Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters

Publication year range
1.
BMC Genomics ; 25(1): 192, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38373909

ABSTRACT

BACKGROUND: Control and elimination of schistosomiasis is an arduous task, with current strategies proving inadequate to break transmission. Exploration of genetic approaches to interrupt Schistosoma mansoni transmission, the causative agent for human intestinal schistosomiasis in sub-Saharan Africa and South America, has led to genomic research of the snail vector hosts of the genus Biomphalaria. Few complete genomic resources exist, with African Biomphalaria species being particularly underrepresented despite this being where the majority of S. mansoni infections occur. Here we generate and annotate the first genome assembly of Biomphalaria sudanica sensu lato, a species responsible for S. mansoni transmission in lake and marsh habitats of the African Rift Valley. Supported by whole-genome diversity data among five inbred lines, we describe orthologs of immune-relevant gene regions in the South American vector B. glabrata and present a bioinformatic pipeline to identify candidate novel pathogen recognition receptors (PRRs). RESULTS: De novo genome and transcriptome assembly of inbred B. sudanica originating from the shoreline of Lake Victoria (Kisumu, Kenya) resulted in a haploid genome size of ~ 944.2 Mb (6,728 fragments, N50 = 1.067 Mb), comprising 23,598 genes (BUSCO = 93.6% complete). The B. sudanica genome contains orthologues to all described immune genes/regions tied to protection against S. mansoni in B. glabrata, including the polymorphic transmembrane clusters (PTC1 and PTC2), RADres, and other loci. The B. sudanica PTC2 candidate immune genomic region contained many PRR-like genes across a much wider genomic region than has been shown in B. glabrata, as well as a large inversion between species. High levels of intra-species nucleotide diversity were seen in PTC2, as well as in regions linked to PTC1 and RADres orthologues. Immune related and putative PRR gene families were significantly over-represented in the sub-set of B. sudanica genes determined as hyperdiverse, including high extracellular diversity in transmembrane genes, which could be under pathogen-mediated balancing selection. However, no overall expansion in immunity related genes was seen in African compared to South American lineages. CONCLUSIONS: The B. sudanica genome and analyses presented here will facilitate future research in vector immune defense mechanisms against pathogens. This genomic/transcriptomic resource provides necessary data for the future development of molecular snail vector control/surveillance tools, facilitating schistosome transmission interruption mechanisms in Africa.


Subject(s)
Biomphalaria , Schistosomiasis mansoni , Animals , Humans , Schistosoma mansoni/genetics , Biomphalaria/genetics , Transcriptome , Genomics , Kenya
2.
Mol Biol Evol ; 40(2)2023 02 03.
Article in English | MEDLINE | ID: mdl-36656997

ABSTRACT

Studying the evolutionary history of gene families is a challenging and exciting task with a wide range of implications. In addition to exploring fundamental questions about the origin and evolution of genes, disentangling their evolution is also critical to those who do functional/structural studies to allow a deeper and more precise interpretation of their results in an evolutionary context. The sirtuin gene family is a group of genes that are involved in a variety of biological functions mostly related to aging. Their duplicative history is an open question, as well as the definition of the repertoire of sirtuin genes among vertebrates. Our results show a well-resolved phylogeny that represents an improvement in our understanding of the duplicative history of the sirtuin gene family. We identified a new sirtuin gene family member (SIRT3.2) that was apparently lost in the last common ancestor of amniotes but retained in all other groups of jawed vertebrates. According to our experimental analyses, elephant shark SIRT3.2 protein is located in mitochondria, the overexpression of which leads to an increase in cellular levels of ATP. Moreover, in vitro analysis demonstrated that it has deacetylase activity being modulated in a similar way to mammalian SIRT3. Our results indicate that there are at least eight sirtuin paralogs among vertebrates and that all of them can be traced back to the last common ancestor of the group that existed between 676 and 615 millions of years ago.


Subject(s)
Sirtuin 3 , Sirtuins , Animals , Sirtuins/genetics , Sirtuin 3/genetics , Evolution, Molecular , Vertebrates/genetics , Phylogeny , Mammals
3.
RNA ; 28(4): 609-621, 2022 04.
Article in English | MEDLINE | ID: mdl-35064043

ABSTRACT

Transposable elements (TEs) are genomic parasites that can propagate throughout host genomes. Mammalian genomes are typically dominated by LINE retrotransposons and their associated SINEs, and germline mobilization is a challenge to genome integrity. There are defenses against TE proliferation and the PIWI/piRNA defense is among the most well understood. However, the PIWI/piRNA system has been investigated largely in animals with actively mobilizing TEs and it is unclear how the PIWI/piRNA system functions in the absence of mobilizing TEs. The 13-lined ground squirrel provides the opportunity to examine PIWI/piRNA and TE dynamics within the context of minimal, and possibly nonexistent, TE accumulation. To do so, we compared the PIWI/piRNA dynamics in squirrels to observations from the rabbit and mouse. Despite a lack of young insertions in squirrels, TEs were still actively transcribed at higher levels compared to mouse and rabbit. All three Piwi genes were not expressed, prior to P8 in squirrel testis, and there was little TE expression change with the onset of Piwi expression. We also demonstrated there was not a major expression change in the young squirrel LINE families in the transition from juvenile to adult testis in contrast to young mouse and rabbit LINE families. These observations lead us to conclude that PIWI suppression, was weaker for squirrel LINEs and SINEs and did not strongly reduce their transcription. We speculate that, although the PIWI/piRNA system is adaptable to novel TE threats, transcripts from TEs that are no longer threatening receive less attention from PIWI proteins.


Subject(s)
DNA Transposable Elements , Rodentia , Animals , DNA Transposable Elements/genetics , Germ Cells/metabolism , Humans , Male , Mice , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rabbits , Rodentia/genetics , Rodentia/metabolism , Testis/metabolism
4.
Mol Phylogenet Evol ; 198: 108134, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901473

ABSTRACT

Glycoside hydrolases are enzymes that break down complex carbohydrates into simple sugars by catalyzing the hydrolysis of glycosidic bonds. There have been multiple instances of adaptive horizontal gene transfer of genes belonging to various glycoside hydrolase families from microbes to insects, as glycoside hydrolases can metabolize constituents of the carbohydrate-rich plant cell wall. In this study, we characterize the horizontal transfer of a gene from the glycoside hydrolase family 26 (GH26) from bacteria to insects of the order Hemiptera. Our phylogenies trace the horizontal gene transfer to the common ancestor of the superfamilies Pentatomoidea and Lygaeoidea, which include stink bugs and seed bugs. After horizontal transfer, the gene was assimilated into the insect genome as indicated by the gain of an intron, and a eukaryotic signal peptide. Subsequently, the gene has undergone independent losses and expansions in copy number in multiple lineages, suggesting an adaptive role of GH26s in some insects. Finally, we measured tissue-level gene expression of multiple stink bugs and the large milkweed bug using publicly available RNA-seq datasets. We found that the GH26 genes are highly expressed in tissues associated with plant digestion, especially in the principal salivary glands of the stink bugs. Our results are consistent with the hypothesis that this horizontally transferred GH26 was co-opted by the insect to aid in plant tissue digestion and that this HGT event was likely adaptive.

5.
Mol Phylogenet Evol ; : 108141, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964593

ABSTRACT

Platyhelminthes, also known as flatworms, is a phylum of bilaterian invertebrates infamous for their parasitic representatives. The classes Cestoda, Monogenea, and Trematoda comprise parasitic helminths inhabiting multiple hosts, including fishes, humans, and livestock, and are responsible for considerable economic damage and burden on human health. As in other animals, the genomes of flatworms have a wide variety of paralogs, genes related via duplication, whose origins could be mapped throughout the evolution of the phylum. Through in-silico analysis, we studied inparalogs, i.e., species-specific duplications, focusing on their biological functions, expression changes, and evolutionary rate. These genes are thought to be key players in the adaptation process of species to each particular niche. Our results showed that genes related with specific functional terms, such as response to stress, transferase activity, oxidoreductase activity, and peptidases, are overrepresented among inparalogs. This trend is conserved among species from different classes, including free-living species. Available expression data from Schistosoma mansoni, a parasite from the trematode class, demonstrated high conservation of expression patterns between inparalogs, but with notable exceptions, which also display evidence of rapid evolution. We discuss how natural selection may operate to maintain these genes and the particular duplication models that fit better to the observations. Our work supports the critical role of gene duplication in the evolution of flatworms, representing the first study of inparalogs evolution at the genome-wide level in this group.

6.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33753505

ABSTRACT

Dive capacities of air-breathing vertebrates are dictated by onboard O2 stores, suggesting that physiologic specialization of diving birds such as penguins may have involved adaptive changes in convective O2 transport. It has been hypothesized that increased hemoglobin (Hb)-O2 affinity improves pulmonary O2 extraction and enhances the capacity for breath-hold diving. To investigate evolved changes in Hb function associated with the aquatic specialization of penguins, we integrated comparative measurements of whole-blood and purified native Hb with protein engineering experiments based on site-directed mutagenesis. We reconstructed and resurrected ancestral Hb representing the common ancestor of penguins and the more ancient ancestor shared by penguins and their closest nondiving relatives (order Procellariiformes, which includes albatrosses, shearwaters, petrels, and storm petrels). These two ancestors bracket the phylogenetic interval in which penguin-specific changes in Hb function would have evolved. The experiments revealed that penguins evolved a derived increase in Hb-O2 affinity and a greatly augmented Bohr effect (i.e., reduced Hb-O2 affinity at low pH). Although an increased Hb-O2 affinity reduces the gradient for O2 diffusion from systemic capillaries to metabolizing cells, this can be compensated by a concomitant enhancement of the Bohr effect, thereby promoting O2 unloading in acidified tissues. We suggest that the evolved increase in Hb-O2 affinity in combination with the augmented Bohr effect maximizes both O2 extraction from the lungs and O2 unloading from the blood, allowing penguins to fully utilize their onboard O2 stores and maximize underwater foraging time.


Subject(s)
Adaptation, Physiological , Oxygen/metabolism , Oxyhemoglobins/metabolism , Spheniscidae/physiology , Amino Acid Substitution , Animals , Oxyhemoglobins/chemistry , Oxyhemoglobins/genetics , Phylogeny , Protein Conformation , Protein Engineering , Spheniscidae/blood , Spheniscidae/classification
7.
Dev Biol ; 482: 34-43, 2022 02.
Article in English | MEDLINE | ID: mdl-34902310

ABSTRACT

The DAN gene family (DAN, Differential screening-selected gene Aberrant in Neuroblastoma) is a group of genes that is expressed during development and plays fundamental roles in limb bud formation and digitation, kidney formation and morphogenesis and left-right axis specification. During adulthood the expression of these genes are associated with diseases, including cancer. Although most of the attention to this group of genes has been dedicated to understanding its role in physiology and development, its evolutionary history remains poorly understood. Thus, the goal of this study is to investigate the evolutionary history of the DAN gene family in vertebrates, with the objective of complementing the already abundant physiological information with an evolutionary context. Our results recovered the monophyly of all DAN gene family members and divide them into five main groups. In addition to the well-known DAN genes, our phylogenetic results revealed the presence of two new DAN gene lineages; one is only retained in cephalochordates, whereas the other one (GREM3) was only identified in cartilaginous fish, holostean fish, and coelacanth. According to the phyletic distribution of the genes, the ancestor of gnathostomes possessed a repertoire of eight DAN genes, and during the radiation of the group GREM1, GREM2, SOST, SOSTDC1, and NBL1 were retained in all major groups, whereas, GREM3, CER1, and DAND5 were differentially lost.


Subject(s)
Base Sequence/genetics , Cell Cycle Proteins/genetics , Conserved Sequence/genetics , Embryonic Development/genetics , Adaptor Proteins, Signal Transducing/genetics , Amphibians , Animals , Birds , Body Patterning/genetics , Cytokines/genetics , Evolution, Molecular , Fishes , Intercellular Signaling Peptides and Proteins/genetics , Limb Buds/growth & development , Mammals , Morphogenesis/genetics , Reptiles
8.
Proc Natl Acad Sci U S A ; 115(8): 1865-1870, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29432191

ABSTRACT

When different species experience similar selection pressures, the probability of evolving similar adaptive solutions may be influenced by legacies of evolutionary history, such as lineage-specific changes in genetic background. Here we test for adaptive convergence in hemoglobin (Hb) function among high-altitude passerine birds that are native to the Qinghai-Tibet Plateau, and we examine whether convergent increases in Hb-O2 affinity have a similar molecular basis in different species. We documented that high-altitude parid and aegithalid species from the Qinghai-Tibet Plateau have evolved derived increases in Hb-O2 affinity in comparison with their closest lowland relatives in East Asia. However, convergent increases in Hb-O2 affinity and convergence in underlying functional mechanisms were seldom attributable to the same amino acid substitutions in different species. Using ancestral protein resurrection and site-directed mutagenesis, we experimentally confirmed two cases in which parallel substitutions contributed to convergent increases in Hb-O2 affinity in codistributed high-altitude species. In one case involving the ground tit (Parus humilis) and gray-crested tit (Lophophanes dichrous), parallel amino acid replacements with affinity-enhancing effects were attributable to nonsynonymous substitutions at a CpG dinucleotide, suggesting a possible role for mutation bias in promoting recurrent changes at the same site. Overall, most altitude-related changes in Hb function were caused by divergent amino acid substitutions, and a select few were caused by parallel substitutions that produced similar phenotypic effects on the divergent genetic backgrounds of different species.


Subject(s)
Adaptation, Physiological/genetics , Altitude , Hemoglobins/physiology , Passeriformes/genetics , Passeriformes/physiology , Animal Distribution , Animals , Evolution, Molecular , Hemoglobins/genetics , Models, Molecular , Passeriformes/blood , Protein Conformation , Protein Isoforms , Tibet
9.
Am J Physiol Regul Integr Comp Physiol ; 318(3): R657-R667, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32022587

ABSTRACT

Hemoglobins (Hbs) of crocodilians are reportedly characterized by unique mechanisms of allosteric regulatory control, but there are conflicting reports regarding the importance of different effectors, such as chloride ions, organic phosphates, and CO2. Progress in understanding the unusual properties of crocodilian Hbs has also been hindered by a dearth of structural information. Here, we present the first comparative analysis of blood properties and Hb structure and function in a phylogenetically diverse set of crocodilian species. We examine mechanisms of allosteric regulation in the Hbs of 13 crocodilian species belonging to the families Crocodylidae and Alligatoridae. We also report new amino acid sequences for the α- and ß-globins of these taxa, which, in combination with structural analyses, provide insights into molecular mechanisms of allosteric regulation. All crocodilian Hbs exhibited a remarkably strong sensitivity to CO2, which would permit effective O2 unloading to tissues in response to an increase in metabolism during intense activity and diving. Although the Hbs of all crocodilians exhibit similar intrinsic O2-affinities, there is considerable variation in sensitivity to Cl- ions and ATP, which appears to be at least partly attributable to variation in the extent of NH2-terminal acetylation. Whereas chloride appears to be a potent allosteric effector of all crocodile Hbs, ATP has a strong, chloride-independent effect on Hb-O2 affinity only in caimans. Modeling suggests that allosteric ATP binding has a somewhat different structural basis in crocodilian and mammalian Hbs.


Subject(s)
Adenosine Triphosphate/metabolism , Allosteric Regulation/physiology , Carbon Dioxide/metabolism , Chlorides/metabolism , Hemoglobins/metabolism , Oxygen/blood , Amino Acid Sequence/physiology , Animals , Temperature
10.
J Exp Biol ; 223(Pt 2)2020 01 23.
Article in English | MEDLINE | ID: mdl-31836650

ABSTRACT

Among the numerous lineages of teleost fish that have independently transitioned from obligate water breathing to facultative air breathing, evolved properties of hemoglobin (Hb)-O2 transport may have been shaped by the prevalence and severity of aquatic hypoxia (which influences the extent to which fish are compelled to switch to aerial respiration) as well as the anatomical design of air-breathing structures and the cardiovascular system. Here, we examined the structure and function of Hbs in an amphibious, facultative air-breathing fish, the blue-spotted mudskipper (Boleophthalmus pectinirostris). We also characterized the genomic organization of the globin gene clusters of the species and we integrated phylogenetic and comparative genomic analyses to unravel the duplicative history of the genes that encode the subunits of structurally distinct mudskipper Hb isoforms (isoHbs). The B. pectinirostris isoHbs exhibit high intrinsic O2 affinities, similar to those of hypoxia-tolerant, water-breathing teleosts, and remarkably large Bohr effects. Genomic analysis of conserved synteny revealed that the genes that encode the α-type subunits of the two main adult isoHbs are members of paralogous gene clusters that represent products of the teleost-specific whole-genome duplication. Experiments revealed no appreciable difference in the oxygenation properties of co-expressed isoHbs in spite of extensive amino acid divergence between the alternative α-chain subunit isoforms. It therefore appears that the ability to switch between aquatic and aerial respiration does not necessarily require a division of labor between functionally distinct isoHbs with specialized oxygenation properties.


Subject(s)
Evolution, Molecular , Fishes/physiology , Hemoglobins/chemistry , Respiration , Animals , Protein Isoforms/chemistry
11.
Evol Dev ; 21(4): 205-217, 2019 07.
Article in English | MEDLINE | ID: mdl-31210006

ABSTRACT

Nodal is a signaling molecule that belongs to the transforming growth factor-ß superfamily that plays key roles during the early stages of development of animals. In vertebrates Nodal forms an heterodimer with a GDF1/3 protein to activate the Nodal pathway. Vertebrates have a paralog of nodal in their genomes labeled Nodal-related, but the evolutionary history of these genes is a matter of debate, mainly because of the presence of a variable numbers of genes in the vertebrate genomes sequenced so far. Thus, the goal of this study was to investigate the evolutionary history of the Nodal and Nodal-related genes with an emphasis in tracking changes in the number of genes among vertebrates. Our results show the presence of two gene lineages (Nodal and Nodal-related) that can be traced back to the ancestor of jawed vertebrates. These lineages have undergone processes of differential retention and lineage-specific expansions. Our results imply that Nodal and Nodal-related duplicated at the latest in the ancestor of gnathostomes, and they still retain a significant level of functional redundancy. By comparing the evolution of the Nodal/Nodal-related with GDF1/3 gene family, it is possible to infer that there are several types of heterodimers that can trigger the Nodal pathway among vertebrates.


Subject(s)
Evolution, Molecular , Nodal Protein/genetics , Nodal Protein/metabolism , Signal Transduction/physiology , Vertebrates/genetics , Vertebrates/physiology , Animals , Computational Biology , Gene Expression Regulation , Phylogeny
12.
Gen Comp Endocrinol ; 252: 12-17, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28733228

ABSTRACT

The relaxin/insulin-like (RLN/INSL) gene family is a group of genes that encode peptide hormones involved in a variety of physiological functions related to reproduction. Previous studies have shown that relaxin plays a key role in widening of the pubic bone during labor and in gamete maturation. Because of these functions, studying the evolution of RLN1, the gene encoding for relaxin, is relevant in livestock species, most of which belong in the group Laurasiatheria, which includes cow, pig, horse, goat, and sheep in addition to bats, cetaceans and carnivores. Experimental evidence suggests that cows do not synthesize relaxin, but respond to it, and sheep apparently have a truncated RLN1 gene. Thus, we made use of genome sequence data to characterize the genomic locus of the RLN1 gene in Laurasiatherian mammals to better understand how cows lost the ability to synthesize this peptide. We found that all ruminants in our study (cow, giraffe, goat, sheep and Tibetan antelope) lack a functional RLN1 gene, and document the progressive loss of RLN1 in the lineage leading to cows. Our analyses indicate that 1 - all ruminants have lost all key regulatory elements upstream of the first exon, 2 - giraffe, goat, sheep and Tibetan antelope have multiple inactivating mutations in the RLN1 pseudogene, and 3 - the cow genome has lost all traces of RLN1. The 5' regulatory sequence plays a key role in activating expression, and the loss of this sequence would impair synthesis of mRNA. Our results suggest that changes in regulatory sequence preceded mutations in coding sequence and highlight the importance of these regions in maintaining proper gene function. In addition, we found that all bovids examined posses copies of the relaxin receptors, which explains why they are able to respond to relaxin despite their inability to produce it.


Subject(s)
Cattle/genetics , Relaxin/genetics , Animals , Base Sequence , Computational Biology , Genome , Likelihood Functions , Phylogeny , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , Relaxin/metabolism
13.
Gen Comp Endocrinol ; 240: 129-137, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27769631

ABSTRACT

The study of the evolutionary history of genes related to human disease lies at the interface of evolution and medicine. These studies provide the evolutionary context on which medical researchers should work, and are also useful in providing information to suggest further genetic experiments, especially in model species where genetic manipulations can be made. Here we studied the evolution of the ß-adrenoreceptor gene family in vertebrates with the aim of adding an evolutionary framework to the already abundant physiological information. Our results show that in addition to the three already described vertebrate ß-adrenoreceptor genes there is an additional group containing cyclostome sequences. We suggest that ß-adrenoreceptors diversified as a product of the two whole genome duplications that occurred in the ancestor of vertebrates. Gene expression patterns are in general consistent across species, suggesting that expression dynamics were established early in the evolutionary history of vertebrates, and have been maintained since then. Finally, amino acid polymorphisms that are associated to pathological conditions in humans appear to be common in non-human mammals, suggesting that the phenotypic effects of these mutations depend on epistatic interaction with other positions. The evolutionary analysis of the ß-adrenoreceptors delivers new insights about the diversity of these receptors in vertebrates, the evolution of the expression patterns and a comparative perspective regarding the polymorphisms that in humans are linked to pathological conditions.


Subject(s)
Evolution, Molecular , Receptors, Adrenergic, beta/genetics , Vertebrates/genetics , Animals , Gene Duplication , Genome , Humans , Phylogeny
14.
Mol Biol Evol ; 32(4): 871-87, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25502940

ABSTRACT

The apparent stasis in the evolution of avian chromosomes suggests that birds may have experienced relatively low rates of gene gain and loss in multigene families. To investigate this possibility and to explore the phenotypic consequences of variation in gene copy number, we examined evolutionary changes in the families of genes that encode the α- and ß-type subunits of hemoglobin (Hb), the tetrameric α2ß2 protein responsible for blood-O2 transport. A comparative genomic analysis of 52 bird species revealed that the size and membership composition of the α- and ß-globin gene families have remained remarkably constant during approximately 100 My of avian evolution. Most interspecific variation in gene content is attributable to multiple independent inactivations of the α(D)-globin gene, which encodes the α-chain subunit of a functionally distinct Hb isoform (HbD) that is expressed in both embryonic and definitive erythrocytes. Due to consistent differences in O2-binding properties between HbD and the major adult-expressed Hb isoform, HbA (which incorporates products of the α(A)-globin gene), recurrent losses of α(D)-globin contribute to among-species variation in blood-O2 affinity. Analysis of HbA/HbD expression levels in the red blood cells of 122 bird species revealed high variability among lineages and strong phylogenetic signal. In comparison with the homologous gene clusters in mammals, the low retention rate for lineage-specific gene duplicates in the avian globin gene clusters suggests that the developmental regulation of Hb synthesis in birds may be more highly conserved, with orthologous genes having similar stage-specific expression profiles and similar functional properties in disparate taxa.


Subject(s)
Avian Proteins/genetics , Birds/genetics , Evolution, Molecular , Multigene Family , alpha-Globins/genetics , beta-Globins/genetics , Animals , Gene Dosage , Genomics , Phylogeny , Protein Isoforms/genetics
15.
Mol Biol Evol ; 32(7): 1684-94, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25743544

ABSTRACT

Comparative analyses of vertebrate genomes continue to uncover a surprising diversity of genes in the globin gene superfamily, some of which have very restricted phyletic distributions despite their antiquity. Genomic analysis of the globin gene repertoire of cartilaginous fish (Chondrichthyes) should be especially informative about the duplicative origins and ancestral functions of vertebrate globins, as divergence between Chondrichthyes and bony vertebrates represents the most basal split within the jawed vertebrates. Here, we report a comparative genomic analysis of the vertebrate globin gene family that includes the complete globin gene repertoire of the elephant shark (Callorhinchus milii). Using genomic sequence data from representatives of all major vertebrate classes, integrated analyses of conserved synteny and phylogenetic relationships revealed that the last common ancestor of vertebrates possessed a repertoire of at least seven globin genes: single copies of androglobin and neuroglobin, four paralogous copies of globin X, and the single-copy progenitor of the entire set of vertebrate-specific globins. Combined with expression data, the genomic inventory of elephant shark globins yielded four especially surprising findings: 1) there is no trace of the neuroglobin gene (a highly conserved gene that is present in all other jawed vertebrates that have been examined to date), 2) myoglobin is highly expressed in heart, but not in skeletal muscle (reflecting a possible ancestral condition in vertebrates with single-circuit circulatory systems), 3) elephant shark possesses two highly divergent globin X paralogs, one of which is preferentially expressed in gonads, and 4) elephant shark possesses two structurally distinct α-globin paralogs, one of which is preferentially expressed in the brain. Expression profiles of elephant shark globin genes reveal distinct specializations of function relative to orthologs in bony vertebrates and suggest hypotheses about ancestral functions of vertebrate globins.


Subject(s)
Gene Duplication , Gene Expression Regulation , Genome , Multigene Family , Sharks/genetics , Transcriptome/genetics , Vertebrates/genetics , Animals , Bayes Theorem , Evolution, Molecular , Gene Expression Profiling , Globins/genetics , Organ Specificity/genetics , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Synteny
16.
Mol Biol Evol ; 32(2): 287-98, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25415962

ABSTRACT

A fundamental question in evolutionary genetics concerns the roles of mutational pleiotropy and epistasis in shaping trajectories of protein evolution. This question can be addressed most directly by using site-directed mutagenesis to explore the mutational landscape of protein function in experimentally defined regions of sequence space. Here, we evaluate how pleiotropic trade-offs and epistatic interactions influence the accessibility of alternative mutational pathways during the adaptive evolution of hemoglobin (Hb) function in high-altitude pikas (Mammalia: Lagomorpha). By combining ancestral protein resurrection with a combinatorial protein-engineering approach, we examined the functional effects of sequential mutational steps in all possible pathways that produced an increased Hb-O2 affinity. These experiments revealed that the effects of mutations on Hb-O2 affinity are highly dependent on the temporal order in which they occur: Each of three ß-chain substitutions produced a significant increase in Hb-O2 affinity on the ancestral genetic background, but two of these substitutions produced opposite effects when they occurred as later steps in the pathway. The experiments revealed pervasive epistasis for Hb-O2 affinity, but affinity-altering mutations produced no significant pleiotropic trade-offs. These results provide insights into the properties of adaptive substitutions in naturally evolved proteins and suggest that the accessibility of alternative mutational pathways may be more strongly constrained by sign epistasis for positively selected biochemical phenotypes than by antagonistic pleiotropy.


Subject(s)
Altitude , Epistasis, Genetic/genetics , Hemoglobins/genetics , Lagomorpha/genetics , Lagomorpha/metabolism , Adaptation, Physiological/genetics , Adaptation, Physiological/physiology , Animals , Evolution, Molecular , Mutation , Oxygen/metabolism , Selection, Genetic/genetics
17.
Mol Biol Evol ; 32(4): 978-97, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25556236

ABSTRACT

Major challenges for illuminating the genetic basis of phenotypic evolution are to identify causative mutations, to quantify their functional effects, to trace their origins as new or preexisting variants, and to assess the manner in which segregating variation is transduced into species differences. Here, we report an experimental analysis of genetic variation in hemoglobin (Hb) function within and among species of Peromyscus mice that are native to different elevations. A multilocus survey of sequence variation in the duplicated HBA and HBB genes in Peromyscus maniculatus revealed that function-altering amino acid variants are widely shared among geographically disparate populations from different elevations, and numerous amino acid polymorphisms are also shared with closely related species. Variation in Hb-O2 affinity within and among populations of P. maniculatus is attributable to numerous amino acid mutations that have individually small effects. One especially surprising feature of the Hb polymorphism in P. maniculatus is that an appreciable fraction of functional standing variation in the two transcriptionally active HBA paralogs is attributable to recurrent gene conversion from a tandemly linked HBA pseudogene. Moreover, transpecific polymorphism in the duplicated HBA genes is not solely attributable to incomplete lineage sorting or introgressive hybridization; instead, it is mainly attributable to recurrent interparalog gene conversion that has occurred independently in different species. Partly as a result of concerted evolution between tandemly duplicated globin genes, the same amino acid changes that contribute to variation in Hb function within P. maniculatus also contribute to divergence in Hb function among different species of Peromyscus. In the case of function-altering Hb mutations in Peromyscus, there is no qualitative or quantitative distinction between segregating variants within species and fixed differences between species.


Subject(s)
Evolution, Molecular , Hemoglobin Subunits/genetics , Multigene Family , Mutation , Peromyscus/genetics , Polymorphism, Genetic , Amino Acid Sequence , Animals , Gene Conversion , Molecular Sequence Data
18.
Proc Natl Acad Sci U S A ; 110(51): 20645-50, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24297902

ABSTRACT

Snakes possess many extreme morphological and physiological adaptations. Identification of the molecular basis of these traits can provide novel understanding for vertebrate biology and medicine. Here, we study snake biology using the genome sequence of the Burmese python (Python molurus bivittatus), a model of extreme physiological and metabolic adaptation. We compare the python and king cobra genomes along with genomic samples from other snakes and perform transcriptome analysis to gain insights into the extreme phenotypes of the python. We discovered rapid and massive transcriptional responses in multiple organ systems that occur on feeding and coordinate major changes in organ size and function. Intriguingly, the homologs of these genes in humans are associated with metabolism, development, and pathology. We also found that many snake metabolic genes have undergone positive selection, which together with the rapid evolution of mitochondrial proteins, provides evidence for extensive adaptive redesign of snake metabolic pathways. Additional evidence for molecular adaptation and gene family expansions and contractions is associated with major physiological and phenotypic adaptations in snakes; genes involved are related to cell cycle, development, lungs, eyes, heart, intestine, and skeletal structure, including GRB2-associated binding protein 1, SSH, WNT16, and bone morphogenetic protein 7. Finally, changes in repetitive DNA content, guanine-cytosine isochore structure, and nucleotide substitution rates indicate major shifts in the structure and evolution of snake genomes compared with other amniotes. Phenotypic and physiological novelty in snakes seems to be driven by system-wide coordination of protein adaptation, gene expression, and changes in the structure of the genome.


Subject(s)
Adaptation, Physiological/physiology , Boidae , Evolution, Molecular , Gene Expression Regulation/physiology , Genome/physiology , Transcription, Genetic/physiology , Animals , Boidae/genetics , Boidae/metabolism , Cell Cycle/physiology , Humans , Organ Specificity/physiology
19.
Mycologia ; 108(5): 915-924, 2016 09.
Article in English | MEDLINE | ID: mdl-27549619

ABSTRACT

A novel species of Curvularia was identified as a foliar pathogen of Cynodon dactylon (bermudagrass) and Zoysia matrella (zoysiagrass), two important warm-season turfgrasses in the southeastern United States. Field symptoms were conspicuous chocolate brown to black spots in turf of both species on golf course putting greens and fairways. Leaves of plants within these spots exhibited prominent, black eyespot lesions from which a darkly pigmented fungus was consistently isolated. The fungus produced gray- to black-olivaceous mycelium within 10 d on potato dextrose agar at 25 C but never produced conidia despite numerous attempts to induce them. Field symptoms were reproduced in inoculated plants of both grasses, and re-isolation of the pathogen from symptomatic tissues confirmed its pathogenicity in fulfillment of Koch's postulates. A phylogenetic analysis was performed using sequence markers of internal nuclear ribosomal transcribed spacer region (ITS), glyceralde-hyde-3-phosphate dehydrogenase (GPD1) and translation elongation factor 1-α (TEF 1). The concatenated phylogenetic tree showed strong support for a new species within Curvularia that is distinctly divergent from other Curvularia spp. Therefore, the darkly pigmented pathogen of warm-season turfgrasses is described and illustrated as a new species, Curvularia malina.


Subject(s)
Ascomycota/classification , Ascomycota/isolation & purification , Plant Diseases/microbiology , Poaceae/microbiology , Ascomycota/genetics , Ascomycota/growth & development , Cluster Analysis , Culture Media , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Intergenic/chemistry , DNA, Intergenic/genetics , Glycerol-3-Phosphate Dehydrogenase (NAD+)/genetics , Microbiological Techniques , Peptide Elongation Factor 1/genetics , Phylogeny , Pigments, Biological/analysis , Plant Leaves/microbiology , Sequence Analysis, DNA , Southeastern United States
20.
BMC Evol Biol ; 15: 220, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26444412

ABSTRACT

BACKGROUND: Defining factors that contributed to the fixation of a high number of underdominant chromosomal rearrangements is a complex task because not only molecular mechanisms must be considered, but also the uniqueness of natural history attributes of each taxon. Ideally, detailed investigation of the chromosome architecture of an organism and related groups, placed within a phylogenetic context, is required. We used multiple approaches to investigate the dynamics of chromosomal evolution in lineages of bats with considerable karyotypic variation, focusing on the different facets contributing to fixation of the exceptional chromosomal changes in Tonatia saurophila. Integration of empirical data with proposed models of chromosome evolution was performed to understand the probable conditions for Tonatia's karyotypic evolution. RESULTS: The trajectory of reorganization of chromosome blocks since the common ancestor of Glossophaginae and Phyllostominae subfamilies suggests that multiple tandem fusions, as well as disruption and fusions of conserved phyllostomid chromosomes were major drivers of karyotypic reshuffling in Tonatia. Considerable variation in the rates of chromosomal evolution between phyllostomid lineages was observed. Thirty-nine unique fusions and fission events reached fixation in Tonatia over a short period of time, followed by ~12 million years of chromosomal stasis. Physical mapping of repetitive DNA revealed an unusual accumulation of LINE-1 sequences on centromeric regions, probably associated with the chromosomal dynamics of this genus. CONCLUSIONS: Multiple rearrangements have reached fixation in a wave-like fashion in phyllostomid bats. Different biological features of Tonatia support distinct models of rearrangement fixation, and it is unlikely that the fixations were a result of solely stochastic processes in small ancient populations. Increased recombination rates were probably facilitated by expansion of repetitive DNA, reinforced by aspects of taxon reproduction and ecology.


Subject(s)
Biological Evolution , Chiroptera/classification , Chiroptera/genetics , Chromosomes, Mammalian , Animals , In Situ Hybridization , Karyotype , Models, Genetic , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL