Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal
Affiliation country
Publication year range
1.
Nature ; 546(7658): 401-405, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28538723

ABSTRACT

Zika virus (ZIKV) is causing an unprecedented epidemic linked to severe congenital abnormalities. In July 2016, mosquito-borne ZIKV transmission was reported in the continental United States; since then, hundreds of locally acquired infections have been reported in Florida. To gain insights into the timing, source, and likely route(s) of ZIKV introduction, we tracked the virus from its first detection in Florida by sequencing ZIKV genomes from infected patients and Aedes aegypti mosquitoes. We show that at least 4 introductions, but potentially as many as 40, contributed to the outbreak in Florida and that local transmission is likely to have started in the spring of 2016-several months before its initial detection. By analysing surveillance and genetic data, we show that ZIKV moved among transmission zones in Miami. Our analyses show that most introductions were linked to the Caribbean, a finding corroborated by the high incidence rates and traffic volumes from the region into the Miami area. Our study provides an understanding of how ZIKV initiates transmission in new regions.


Subject(s)
Zika Virus Infection/epidemiology , Zika Virus Infection/virology , Zika Virus/genetics , Aedes/virology , Animals , Caribbean Region/epidemiology , Disease Outbreaks/statistics & numerical data , Female , Florida/epidemiology , Genome, Viral/genetics , Humans , Incidence , Molecular Epidemiology , Mosquito Vectors/virology , Zika Virus/isolation & purification , Zika Virus Infection/transmission
2.
Nature ; 546(7658): 411-415, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28538734

ABSTRACT

Although the recent Zika virus (ZIKV) epidemic in the Americas and its link to birth defects have attracted a great deal of attention, much remains unknown about ZIKV disease epidemiology and ZIKV evolution, in part owing to a lack of genomic data. Here we address this gap in knowledge by using multiple sequencing approaches to generate 110 ZIKV genomes from clinical and mosquito samples from 10 countries and territories, greatly expanding the observed viral genetic diversity from this outbreak. We analysed the timing and patterns of introductions into distinct geographic regions; our phylogenetic evidence suggests rapid expansion of the outbreak in Brazil and multiple introductions of outbreak strains into Puerto Rico, Honduras, Colombia, other Caribbean islands, and the continental United States. We find that ZIKV circulated undetected in multiple regions for many months before the first locally transmitted cases were confirmed, highlighting the importance of surveillance of viral infections. We identify mutations with possible functional implications for ZIKV biology and pathogenesis, as well as those that might be relevant to the effectiveness of diagnostic tests.


Subject(s)
Phylogeny , Zika Virus Infection/transmission , Zika Virus Infection/virology , Zika Virus/genetics , Zika Virus/isolation & purification , Animals , Brazil/epidemiology , Colombia/epidemiology , Culicidae/virology , Disease Outbreaks/statistics & numerical data , Genome, Viral/genetics , Geographic Mapping , Honduras/epidemiology , Humans , Metagenome/genetics , Molecular Epidemiology , Mosquito Vectors/virology , Mutation , Public Health Surveillance , Puerto Rico/epidemiology , United States/epidemiology , Zika Virus/classification , Zika Virus/pathogenicity , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL