COVID-19 outbreak from February 26th until March 23rd. We sequenced SARS-CoV-2 naso-oropharyngeal swabs from 746 positive tests that were performed at the University Hospital Basel during the study period. We successfully generated 468 high quality genomes from unique patients and called variants with our COVID-19 Pipeline (COVGAP), and analysed viral genetic diversity using PANGOLIN taxonomic lineages. To identify introduction and dissemination events we incorporated global SARS-CoV-2 genomes and inferred a time-calibrated phylogeny. Epidemiological data from patient questionnaires was used to facilitate the interpretation of phylogenetic observations. The early outbreak in Basel was dominated by lineage B.1 (83·6%), detected first on March 2nd, although the first sample identified belonged to B.1.1. Within B.1, 68·2% of our samples fall within a clade defined by the SNP C15324T ('Basel cluster'), including 157 identical sequences at the root of the 'Basel cluster', some of which we can specifically trace to regional spreading events. We infer the origin of B.1-C15324T to mid-February in our tri-national region. The other genomes map broadly over the global phylogenetic tree, showing several introduction events from and/or dissemination to other regions of the world via travellers. Family transmissions can also be traced in our data. A single lineage variant dominated the outbreak in the Basel area while other lineages, such as the first (B.1.1), did not propagate. A mass gathering event was the predominant initial source of cases, with travel returners and family transmissions to a lesser extent. We highlight the importance of adding specific questions to epidemiological questionnaires, to obtain data on attendance of large gatherings and their locations, as well as travel history, to effectively identify routes of transmissions in up-coming outbreaks. This phylogenetic analysis in concert with epidemiological and contact tracing data, allows connection and interpretation of events, and can inform public health interventions. Trial Registration: ClinicalTrials.gov NCT04351503.


Subject(s)
COVID-19/diagnosis , Contact Tracing/methods , Crowding , Genome, Viral , Mutation , SARS-CoV-2/genetics , Adult , COVID-19/epidemiology , COVID-19/genetics , Female , Humans , Longitudinal Studies , Male , Mass Screening , Middle Aged , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Switzerland/epidemiology
11.
J Med Virol ; 95(10): e29139, 2023 10.
Article in English | MEDLINE | ID: mdl-37804497

ABSTRACT

Management of cytomegalovirus (CMV) in transplant patients relies on measuring plasma CMV-loads using quantitative nucleic acid testing (QNAT). We prospectively compared the automated Roche-cobas®6800-CMV and Roche-CAP/CTM-CMV with laboratory-developed Basel-CMV-UL54-95bp, and Basel-CMV-UL111a-77bp. Roche-cobas®6800-CMV and Roche-CAP/CTM-CMV were qualitatively concordant in 142/150 cases (95%). In-depth comparison revealed higher CMV-loads of the laboratory-developed assay and correlated with smaller amplicon size. After calibration to the 1.WHO-approved CMV international standard, differences were reduced but remained significant. DNase-I pretreatment significantly reduced CMV-loads for both automated Roche-CAP/CTM-CMV and Roche-cobas®6800-CMV assays, whereby 90% and 95% of samples became undetectable. DNase-I pretreatment also reduced CMV-loads quantified by Basel-CMV-UL54-95bp and Basel-CMV-UL111a-77bp, but remaining detectable in 20% and 35%, respectively. Differences were largest for 110 samples with low-level CMV-DNAemia being detectable but not-quantifiable by Roche-cobas®6800-CMV, whereby the smaller amplicon sizes yielded higher viral loads for concordant positives. We conclude that non-encapsidated fragmented CMV-DNA is the major form of plasma CMV-loads also measured by fully-automated platforms. Amplicons of <150 bp and calibrators are needed for reliable and commutable QNAT-results. We hypothesize that non-encapsidated fragmented CMV-DNA results from lysis of CMV-replicating cells and represent a direct marker of viral cell damage, which contribute to delayed viral load responses despite effective antivirals.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Cytomegalovirus/genetics , Cytomegalovirus Infections/diagnosis , Cytology , DNA, Viral/genetics , Viral Load/methods , Deoxyribonucleases
12.
J Med Virol ; 95(2): e28583, 2023 02.
Article in English | MEDLINE | ID: mdl-36794677

ABSTRACT

Human papillomavirus (HPV) infections are often asymptomatic, but some of the >200 HPV genotypes confer a high risk for precancerous cervical lesions and cervical cancer. Current clinical management of HPV infections relies on reliable nucleic acid testing detection and genotyping. We prospectively compared nucleic acid extraction without and with prior centrifugation enrichment for detecting and genotyping HPV in cervical swabs with atypical squamous or glandular cells. Consecutive swabs were analyzed from 45 patients with atypical squamous or glandular cells. Nucleic acids were extracted in parallel using three procedures, Abbott-M2000, Roche-MagNA-Pure-96 Large-Volume Kit without (Roche-MP-large) and with prior centrifugation (Roche-MP-large/spin) and tested using Seegene-Anyplex-II HPV28. In total, 54 HPV-genotypes were detected in 45 samples, 51 by Roche-MP-large/spin, 48 by Abbott-M2000 and 42 by Roche-MP-large. The overall concordance was 80% for detecting any HPV and 74% for specific HPV-genotypes. Roche-MP-large/spin and Abbott-M2000 showed the highest concordance for HPV detection (88.9%; kappa 0.78), and genotyping (88.5%). Two and more HPV-genotypes were detected in 15 samples, often with one HPV being more abundant. Dilution series confirmed the specific detection of multiple HPV-genotypes and their relative abundance. In 285 consecutive follow-up samples extracted by Roche-MP-large/spin, the top three detected genotypes were the high-risk HPV16, HPV53, HPV56 and the low-risk HPV42, HPV54 and HPV61. Rate and breadth of HPV detection in cervical swabs depends on extraction protocols being highest after centrifugation/enrichment. As multivalent HPV-vaccine coverage increases, detecting the evolving HPV virome depends on improved extraction and broader genotype coverage.


Subject(s)
Carcinoma, Squamous Cell , Papillomavirus Infections , Precancerous Conditions , Uterine Cervical Neoplasms , Female , Humans , Human Papillomavirus Viruses , Genotype , Papillomaviridae/genetics , DNA, Viral/genetics
13.
J Infect Dis ; 226(7): 1256-1266, 2022 09 28.
Article in English | MEDLINE | ID: mdl-35485458

ABSTRACT

BACKGROUND: Studying human immunodeficiency virus type 1 (HIV-1) superinfection is important to understand virus transmission, disease progression, and vaccine design. But detection remains challenging, with low sampling frequencies and insufficient longitudinal samples. METHODS: Using the Swiss HIV Cohort Study (SHCS), we developed a molecular epidemiology screening for superinfections. A phylogeny built from 22 243 HIV-1 partial polymerase sequences was used to identify potential superinfections among 4575 SHCS participants with longitudinal sequences. A subset of potential superinfections was tested by near-full-length viral genome sequencing (NFVGS) of biobanked plasma samples. RESULTS: Based on phylogenetic and distance criteria, 325 potential HIV-1 superinfections were identified and categorized by their likelihood of being detected as superinfections due to sample misidentification. NFVGS was performed for 128 potential superinfections; of these, 52 were confirmed by NFVGS, 15 were not confirmed, and for 61 sampling did not allow confirming or rejecting superinfection because the sequenced samples did not include the relevant time points causing the superinfection signal in the original screen. Thus, NFVGS could support 52 of 67 adequately sampled potential superinfections. CONCLUSIONS: This cohort-based molecular approach identified, to our knowledge, the largest population of confirmed superinfections, showing that, while rare with a prevalence of 1%-7%, superinfections are not negligible events.


Subject(s)
HIV Infections , HIV-1 , Superinfection , Vaccines , Cohort Studies , Humans , Molecular Epidemiology , Phylogeny , Superinfection/epidemiology , Switzerland/epidemiology
14.
J Infect Dis ; 225(2): 306-316, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34260728

ABSTRACT

BACKGROUND: In Switzerland, HIV-1 transmission among men who have sex with men (MSM) has been dominated by subtype B, whilst non-B subtypes are commonly attributed to infections acquired abroad among heterosexuals. Here, we evaluated the temporal trends of non-B subtypes and the characteristics of molecular transmission clusters (MTCs) among MSM. METHODS: Sociodemographic and clinical data and partial pol sequences were obtained from participants enrolled in the Swiss HIV Cohort Study. For non-B subtypes, maximum likelihood trees were constructed, from which Swiss MTCs were identified and analyzed by transmission group. RESULTS: Non-B subtypes were identified in 8.1% (416/5116) of MSM participants. CRF01_AE was the most prevalent strain (3.5%), followed by subtype A (1.2%), F (1.1%), CRF02_AG (1.1%), C (0.9%), and G (0.3%). Between 1990 and 2019, an increase in the proportion of newly diagnosed individuals (0/123 [0%] to 11/32 [34%]) with non-B subtypes in MSM was found. Across all non-B subtypes, the majority of MSM MTCs were European. Larger MTCs were observed for MSM than heterosexuals. CONCLUSIONS: We found a substantial increase in HIV-1 non-B subtypes among MSM in Switzerland and the occurrence of large MTCs, highlighting the importance of molecular surveillance in guiding public health strategies targeting the HIV-1 epidemic.


Subject(s)
HIV Infections/epidemiology , HIV Infections/transmission , HIV Infections/virology , HIV-1/classification , Homosexuality, Male/statistics & numerical data , Adult , Cohort Studies , Disease Transmission, Infectious , HIV Seropositivity/epidemiology , HIV-1/genetics , HIV-1/isolation & purification , Humans , Male , Molecular Epidemiology , Phylogeny , Prospective Studies , Switzerland/epidemiology
15.
J Clin Microbiol ; 60(1): e0169821, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34757834

ABSTRACT

This first pilot trial on external quality assessment (EQA) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whole-genome sequencing, initiated by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Genomic and Molecular Diagnostics (ESGMD) and the Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing. Ten samples with various viral loads were sent out to 15 clinical laboratories that had free choice of sequencing methods and bioinformatic analyses. The key aspects on which the individual centers were compared were the identification of (i) single nucleotide polymorphisms (SNPs) and indels, (ii) Pango lineages, and (iii) clusters between samples. The participating laboratories used a wide array of methods and analysis pipelines. Most were able to generate whole genomes for all samples. Genomes were sequenced to various depths (up to a 100-fold difference across centers). There was a very good consensus regarding the majority of reporting criteria, but there were a few discrepancies in lineage and cluster assignments. Additionally, there were inconsistencies in variant calling. The main reasons for discrepancies were missing data, bioinformatic choices, and interpretation of data. The pilot EQA was overall a success. It was able to show the high quality of participating laboratories and provide valuable feedback in cases where problems occurred, thereby improving the sequencing setup of laboratories. A larger follow-up EQA should, however, improve on defining the variables and format of the report. Additionally, contamination and/or minority variants should be a further aspect of assessment.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Laboratories , Laboratories, Clinical , Pilot Projects
16.
J Virol ; 95(15): e0012721, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34011542

ABSTRACT

Small-molecule drugs inhibiting BK polyomavirus (BKPyV) represent a significant unmet clinical need in view of polyomavirus-associated nephropathy or hemorrhagic cystitis, which complicate 5% to 25% of kidney and hematopoietic cell transplantations. We characterized the inhibitory activity of acitretin on BKPyV replication in primary human renal proximal tubular epithelial cells (RPTECs). Effective inhibitory concentrations of 50% (EC50) and 90% (EC90) were determined in dilution series measuring BKPyV loads, transcripts, and protein expression, using cell proliferation, metabolic activity, and viability to estimate cytotoxic concentrations and selectivity indices (SI). The acitretin EC50 and EC90 in RPTECs were 0.64 (SI50, 250) and 3.25 µM (SI90, 49.2), respectively. Acitretin effectively inhibited BKPyV replication until 72 h postinfection when added 24 h before infection until 12 h after infection, but decreased to <50% at later time points. Acitretin did not interfere with nuclear delivery of BKPyV genomes, but it decreased large T-antigen transcription and protein expression. Acitretin did not inhibit the initial round of BKPyV replication following transfection of full-length viral genomes, but it affected subsequent rounds of reinfection. Acitretin also inhibited BKPyV replication in human urothelial cells and in Vero cells, but not in COS-7 cells constitutively expressing Simian virus 40 (SV40) large T antigen. Retinoic acid agonists (all-trans retinoic acid, 9-cis retinoic acid [9-cis-RA], 13-cis-RA, bexarotene, and tamibarotene) and the RAR/RXR antagonist RO41-5253 also inhibited BKPyV replication, pointing to an as-yet-undefined mechanism. IMPORTANCE Acitretin selectively inhibits BKPyV replication in primary human cell culture models of nephropathy and hemorrhagic cystitis. Since acitretin is an approved drug in clinical use reaching BKPyV-inhibiting concentrations in systemically treated patients, further studies are warranted to provide data for clinical repurposing of retinoids for treatment and prevention of replicative BKPyV-diseases.


Subject(s)
Acitretin/pharmacology , Antiviral Agents/pharmacology , BK Virus/growth & development , Retinoids/pharmacology , Tretinoin/pharmacology , Virus Replication/drug effects , Animals , Antigens, Viral, Tumor/biosynthesis , Antigens, Viral, Tumor/genetics , COS Cells , Cell Line , Chlorocebus aethiops , Cystitis/drug therapy , Cystitis/virology , Genome, Viral/genetics , HEK293 Cells , Humans , Kidney Diseases/drug therapy , Kidney Diseases/virology , Microbial Sensitivity Tests , Polyomavirus Infections/drug therapy , Tretinoin/analogs & derivatives , Tumor Virus Infections/drug therapy , Vero Cells
17.
Transfusion ; 62(10): 1997-2011, 2022 10.
Article in English | MEDLINE | ID: mdl-36054476

ABSTRACT

BACKGROUND: Efficacy of donated COVID-19 convalescent plasma (dCCP) is uncertain and may depend on antibody titers, neutralizing capacity, timing of administration, and patient characteristics. STUDY DESIGN AND METHODS: In a single-center hypothesis-generating prospective case-control study with 1:2 matched dCCP recipients to controls according to disease severity at day 1, hospitalized adults with COVID-19 pneumonia received 2 × 200 ml pathogen-reduced treated dCCP from 2 different donors. We evaluated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in COVID-19 convalescent plasma donors and recipients using multiple antibody assays including a Coronavirus antigen microarray (COVAM), and binding and neutralizing antibody assays. Outcomes were dCCP characteristics, antibody responses, 28-day mortality, and dCCP -related adverse events in recipients. RESULTS: Eleven of 13 dCCPs (85%) contained neutralizing antibodies (nAb). PRT did not affect dCCP antibody activity. Fifteen CCP recipients and 30 controls (median age 64 and 65 years, respectively) were enrolled. dCCP recipients received 2 dCCPs from 2 different donors after a median of one hospital day and 11 days after symptom onset. One dCCP recipient (6.7%) and 6 controls (20%) died (p = 0.233). We observed no dCCP-related adverse events. Transfusion of unselected dCCP led to heterogeneous SARS CoV-2 antibody responses. COVAM clustered dCCPs in 4 distinct groups and showed endogenous immune responses to SARS-CoV-2 antigens over 14-21 days post dCCP in all except 4 immunosuppressed recipients. DISCUSSION: PRT did not impact dCCP anti-virus neutralizing activity. Transfusion of unselected dCCP did not impact survival and had no adverse effects. Variable dCCP antibodies and post-transfusion antibody responses indicate the need for controlled trials using well-characterized dCCP with informative assays.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Case-Control Studies , Humans , Immunization, Passive , Middle Aged , COVID-19 Serotherapy
18.
Rev Med Virol ; 31(6): e2220, 2021 11.
Article in English | MEDLINE | ID: mdl-33729628

ABSTRACT

Human polyomaviruses (HPyVs) encompass more than 10 species infecting 30%-90% of the human population without significant illness. Proven HPyV diseases with documented histopathology affect primarily immunocompromised hosts with manifestations in brain, skin and renourinary tract such as polyomavirus-associated nephropathy (PyVAN), polyomavirus-associated haemorrhagic cystitis (PyVHC), polyomavirus-associated urothelial cancer (PyVUC), progressive multifocal leukoencephalopathy (PML), Merkel cell carcinoma (MCC), Trichodysplasia spinulosa (TS) and pruritic hyperproliferative keratinopathy. Although virus-specific immune control is the eventual goal of therapy and lasting cure, antiviral treatments are urgently needed in order to reduce or prevent HPyV diseases and thereby bridging the time needed to establish virus-specific immunity. However, the small dsDNA genome of only 5 kb of the non-enveloped HPyVs only encodes 5-7 viral proteins. Thus, HPyV replication relies heavily on host cell factors, thereby limiting both, number and type of specific virus-encoded antiviral targets. Lack of cost-effective high-throughput screening systems and relevant small animal models complicates the preclinical development. Current clinical studies are limited by small case numbers, poorly efficacious compounds and absence of proper randomized trial design. Here, we review preclinical and clinical studies that evaluated small molecules with presumed antiviral activity against HPyVs and provide an outlook regarding potential new antiviral strategies.


Subject(s)
Antiviral Agents/therapeutic use , Polyomavirus/drug effects , DNA Viruses , Humans
19.
Transpl Infect Dis ; 24(3): e13828, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35324045

ABSTRACT

INTRODUCTION: Patients after allogeneic stem cell transplantation are at high risk for infection-related complications, and vaccination efficacy might be impaired depending on the immune reconstitution. In this study, we evaluate their response to mRNA vaccines against SARS-CoV-2. METHODS: During routine follow-up visits, patients were asked about their vaccination status and if they had a previous infection with SARS-CoV-2. In fully vaccinated patients, the antibody titer was measured using the Roche Elecsys Anti-SARS-CoV-2 S test. A titer of <1 U/L was considered as negative, titers of ≥250 U/ml as a high antibody titer, and a titer of 50-249 U/ml as a low antibody titer. Patient characteristics were evaluated by chart review to identify risk factors for poor vaccination response. RESULTS: The majority of patients developed a high antibody titer (138 out 182 patients, 75.8%). Risk factors for a low antibody titer were immunosuppressive therapy, a lymphocyte count <0.9 G/L, ongoing treatment for the underlying malignancy, and active graft-versus-host disease (GvHD). Donor type, underlying disease, a previous SARS-CoV-2 infection, and sex did not significantly influence the response to the vaccination. DISCUSSION: While patients undergoing allogeneic stem cell transplantation have been excluded from the initial registration trials, our real-world experience with a large patient cohort confirms the data of previous studies, showing that most patients do have a good response to mRNA vaccines against SARS-CoV-2. Nevertheless, a significant proportion of patients shows an inadequate vaccination, which can be improved after a third vaccination in most cases despite immunosuppressive therapy.


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , RNA, Messenger , SARS-CoV-2 , Vaccination
20.
Transpl Infect Dis ; 24(6): e13977, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36271650

ABSTRACT

The CMV Symposium in September 2021 was an international conference dedicated to cytomegalovirus (CMV) infection after solid organ or hematopoietic stem cell transplantation. This review provides an overview of the presentations given by the expert faculty, supplemented with educational clinical cases. Topics discussed include CMV epidemiology and diagnosis, the burden of CMV infection and disease, CMV-specific immunity and management of CMV in transplant settings. Major advances in the prevention and treatment of CMV in the past decade and increased understanding of CMV immunity have led to improved patient outcomes. In the future, management algorithms may be individualized based on the transplant recipient's immune profile, which will mark the start of a new era for patients with CMV.


Subject(s)
Cytomegalovirus Infections , Hematopoietic Stem Cell Transplantation , Lung Transplantation , Organ Transplantation , Humans , Cytomegalovirus , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/epidemiology , Cytomegalovirus Infections/prevention & control , Organ Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , Antiviral Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL