Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 900
Filter
Add more filters

Publication year range
1.
Cell ; 155(2): 384-96, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24120137

ABSTRACT

Hepatocellular carcinoma (HCC) is a slowly developing malignancy postulated to evolve from premalignant lesions in chronically damaged livers. However, it was never established that premalignant lesions actually contain tumor progenitors that give rise to cancer. Here, we describe isolation and characterization of HCC progenitor cells (HcPCs) from different mouse HCC models. Unlike fully malignant HCC, HcPCs give rise to cancer only when introduced into a liver undergoing chronic damage and compensatory proliferation. Although HcPCs exhibit a similar transcriptomic profile to bipotential hepatobiliary progenitors, the latter do not give rise to tumors. Cells resembling HcPCs reside within dysplastic lesions that appear several months before HCC nodules. Unlike early hepatocarcinogenesis, which depends on paracrine IL-6 production by inflammatory cells, due to upregulation of LIN28 expression, HcPCs had acquired autocrine IL-6 signaling that stimulates their in vivo growth and malignant progression. This may be a general mechanism that drives other IL-6-producing malignancies.


Subject(s)
Autocrine Communication , Gene Expression Regulation, Neoplastic , Interleukin-6/metabolism , Liver Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Disease Progression , Hepacivirus , Hepatitis C/genetics , Hepatitis C/metabolism , Hepatitis C/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice , Mice, Inbred C57BL
2.
Biochem Biophys Res Commun ; 695: 149418, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38176171

ABSTRACT

Glioma is a highly recalcitrant disease with a 5-year survival of 6.8 %. Temozolomide (TMZ), first-line therapy for glioma, is more effective in O6-methylguanine-DNA methyltransferase (MGMT)-negative gliomas than in MGMT-positive gliomas as MGMT confers resistance to TMZ. Methionine restriction is effective for many cancers in mouse models including glioma. The concern is that methionine restriction could induce MGMT by decreasing DNA methylation and confer resistance to TMZ. In the present study, we investigated the efficacy of combining methionine restriction with TMZ for the treatment of MGMT-negative glioma, and whether methionine restriction induced MGMT. Human MGMT-negative U87 glioma cells were used to determine the efficacy of TMZ combined with methionine restriction. Recombinant methioninase (rMETase) inhibited U87 glioma growth without induction of MGMT in vitro. The combination of rMETase and TMZ inhibited U87 cell proliferation more than either agent alone in vitro. In the orthotopic nude-mouse model, the combination of TMZ and a methionine-deficient diet was much more effective than TMZ alone: two mice out of five were cured of glioma by the combination. No mice died during the treatment period. Methionine restriction enhanced the efficacy of TMZ in MGMT-negative glioma without inducing MGMT, demonstrating potential clinical promise for improved outcome of a currently incurable disease.


Subject(s)
Brain Neoplasms , Glioma , Temozolomide , Animals , Humans , Mice , Antineoplastic Agents, Alkylating/therapeutic use , Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , DNA Modification Methylases/pharmacology , DNA Modification Methylases/therapeutic use , DNA Repair Enzymes/genetics , Drug Resistance, Neoplasm , Glioma/drug therapy , Glioma/genetics , Methionine/pharmacology , Mice, Nude , O(6)-Methylguanine-DNA Methyltransferase , Racemethionine/pharmacology , Temozolomide/therapeutic use , Temozolomide/pharmacology , Tumor Suppressor Proteins/genetics
3.
Ann Surg Oncol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888861

ABSTRACT

BACKGROUND: Gastric cancer poses a major diagnostic and therapeutic challenge as surgical resection provides the only opportunity for a cure. Specific labeling of gastric cancer could distinguish resectable and nonresectable disease and facilitate an R0 resection, which could improve survival. METHODS: Two patient-derived gastric cancer lines, KG8 and KG10, were established from surgical specimens of two patients who underwent gastrectomy for gastric adenocarcinoma. Harvested tumor fragments were implanted into the greater curvature of the stomach to establish patient-derived orthotopic xenograft (PDOX) models. M5A (humanized anti-CEA antibody) or IgG control antibodies were conjugated with the near-infrared dye IRDye800CW. Mice received 50 µg of M5A-IR800 or 50 µg of IgG-IR800 intravenously and were imaged after 72 hr. Fluorescence imaging was performed by using the LI-COR Pearl Imaging System. A tumor-to-background ratio (TBR) was calculated by dividing the mean fluorescence intensity of the tumor versus adjacent stomach tissue. RESULTS: M5A-IR800 administration resulted in bright labeling of both KG8 and K10 tumors. In the KG8 PDOX models, the TBR for M5A-IR800 was 5.85 (SE ± 1.64) compared with IgG-IR800 at 0.70 (SE ± 0.17). The K10 PDOX models had a TBR of 3.71 (SE ± 0.73) for M5A-IR800 compared with 0.66 (SE ± 0.12) for IgG-IR800. CONCLUSIONS: Humanized anti-CEA (M5A) antibodies conjugated to fluorescent dyes provide bright and specific labeling of gastric cancer PDOX models. This tumor-specific fluorescent antibody is a promising potential clinical tool to detect the extent of disease for the determination of resectability as well as to visualize tumor margins during gastric cancer resection.

4.
J Surg Res ; 293: 701-708, 2024 01.
Article in English | MEDLINE | ID: mdl-37839102

ABSTRACT

INTRODUCTION: Gastric cancer poses a major therapeutic challenge. Improved visualization of tumor margins at the time of gastrectomy with fluorescent tumor-specific antibodies could improve outcomes. The present report demonstrates the potential of targeting gastric cancer with a humanized anti-carcinoembryonic antigen (CEA) antibody in orthotopic mouse models. METHODS: MKN45 cells were injected subcutaneously into nude mice to establish xenograft models. Tumor fragments collected from subcutaneous models were then implanted into the greater curvature of the stomach to establish orthotopic models. For tumor labeling, a humanized anti-CEA antibody (M5A) and IgG as a control, were conjugated with the near-infrared dye IRDye800CW. Time (24-72 h) and dose (50-100 µg) response curves were performed in subcutaneous models. Orthotopic models received 50 µg of M5A-IR800 or 50 µg IgG-IR800 as a control and were imaged after 72 h. Fluorescence imaging was performed on the mice using the LI-COR Pearl Imaging System. RESULTS: In subcutaneous models, tumor to background ratios (TBRs) reached 8.85 at 72 h. Median TBRs of orthotopic model primary tumors were 6.25 (interquartile range [IQR] 6.03-7.12) for M5A-IR800 compared to 0.42 (IQR 0.38-0.54) for control. Abdominal wall metastasis median TBRs were 13.52 (IQR 12.79-13.76) for M5A-IR800 and 3.19 (IQR 2.65-3.73) for the control. Immunohistochemistry confirmed CEA expression within tumors. CONCLUSIONS: Humanized anti-CEA antibodies conjugated to near-infrared dyes provide specific labeling of gastric cancers in mouse models. Orthotopic models demonstrated bright and specific labeling with TBRs greater than ten times that of control. This tumor-specific fluorescent antibody is a promising potential clinical tool for improving visualization of gastric cancer margins at time of surgical resection.


Subject(s)
Stomach Neoplasms , Humans , Animals , Mice , Mice, Nude , Carcinoembryonic Antigen , Antibodies, Monoclonal , Disease Models, Animal , Immunoglobulin G , Fluorescent Dyes , Cell Line, Tumor
5.
Curr Issues Mol Biol ; 45(4): 3347-3358, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37185743

ABSTRACT

Poor visualization of polyps can limit colorectal cancer screening. Fluorescent antibodies to mucin5AC (MUC5AC), a glycoprotein upregulated in adenomas and colorectal cancer, could improve screening colonoscopy polyp detection rate. Adenomatous polyposis coli flox mice with a Cdx2-Cre transgene (CPC-APC) develop colonic polyps that contain both dysplastic and malignant tissue. Mice received MUC5AC-IR800 or IRdye800 as a control IV and were sacrificed after 48 h for near-infrared imaging of their colons. A polyp-to-background ratio (PBR) was calculated for each polyp by dividing the mean fluorescence intensity of the polyp by the mean fluorescence intensity of the background tissue. The mean 25 µg PBR was 1.70 (±0.56); the mean 50 µg PBR was 2.64 (±0.97); the mean 100 µg PBR was 3.32 (±1.33); and the mean 150 µg PBR was 3.38 (±0.87). The mean PBR of the dye-only control was 2.22 (±1.02), significantly less than the 150 µg arm (p-value 0.008). The present study demonstrates the ability of fluorescent anti-MUC5AC antibodies to specifically target and label colonic polyps containing high-grade dysplasia and intramucosal adenocarcinoma in CPC-APC mice. This technology can potentially improve the detection rate and decrease the miss rate of advanced colonic neoplasia and early cancer at colonoscopy.

6.
Biochem Biophys Res Commun ; 643: 48-54, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36586158

ABSTRACT

Gastric cancer is highly malignant and recalcitrant to first line chemotherapies that include 5-fluorouracil (5-FU). Cancer cells are addicted to methionine for their proliferation and survival. Methionine addiction of cancer is known as the Hoffman effect. Methionine restriction with recombinant methioninase (rMETase) has been shown to selectively starve cancer cells and has shown synergy with cytotoxic chemotherapy including 5-FU. The present study aimed to investigate the efficacy of rMETase alone and the combination with 5-FU on poorly differentiated human gastric cancer cell lines (MKN45, NUGC3, and NUGC4) in vitro and vivo. rMETase suppressed the tumor growth of 3 kinds of poorly differentiated gastric cancer cells in vitro. The fluorescence ubiquitination-based cell cycle indicator (FUCCI) demonstrated cancer cells treated with rMETase were selectively trapped in the S/G2 phase of the cell cycle. In the present study, subcutaneous MKN45 gastric cancer models were randomized into four groups when the tumor volume reached 100 mm3: G1: untreated control; G2: 5-FU (i.p., 50 mg/kg, weekly, three weeks); G3: oral-rMETase (o-rMETase) (p.o., 100 units/body, daily, three weeks); G4: 5-FU with o-rMETase (5-FU; i.p., 50 mg/kg, weekly, three weeks o-rMETase; p.o., 100 units/body, daily, three weeks). All mice were sacrificed on day 22. Body weight and estimated tumor volume were measured twice a week. 5-FU and o-rMETase suppressed tumor growth as monotherapies on day 18 (p = 0.044 and p = 0.044). However, 5-FU combined with o-rMETase was significantly superior to each monotherapy (p < 0.001 and p < 0.001, respectively) and induced extensive necrosis compared to other groups. The combination of 5-FU and o-rMETase shows promise for transformative therapy for poorly differentiated gastric cancer in the clinic.


Subject(s)
Fluorouracil , Stomach Neoplasms , Mice , Humans , Animals , Fluorouracil/therapeutic use , Stomach Neoplasms/drug therapy , Carbon-Sulfur Lyases , Methionine/metabolism , Recombinant Proteins/pharmacology
7.
Ann Surg Oncol ; 30(1): 618-625, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36057899

ABSTRACT

BACKGROUND: Pancreatic cancer is a recalcitrant disease in which R0 resection is often not achieved owing to difficulty in visualization of the tumor margins and proximity of adjacent vessels. To improve outcomes, we have developed fluorescence-guided surgery (FGS) and photoimmunotherapy (PIT) using a fluorescent tumor-specific antibody. METHODS: Nude mice received surgical orthotopic implantation (SOI) of the human pancreatic cancer cell line BxPC-3 expressing green fluorescent protein. An anti-carcinoembryonic antigen-related cell adhesion molecule (CEACAM) monoclonal antibody (6G5j) was conjugated to the 700-nm fluorescent dye IR700DyeDX (6G5j-IR700DX). Three weeks after SOI, 16 mice received 50 µg 6G5j-IR700DX via the tail vein 24 h before surgery and were randomized to two groups: FGS-only (n = 8) and FGS + PIT (n = 8). All tumors were imaged with the Pearl Trilogy imaging system and resected under the guidance of the FLARE imaging system. The FGS + PIT group received PIT of the post-surgical bed at an intensity of 150 mW/cm2 for 30 min. Mice were sacrificed 4 weeks after initial surgery, and tumors were imaged with a Dino-Lite digital microscope, excised, and weighed. RESULTS: The 6G5j-IR700DX dye illuminated the orthotopic pancreatic tumors for FGS and PIT. The metastatic recurrence rate was 100.0% for FGS-only and 25.0% for FGS + PIT (p = 0.007). The average total recurrent tumor weight was 2370.3 ± 1907.8 mg for FGS-only and 705.5 ± 1200.0 mg for FGS + PIT (p = 0.039). CONCLUSIONS: FGS and adjuvant PIT can be combined by using a single antibody-fluorophore conjugate to significantly reduce the frequency of pancreatic cancer recurrence.


Subject(s)
Pancreatic Neoplasms , Humans , Mice , Animals , Mice, Nude , Pancreatic Neoplasms/surgery
8.
J Surg Res ; 291: 596-602, 2023 11.
Article in English | MEDLINE | ID: mdl-37540977

ABSTRACT

INTRODUCTION: Colorectal cancer (CRC) patients often develop liver metastasis. However, curative resection of liver metastasis is not always possible due to poor visualization of tumor margins. The present study reports the characterization of a humanized anti-carcinoembryonic antigen monoclonal antibody conjugated to a PEGylated near-infrared dye, that targets and brightly labels human CRC tumors in metastatic orthotopic mouse models. METHODS: The hT84.66-M5A (M5A) monoclonal antibody was conjugated with a polyethylene glycol (PEG) chain that incorporated a near infrared (NIR) IR800 dye to establish M5A-IR800 Sidewinder (M5A-IR800-SW). Nude mice with CRC orthotopic primary tumors and liver metastasis both developed from a human CRC cell line, were injected with M5A-IR800-SW and imaged with the Pearl Trilogy Imaging System. RESULTS: M5A-IR800-SW targeted and brightly labeled CRC tumors, both in primary-tumor and liver-metastasis models. M5A-IR800-SW at 75 µg exhibited highly-specific tumor labeling in a primary-tumor orthotopic model with a median tumor-to-background ratio of 9.77 and in a liver-metastasis orthotopic model with a median tumor-to-background ratio of 7.23 at 96 h. The precise labeling of the liver metastasis was due to lack of hepatic accumulation of M5A-IR800-SW in the liver. CONCLUSIONS: M5A-IR800-SW provided bright and targeted NIR images of human CRC in orthotopic primary-tumor and liver-metastasis mouse models. The results of the present study suggest the clinical potential of M5A-IR800-SW for fluorescence-guided surgery including metastasectomies for CRC. The lack of hepatic NIR signal is of critical importance to allow for precise labeling of liver tumors.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Animals , Mice , Humans , Mice, Nude , Fluorescent Dyes , Colorectal Neoplasms/pathology , Antibodies, Monoclonal , Liver Neoplasms/diagnosis , Liver Neoplasms/surgery , Liver Neoplasms/secondary , Polyethylene Glycols , Cell Line, Tumor
9.
Biochemistry (Mosc) ; 88(7): 944-952, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37751865

ABSTRACT

All types of cancer cells are addicted to methionine, which is known as the Hoffman effect. Restricting methionine inhibits the growth and proliferation of all tested types of cancer cells, leaving normal cells unaffected. Targeting methionine addiction with methioninase (METase), either alone or in combination with common cancer chemotherapy drugs, has been shown as an effective and safe therapy in various types of cancer cells and animal cancer models. About six years ago, recombinant METase (rMETase) was found to be able to be taken orally as a supplement, resulting in anecdotal positive results in patients with advanced cancer. Currently, there are 8 published clinical studies on METase, including two from the 1990s and six more recent ones. This review focuses on the results of clinical studies on METase-mediated methionine restriction, in particular, on the dosage of oral rMETase taken alone as a supplement or in combination with common chemotherapeutic agents in patients with advanced cancer.

10.
Int J Mol Sci ; 24(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36768257

ABSTRACT

Positron emission tomography (PET) is widely used to detect cancers. The usual isotope for PET imaging of cancer is [18F]deoxyglucose. The premise of using [18F]deoxyglucose is that cancers are addicted to glucose (The Warburg effect). However, cancers are more severely addicted to methionine (The Hoffman effect). [11C]methionine PET (MET-PET) has been effectively used for the detection of glioblastoma and other cancers in the brain, and in comparison, MET-PET has been shown to be more sensitive and accurate than [18F]deoxyglucose PET (FDG-PET). However, MET-PET has been limited to cancers in the brain. The present report describes the first applications of MET-PET to cancers of multiple organs, including rectal, bladder, lung, and kidney. The results in each case show that MET-PET is superior to FDG-PET due to the methionine addiction of cancer and suggest that the broad application of MET-PET should be undertaken for cancer detection.


Subject(s)
Glioblastoma , Methionine , Humans , Fluorodeoxyglucose F18 , Positron-Emission Tomography/methods , Racemethionine , Radiopharmaceuticals
11.
Cancer Sci ; 113(4): 1393-1405, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35179811

ABSTRACT

Tumor necrosis factor receptor-associated factor-6 (TRAF6) is a ubiquitin E3 ligase. TRAF6 plays an important role in tumor invasion and metastasis. However, the specific mechanism by which TRAF6 promotes colorectal cancer (CRC) metastasis is incompletely understood. This study aimed to determine whether TRAF6 affects the LPS-NF-κB-VEGF-C signaling pathway through ubiquitination, which plays a role in colorectal cancer metastasis. Here, our results showed that TRAF6 affected lymphangiogenesis through the LPS-NF-κB-VEGF-C signaling pathway. Using ubiquitination experiments, we found that TRAF6 was mainly ubiquitinated with the K63-linked chains, and LPS promoted ubiquitination of TRAF6 and K63-linked chains. More importantly, TRAF6 124mut is the main ubiquitination site of TRAF6 interacting with K63-linked chains. TRAF6 affected the migration, invasion, and lymphatic metastasis of colorectal cancer through its ubiquitination. In subcutaneous xenograft models, TRAF6 124mut inhibited tumor growth. In conclusion, our results provide new insight for studying the mechanism of lymphangiogenesis in colorectal cancer to promote cancer metastasis, which may provide new ideas for tumor immunotherapy.


Subject(s)
Colorectal Neoplasms , TNF Receptor-Associated Factor 6 , Colorectal Neoplasms/pathology , Humans , Intracellular Signaling Peptides and Proteins , Lipopolysaccharides/metabolism , NF-kappa B/metabolism , Signal Transduction , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , Ubiquitin/metabolism , Ubiquitination , Vascular Endothelial Growth Factor C/metabolism
12.
Med Mol Morphol ; 55(3): 248-257, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35536435

ABSTRACT

Cardiomyocytes have been differentiated from various stem cells such as human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC), but it is difficult to produce mature cardiomyocytes. We showed rat hair-follicle-associated pluripotent (HAP) stem cells have pluripotency and produced mature beating cardiomyocyte sheets differentiated from rat HAP stem cells. The upper parts of rat vibrissa hair follicles were cultured in 10% FBS DMEM and stained with antibodies of the ectoderm, mesoderm, endoderm system to show the differentiation of multiple cell types. Moreover, HAP stem cells were cultured under three different conditions to decide the most suitable culture conditions for making beating cardiomyocyte sheets. The beating cardiomyocyte sheets were shown to be mature by staining sarcomere structures. Isoproterenol alone and the combination of isoproterenol, activin A, bone morphogenetic protein 4 (BMP4) and basic fibroblast growth factor (bFGF) effectively induced beating long-fiber cardiomyocytes, which formed beating sheets, only in the presence of all four agents. Flexible substrates were essential for the differentiation of sheets of mature beating cardiomyocytes for HAP stem cells. The features of the cardiomyocytes differentiated from HAP stem cells demonstrate they have clinical potential for heart regeneration.


Subject(s)
Myocytes, Cardiac , Pluripotent Stem Cells , Animals , Cell Differentiation , Hair Follicle/metabolism , Humans , Isoproterenol/metabolism , Isoproterenol/pharmacology , Pluripotent Stem Cells/metabolism , Rats
13.
J Surg Res ; 264: 327-333, 2021 08.
Article in English | MEDLINE | ID: mdl-33848831

ABSTRACT

BACKGROUND: It is difficult to distinguish between a tumor and its liver segment with traditional use of indocyanine green (ICG) alone. In the present study, a method was used to limit ICG to the liver segment adjacent to a tumor. A spectrally-distinct fluorescently-labeled tumor-specific antibody against human carcinoembryonic antigen-related cell-adhesion molecules was used to label the metastatic tumor in a patient-derived orthotopic xenograft mouse model to enable color-coded visualization and distinction of a colon-cancer liver metastases and its adjacent liver segment. MATERIALS AND METHODS: Nude mice received surgical orthotopic implantation in the liver of colon-cancer liver metastases derived from two patients. An anti- carcinoembryonic antigen-related cell-adhesion molecules monoclonal antibody (mAb 6G5j) was conjugated to a near-infrared dye IR700DX (6G5j-IR700DX). After three weeks, mice received 6G5j-IR700DX via tail-vein injection 48 hours before surgery. ICG was intravenously injected after ligation of the left or left lateral Glissonean pedicle resulting in labeling of the segment with preserved blood-flow in the liver. Imaging was performed with the Pearl Trilogy and FLARE Imaging Systems. RESULTS: The metastatic liver tumor had a clear fluorescence signal due to selective tumor targeting by 6G5j-IR700DX, which was imaged on the 700 nm channel. The adjacent liver segment, with preserved blood-flow in the liver, had a clear fluorescence ICG 800 nm signal, while the left or left lateral segment had no fluorescence signal. Overlay of the images showed clear color-coded differentiation between the tumor fluorescing at 700 nm and the adjacent liver segment fluorescing at 800 nm. CONCLUSIONS: Color-coding of a liver tumor and uninvolved liver segment has the potential for improved liver resection.


Subject(s)
Colonic Neoplasms/pathology , Hepatectomy/methods , Liver Neoplasms/diagnosis , Liver/diagnostic imaging , Optical Imaging/methods , Animals , Antibodies, Monoclonal/administration & dosage , Carcinoembryonic Antigen/metabolism , Color , Fluorescent Dyes/administration & dosage , GPI-Linked Proteins/metabolism , Humans , Indocyanine Green/administration & dosage , Injections, Intravenous , Liver/pathology , Liver/surgery , Liver Neoplasms/secondary , Liver Neoplasms/surgery , Mice , Molecular Imaging/methods , Xenograft Model Antitumor Assays
14.
J Surg Oncol ; 124(7): 1121-1127, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34309885

ABSTRACT

BACKGROUND/OBJECTIVES: Nanobodies are the smallest biologic antigen-binding fragments derived from camelid-derived antibodies. Nanobodies effect a peak tumor signal within minutes of injection and present a novel opportunity for fluorescence-guided surgery (FGS). The present study demonstrates the efficacy of an anti-CEA nanobody conjugated to near-infrared fluorophore LICOR-IRDye800CW for rapid intraoperative tumor labeling of colon cancer. METHODS: LS174T human colon cancer cells or fragments of patient-derived colon cancer were implanted subcutaneously or orthotopically in nude mice. Anti-CEA nanobodies were conjugated with IRDye800CW and 1-3 nmol were injected intravenously. Mice were serially imaged over time. Peak fluorescence signal and tumor-to-background ratio (TBR) were recorded. RESULTS: Colon cancer tumors were detectable using fluorescent anti-CEA nanobody within 5 min of injection at all three doses. Maximal fluorescence intensity was observed within 15 min-3 h for all three doses with TBR values ranging from 1.3 to 2.3. In the patient-derived model of colon cancer, fluorescence was detectable with a TBR of 4.6 at 3 h. CONCLUSIONS: Fluorescent anti-CEA nanobodies rapidly and specifically labeled colon cancer in cell-line-based and patient-derived orthotopic xenograft (PDOX) models. The kinetics of nanobodies allow for same day administration and imaging. Anti-CEA-nb-800 is a promising and practical molecule for FGS of colon cancer.


Subject(s)
Carcinoembryonic Antigen/immunology , Colonic Neoplasms/diagnostic imaging , Optical Imaging , Single-Domain Antibodies , Animals , Disease Models, Animal , Fluorescent Dyes , Heterografts , Humans , Mice, Nude , Neoplasms, Experimental
15.
Adv Exp Med Biol ; 1329: 163-179, 2021.
Article in English | MEDLINE | ID: mdl-34664239

ABSTRACT

The tumor microenvironment (TME) contains stromal cells in a complex interaction with cancer cells. This relationship has become better understood with the use of fluorescent proteins for in vivo imaging, originally developed by our laboratories. Spectrally distinct fluorescent proteins can be used for color-coded imaging of the complex interaction of the tumor microenvironment in the living state using cancer cells expressing a fluorescent protein of one color and host mice expressing another color fluorescent protein. Cancer cells engineered in vitro to express a fluorescent protein were orthotopically implanted into transgenic mice expressing a fluorescent protein of a different color. Confocal microscopy was then used for color-coded imaging of the TME. Color-coded imaging of the TME has enabled us to discover that stromal cells are necessary for metastasis. Patient-derived orthotopic xenograft (PDOX) tumors were labeled by first passaging them orthotopically through transgenic nude mice expressing either green, red, or cyan fluorescent protein in order to label the stromal cells of the tumor. The colored stromal cells become stably associated with the PDOX tumors through multiple passages in transgenic colored nude mice or noncolored nude mice. The fluorescent protein-expressing stromal cells included cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). Using this model, specific cancer cell or stromal cell targeting by potential therapeutics can be visualized. Color-coded imaging enabled the visualization of apparent fusion of cancer and stromal cells. Color-coded imaging is a powerful tool visualizing the interaction of cancer and stromal cells during cancer progression and treatment.


Subject(s)
Tumor Microenvironment , Animals , Heterografts , Humans , Luminescent Proteins/genetics , Mice , Mice, Nude , Microscopy, Confocal
16.
Int J Mol Sci ; 22(2)2021 Jan 17.
Article in English | MEDLINE | ID: mdl-33477279

ABSTRACT

Oncolytic virotherapy is one of the most promising, emerging cancer therapeutics. We generated three types of telomerase-specific replication-competent oncolytic adenovirus: OBP-301; a green fluorescent protein (GFP)-expressing adenovirus, OBP-401; and Killer-Red-armed OBP-301. These oncolytic adenoviruses are driven by the human telomerase reverse transcriptase (hTERT) promoter; therefore, they conditionally replicate preferentially in cancer cells. Fluorescence imaging enables visualization of invasion and metastasis in vivo at the subcellular level; including molecular dynamics of cancer cells, resulting in greater precision therapy. In the present review, we focused on fluorescence imaging applications to develop precision targeting for oncolytic virotherapy. Cell-cycle imaging with the fluorescence ubiquitination cell cycle indicator (FUCCI) demonstrated that combination therapy of an oncolytic adenovirus and a cytotoxic agent could precisely target quiescent, chemoresistant cancer stem cells (CSCs) based on decoying the cancer cells to cycle to S-phase by viral treatment, thereby rendering them chemosensitive. Non-invasive fluorescence imaging demonstrated that complete tumor resection with a precise margin, preservation of function, and prevention of distant metastasis, was achieved with fluorescence-guided surgery (FGS) with a GFP-reporter adenovirus. A combination of fluorescence imaging and laser ablation using a KillerRed-protein reporter adenovirus resulted in effective photodynamic cancer therapy (PDT). Thus, imaging technology and the designer oncolytic adenoviruses may have clinical potential for precise cancer targeting by indicating the optimal time for administering therapeutic agents; accurate surgical guidance for complete resection of tumors; and precise targeted cancer-specific photosensitization.


Subject(s)
Neoplasms/therapy , Oncolytic Virotherapy/methods , Oncolytic Virotherapy/trends , Adenoviridae/genetics , Animals , Antineoplastic Agents , Cell Line, Tumor , Fluorescence , Green Fluorescent Proteins/metabolism , Humans , Neoplasms/virology , Oncolytic Viruses/genetics , Optical Imaging/methods , Precision Medicine/methods , Promoter Regions, Genetic/genetics , Telomerase/genetics , Telomerase/metabolism
17.
Molecules ; 26(12)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204178

ABSTRACT

We recently reported on a potent synthetic agent, 135H11, that selectively targets the receptor tyrosine kinase, EphA2. While 135H11 possesses a relatively high binding affinity for the ligand-binding domain of EphA2 (Kd~130 nM), receptor activation in the cell required the synthesis of dimeric versions of such agent (namely 135H12). This was expected given that the natural ephrin ligands also need to be dimerized or clustered to elicit agonistic activity in cell. In the present report we investigated whether the agonistic activity of 135H11 could be enhanced by biotin conjugation followed by complex formation with streptavidin. Therefore, we measured the agonistic EphA2 activity of 135H11-biotin (147B5) at various agent/streptavidin ratios, side by side with 135H12, and a scrambled version of 147B5 in pancreatic- and breast-cancer cell lines. The (147B5)n-streptavidin complexes (when n = 2, 3, 4, but not when n = 1) induced a strong receptor degradation effect in both cell lines compared to 135H12 or the (scrambled-147B5)4-streptavidin complex as a control, indicating that multimerization of the targeting agent resulted in an increased ability to cause receptor clustering and internalization. Subsequently, we prepared an Alexa-Fluor-streptavidin conjugate to demonstrate that (147B5)4-AF-streptavidin, but not the scrambled equivalent complex, concentrates in pancreatic and breast cancers in orthotopic nude-mouse models. Hence, we conclude that these novel targeting agents, with proper derivatization with imaging reagents or chemotherapy, can be used as diagnostics, and/or to deliver chemotherapy selectively to EphA2-expressing tumors.


Subject(s)
Receptor, EphA2/agonists , Receptor, EphA2/chemistry , Animals , Binding Sites/physiology , Biotin/chemistry , Biotin/metabolism , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Humans , Ligands , Mice , Pancreatic Neoplasms/metabolism , Protein Binding/physiology , Receptor, EphA2/metabolism , Streptavidin/chemistry , Streptavidin/metabolism
18.
Biochem Biophys Res Commun ; 533(4): 1034-1038, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33019978

ABSTRACT

Methionine addiction is a fundamental and general hallmark of cancer. Methionine addiction prevents cancer cells, but not normal cells from proliferation under methionine restriction (MR). Previous studies reported that MR altered the histone methylation levels in methionine-addicted cancer cells. However, no study has yet compared the status of histone methylation status, under MR, between cancer cells and normal cells. In the present study, we compared the histone methylation status between cancer cells and normal fibroblasts of H3K4me3 and H3K9me3, using recombinant methioninase (rMETase) to effect MR. Human lung and colon cancer cell lines and human normal foreskin fibroblasts were cultured in control medium or medium with rMETase. The viability of foreskin fibroblasts was approximately 10 times more resistant to rMETase than the cancer cells in vitro. Proliferation only of the cancer cells ceased under MR. The histone methylation status of H3K4me3 and H3K9me3 under MR was evaluated by immunoblotting. The levels of the H3K4me3 and H3K9me3 were strongly decreased by MR in the cancer cells. In contrast, the levels of H3K4me3 and H3K9me3 were not altered by MR in normal fibroblasts. The present results suggest that histone methylation status of H3K4me3 and H3K9me3 under MR was unstable in cancer cells but stable in normal cells and the instability of histone methylation status under MR may determine the high methionine dependency of cancer cells to survive and proliferate.


Subject(s)
Colonic Neoplasms/metabolism , Fibroblasts/metabolism , Histones/metabolism , Lung Neoplasms/metabolism , Methionine/deficiency , Methionine/metabolism , Carbon-Sulfur Lyases/metabolism , Cell Line, Tumor , Cell Proliferation/physiology , Cell Survival/physiology , Colonic Neoplasms/enzymology , Humans , Lung Neoplasms/enzymology , Methylation , Recombinant Proteins
19.
Biochem Biophys Res Commun ; 523(1): 135-139, 2020 02 26.
Article in English | MEDLINE | ID: mdl-31839218

ABSTRACT

Cancer cells are methionine (MET) and methylation addicted and are highly sensitive to MET restriction. The present study determined the efficacy of oral-recombinant methioninase (o-rMETase) and the DNA methylation inhibitor, decitabine (DAC) on restricting MET in an undifferentiated-soft tissue sarcoma (USTS) patient-derived orthotopic xenograft (PDOX) nude-mouse model. The USTS PDOX models were randomized into five treatment groups of six mice: Control; doxorubicin (DOX) alone; DAC alone; o-rMETase alone; and o-rMETase-DAC combination. Tumor size and body weight were measured during the 14 days of treatment. Tumor growth was arrested only in the o-rMETase-DAC condition. Tumors treated with the o-rMETase-DAC combination exhibited tumor necrosis with degenerative changes. This study demonstrates that the o-rMETase-DAC combination could arrest the USTS PDOX tumor suggesting clinical promise.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Carbon-Sulfur Lyases/metabolism , Decitabine/pharmacology , Disease Models, Animal , Drug Resistance, Neoplasm/drug effects , Muscle Neoplasms/drug therapy , Sarcoma/drug therapy , Administration, Oral , Animals , Antimetabolites, Antineoplastic/administration & dosage , Carbon-Sulfur Lyases/administration & dosage , Combined Modality Therapy , Decitabine/administration & dosage , Female , Humans , Mice , Mice, Nude , Middle Aged , Muscle Neoplasms/pathology , Muscle Neoplasms/surgery , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplasms, Experimental/surgery , Recombinant Proteins/administration & dosage , Recombinant Proteins/metabolism , Sarcoma/pathology , Sarcoma/surgery
20.
J Surg Res ; 252: 16-21, 2020 08.
Article in English | MEDLINE | ID: mdl-32217350

ABSTRACT

BACKGROUND: Tumor-associated glycoprotein (TAG)-72 is a pancarcinoma antigen that is overexpressed in greater than 80% of colorectal adenocarcinomas. CC49 is a TAG-72-specific antibody. The aim of the present study was to demonstrate selective imaging of colon tumors and metastases with the humanized TAG-72 antibody (anti-huCC49) conjugated to a near-infrared fluorophore in orthotopic mouse models. METHODS: Anti-huCC49 was conjugated to near-infrared dye IR800CW. Mouse imaging was performed with the Pearl Trilogy Small Animal and FLARE Imaging Systems. Subcutaneous mouse models of colon cancer cell line LS174T were used to determine the optimal dose of administration and timing of imaging. Orthotopic mouse models of LS174T were established by surgical orthotopic implantation of LS174T tumors onto the serosa of the cecum. Peritoneal carcinomatosis models were established by injection of LS174T cells into the peritoneum of nude mice. Mice were administered anti-huCC49-IR800 via tail vein injection. Mice were euthanized 72 h later and imaged after laparotomy. RESULTS: Subcutaneous LS174T xenografts demonstrated optimal tumor detection 72 h after administration with 50 µg anti-huCC49-IR800CW. Tumors were visualized with fluorescence imaging with a mean tumor-to-liver ratio of 7.39 (standard deviation: 2.76). In the orthotopic model, metastases smaller than 1 mm were fluorescently visualized that were invisible with bright light. CONCLUSIONS: Anti-huCC49-IR800CW provides sensitive and specific imaging of colon cancer and metastases at a submillimeter resolution in metastatic nude mice models. This provides a promising near-infrared probe for the imaging of colon cancer and metastases for preoperative diagnosis and fluorescence-guided surgery.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Neoplasm/administration & dosage , Antigens, Neoplasm/immunology , Colonic Neoplasms/diagnostic imaging , Peritoneal Neoplasms/diagnostic imaging , Alkanesulfonic Acids/administration & dosage , Alkanesulfonic Acids/chemistry , Animals , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neoplasm/chemistry , Antibodies, Neoplasm/immunology , Cell Line, Tumor , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Colonic Neoplasms/surgery , Fluorescent Dyes/administration & dosage , Fluorescent Dyes/chemistry , Humans , Immunoconjugates/administration & dosage , Immunoconjugates/chemistry , Immunoconjugates/immunology , Indoles/administration & dosage , Indoles/chemistry , Mice , Peritoneal Neoplasms/immunology , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/surgery , Preoperative Care/methods , Spectroscopy, Near-Infrared/methods , Surgery, Computer-Assisted/methods , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL