Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 186
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 170(5): 875-888.e20, 2017 Aug 24.
Article in English | MEDLINE | ID: mdl-28757253

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal human malignancies, owing in part to its propensity for metastasis. Here, we used an organoid culture system to investigate how transcription and the enhancer landscape become altered during discrete stages of disease progression in a PDA mouse model. This approach revealed that the metastatic transition is accompanied by massive and recurrent alterations in enhancer activity. We implicate the pioneer factor FOXA1 as a driver of enhancer activation in this system, a mechanism that renders PDA cells more invasive and less anchorage-dependent for growth in vitro, as well as more metastatic in vivo. In this context, FOXA1-dependent enhancer reprogramming activates a transcriptional program of embryonic foregut endoderm. Collectively, our study implicates enhancer reprogramming, FOXA1 upregulation, and a retrograde developmental transition in PDA metastasis.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Pancreatic Ductal/genetics , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 3-alpha/genetics , Pancreatic Neoplasms/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Disease Models, Animal , Epigenomics , Female , Gene Expression Profiling , Humans , Male , Mice , Mice, Inbred C57BL , Neoplasm Metastasis , Organoids/metabolism , Pancreas/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology
2.
Mol Cell ; 82(16): 3045-3060.e11, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35752173

ABSTRACT

Cancer mortality is primarily a consequence of its metastatic spread. Here, we report that methionine sulfoxide reductase A (MSRA), which can reduce oxidized methionine residues, acts as a suppressor of pancreatic ductal adenocarcinoma (PDA) metastasis. MSRA expression is decreased in the metastatic tumors of PDA patients, whereas MSRA loss in primary PDA cells promotes migration and invasion. Chemoproteomic profiling of pancreatic organoids revealed that MSRA loss results in the selective oxidation of a methionine residue (M239) in pyruvate kinase M2 (PKM2). Moreover, M239 oxidation sustains PKM2 in an active tetrameric state to promote respiration, migration, and metastasis, whereas pharmacological activation of PKM2 increases cell migration and metastasis in vivo. These results demonstrate that methionine residues can act as reversible redox switches governing distinct signaling outcomes and that the MSRA-PKM2 axis serves as a regulatory nexus between redox biology and cancer metabolism to control tumor metastasis.


Subject(s)
Carcinoma, Pancreatic Ductal , Carrier Proteins/metabolism , Membrane Proteins/metabolism , Pancreatic Neoplasms , Thyroid Hormones/metabolism , Carcinoma, Pancreatic Ductal/genetics , Humans , Methionine , Methionine Sulfoxide Reductases/chemistry , Methionine Sulfoxide Reductases/metabolism , Oxidation-Reduction , Pancreatic Neoplasms/genetics , Pyruvate Kinase/metabolism , Thyroid Hormone-Binding Proteins , Pancreatic Neoplasms
3.
Nature ; 618(7964): 374-382, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225988

ABSTRACT

Cancer alters the function of multiple organs beyond those targeted by metastasis1,2. Here we show that inflammation, fatty liver and dysregulated metabolism are hallmarks of systemically affected livers in mouse models and in patients with extrahepatic metastasis. We identified tumour-derived extracellular vesicles and particles (EVPs) as crucial mediators of cancer-induced hepatic reprogramming, which could be reversed by reducing tumour EVP secretion via depletion of Rab27a. All EVP subpopulations, exosomes and principally exomeres, could dysregulate hepatic function. The fatty acid cargo of tumour EVPs-particularly palmitic acid-induced secretion of tumour necrosis factor (TNF) by Kupffer cells, generating a pro-inflammatory microenvironment, suppressing fatty acid metabolism and oxidative phosphorylation, and promoting fatty liver formation. Notably, Kupffer cell ablation or TNF blockade markedly decreased tumour-induced fatty liver generation. Tumour implantation or pre-treatment with tumour EVPs diminished cytochrome P450 gene expression and attenuated drug metabolism in a TNF-dependent manner. We also observed fatty liver and decreased cytochrome P450 expression at diagnosis in tumour-free livers of patients with pancreatic cancer who later developed extrahepatic metastasis, highlighting the clinical relevance of our findings. Notably, tumour EVP education enhanced side effects of chemotherapy, including bone marrow suppression and cardiotoxicity, suggesting that metabolic reprogramming of the liver by tumour-derived EVPs may limit chemotherapy tolerance in patients with cancer. Our results reveal how tumour-derived EVPs dysregulate hepatic function and their targetable potential, alongside TNF inhibition, for preventing fatty liver formation and enhancing the efficacy of chemotherapy.


Subject(s)
Extracellular Vesicles , Fatty Acids , Fatty Liver , Liver , Pancreatic Neoplasms , Animals , Mice , Cytochrome P-450 Enzyme System/genetics , Extracellular Vesicles/metabolism , Fatty Acids/metabolism , Fatty Liver/drug therapy , Fatty Liver/etiology , Fatty Liver/metabolism , Fatty Liver/prevention & control , Liver/metabolism , Liver/pathology , Liver/physiopathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Tumor Microenvironment , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Liver Neoplasms/secondary , Humans , Inflammation/metabolism , Palmitic Acid/metabolism , Kupffer Cells , Oxidative Phosphorylation , rab27 GTP-Binding Proteins/deficiency
4.
Proc Natl Acad Sci U S A ; 121(14): e2315509121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38547055

ABSTRACT

Dysregulation of polyamine metabolism has been implicated in cancer initiation and progression; however, the mechanism of polyamine dysregulation in cancer is not fully understood. In this study, we investigated the role of MUC1, a mucin protein overexpressed in pancreatic cancer, in regulating polyamine metabolism. Utilizing pancreatic cancer patient data, we noted a positive correlation between MUC1 expression and the expression of key polyamine metabolism pathway genes. Functional studies revealed that knockdown of spermidine/spermine N1-acetyltransferase 1 (SAT1), a key enzyme involved in polyamine catabolism, attenuated the oncogenic functions of MUC1, including cell survival and proliferation. We further identified a regulatory axis whereby MUC1 stabilized hypoxia-inducible factor (HIF-1α), leading to increased SAT1 expression, which in turn induced carbon flux into the tricarboxylic acid cycle. MUC1-mediated stabilization of HIF-1α enhanced the promoter occupancy of the latter on SAT1 promoter and corresponding transcriptional activation of SAT1, which could be abrogated by pharmacological inhibition of HIF-1α or CRISPR/Cas9-mediated knockout of HIF1A. MUC1 knockdown caused a significant reduction in the levels of SAT1-generated metabolites, N1-acetylspermidine and N8-acetylspermidine. Given the known role of MUC1 in therapy resistance, we also investigated whether inhibiting SAT1 would enhance the efficacy of FOLFIRINOX chemotherapy. By utilizing organoid and orthotopic pancreatic cancer mouse models, we observed that targeting SAT1 with pentamidine improved the efficacy of FOLFIRINOX, suggesting that the combination may represent a promising therapeutic strategy against pancreatic cancer. This study provides insights into the interplay between MUC1 and polyamine metabolism, offering potential avenues for the development of treatments against pancreatic cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Pancreatic Neoplasms , Mice , Animals , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Polyamines/metabolism , Signal Transduction , Acetyltransferases/genetics , Acetyltransferases/metabolism , Mucin-1
5.
Trends Immunol ; 43(2): 93-95, 2022 02.
Article in English | MEDLINE | ID: mdl-34953686

ABSTRACT

Tumor progression is known occur in a complex microenvironment that leads to genetic, cellular, and metabolic adaptations. Two articles from Martin et al. and Del Poggetto et al. enlighten us on the role of inflammation and the immune system in guiding the progression of preneoplastic cells to oncogenic transformation and on subsequent tumor evolution.


Subject(s)
Neoplasms , Tumor Microenvironment , Carcinogenesis , Cell Transformation, Neoplastic/genetics , Humans , Inflammation
6.
Nature ; 569(7754): 131-135, 2019 05.
Article in English | MEDLINE | ID: mdl-30996350

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis largely owing to inefficient diagnosis and tenacious drug resistance. Activation of pancreatic stellate cells (PSCs) and consequent development of dense stroma are prominent features accounting for this aggressive biology1,2. The reciprocal interplay between PSCs and pancreatic cancer cells (PCCs) not only enhances tumour progression and metastasis but also sustains their own activation, facilitating a vicious cycle to exacerbate tumorigenesis and drug resistance3-7. Furthermore, PSC activation occurs very early during PDAC tumorigenesis8-10, and activated PSCs comprise a substantial fraction of the tumour mass, providing a rich source of readily detectable factors. Therefore, we hypothesized that the communication between PSCs and PCCs could be an exploitable target to develop effective strategies for PDAC therapy and diagnosis. Here, starting with a systematic proteomic investigation of secreted disease mediators and underlying molecular mechanisms, we reveal that leukaemia inhibitory factor (LIF) is a key paracrine factor from activated PSCs acting on cancer cells. Both pharmacologic LIF blockade and genetic Lifr deletion markedly slow tumour progression and augment the efficacy of chemotherapy to prolong survival of PDAC mouse models, mainly by modulating cancer cell differentiation and epithelial-mesenchymal transition status. Moreover, in both mouse models and human PDAC, aberrant production of LIF in the pancreas is restricted to pathological conditions and correlates with PDAC pathogenesis, and changes in the levels of circulating LIF correlate well with tumour response to therapy. Collectively, these findings reveal a function of LIF in PDAC tumorigenesis, and suggest its translational potential as an attractive therapeutic target and circulating marker. Our studies underscore how a better understanding of cell-cell communication within the tumour microenvironment can suggest novel strategies for cancer therapy.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Leukemia Inhibitory Factor/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Paracrine Communication , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/diagnosis , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cell Line, Tumor , Disease Progression , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Female , Humans , Leukemia Inhibitory Factor/antagonists & inhibitors , Leukemia Inhibitory Factor/blood , Male , Mass Spectrometry , Mice , Pancreatic Neoplasms/diagnosis , Paracrine Communication/drug effects , Receptors, OSM-LIF/deficiency , Receptors, OSM-LIF/genetics , Receptors, OSM-LIF/metabolism , Tumor Microenvironment
7.
Proc Natl Acad Sci U S A ; 119(18): e2115071119, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35476515

ABSTRACT

Activation of inhibitor of nuclear factor NF-κB kinase subunit-ß (IKKß), characterized by phosphorylation of activation loop serine residues 177 and 181, has been implicated in the early onset of cancer. On the other hand, tissue-specific IKKß knockout in Kras mutation-driven mouse models stalled the disease in the precancerous stage. In this study, we used cell line models, tumor growth studies, and patient samples to assess the role of IKKß and its activation in cancer. We also conducted a hit-to-lead optimization study that led to the identification of 39-100 as a selective mitogen-activated protein kinase kinase kinase (MAP3K) 1 inhibitor. We show that IKKß is not required for growth of Kras mutant pancreatic cancer (PC) cells but is critical for PC tumor growth in mice. We also observed elevated basal levels of activated IKKß in PC cell lines, PC patient-derived tumors, and liver metastases, implicating it in disease onset and progression. Optimization of an ATP noncompetitive IKKß inhibitor resulted in the identification of 39-100, an orally bioavailable inhibitor with improved potency and pharmacokinetic properties. The compound 39-100 did not inhibit IKKß but inhibited the IKKß kinase MAP3K1 with low-micromolar potency. MAP3K1-mediated IKKß phosphorylation was inhibited by 39-100, thus we termed it IKKß activation modulator (IKAM) 1. In PC models, IKAM-1 reduced activated IKKß levels, inhibited tumor growth, and reduced metastasis. Our findings suggests that MAP3K1-mediated IKKß activation contributes to KRAS mutation-associated PC growth and IKAM-1 is a viable pretherapeutic lead that targets this pathway.


Subject(s)
MAP Kinase Kinase Kinase 1 , Pancreatic Neoplasms , Humans , I-kappa B Kinase/metabolism , Pancreatic Neoplasms/drug therapy , Protein Serine-Threonine Kinases , Pancreatic Neoplasms
8.
Gastroenterology ; 162(7): 2032-2046.e12, 2022 06.
Article in English | MEDLINE | ID: mdl-35219699

ABSTRACT

BACKGROUND & AIMS: Secreted mucin 5AC (MUC5AC) promotes pancreatic cancer (PC) progression and chemoresistance, suggesting its clinical association with poor prognosis. RNA sequencing analysis from the autochthonous pancreatic tumors showed a significant stromal alteration on genetic ablation of Muc5ac. Previously, depletion or targeting the stromal fibroblasts showed an ambiguous effect on PC pathogenesis. Hence, identifying the molecular players and mechanisms driving fibroblast heterogeneity is critical for improved clinical outcomes. METHODS: Autochthonous murine models of PC (KrasG12D, Pdx1-Cre [KC] and KrasG12D, Pdx1-Cre, Muc5ac-/- [KCM]) and co-implanted allografts of murine PC cell lines (Muc5ac wild-type and CRISPR/Cas knockout) with adipose-derived mesenchymal stem cells (AD-MSCs) were used to assess the role of Muc5ac in stromal heterogeneity. Proliferation, migration, and surface expression of cell-adhesion markers on AD-MSCs were measured using live-cell imaging and flow cytometry. MUC5AC-interactome was investigated using mass-spectrometry and enzyme-linked immunosorbent assay. RESULTS: The KCM tumors showed a significant decrease in the expression of α-smooth muscle actin and fibronectin compared with histology-matched KC tumors. Our study showed that MUC5AC, carrying tumor secretome, gets enriched in the adipose tissues of tumor-bearing mice and patients with PC, promoting CD44/CD29 (integrin-ß1) clustering that leads to Rac1 activation and migration of AD-MSCs. Furthermore, treatment with KC-derived serum enhanced proliferation and migration of AD-MSCs, which was abolished on Muc5ac-depletion or pharmacologic inhibition of CXCR2 and Rac1, respectively. The AD-MSCs significantly contribute toward α-smooth muscle actin-positive cancer-associated fibroblasts population in Muc5ac-dependent manner, as suggested by autochthonous tumors, co-implantation xenografts, and patient tumors. CONCLUSION: MUC5AC, secreted during PC progression, enriches in adipose and enhances the mobilization of AD-MSCs. On recruitment to pancreatic tumors, AD-MSCs proliferate and contribute towards stromal heterogeneity.


Subject(s)
Hyaluronan Receptors , Integrin beta1 , Mesenchymal Stem Cells , Mucin 5AC , Pancreatic Neoplasms , Actins/metabolism , Animals , Cluster Analysis , Heterografts , Humans , Hyaluronan Receptors/metabolism , Integrin beta1/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Mice , Mucin 5AC/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
9.
Mol Pharm ; 19(10): 3586-3599, 2022 10 03.
Article in English | MEDLINE | ID: mdl-35640060

ABSTRACT

Surgery remains the only potentially curative treatment option for pancreatic cancer, but resections are made more difficult by infiltrative disease, proximity of critical vasculature, peritumoral inflammation, and dense stroma. Surgeons are limited to tactile and visual cues to differentiate cancerous tissue from normal tissue. Furthermore, translating preoperative images to the intraoperative setting poses additional challenges for tumor detection, and can result in undetected and unresected lesions. Thus, pancreatic ductal adenocarcinoma (PDAC) has high rates of incomplete resections, and subsequently, disease recurrence. Fluorescence-guided surgery (FGS) has emerged as a method to improve intraoperative detection of cancer and ultimately improve surgical outcomes. Initial clinical trials have demonstrated feasibility of FGS for PDAC, but there are limited targeted probes under investigation for this disease, highlighting the need for development of additional novel biomarkers to reflect the PDAC heterogeneity. MUCIN16 (MUC16) is a glycoprotein that is overexpressed in 60-80% of PDAC. In our previous work, we developed a MUC16-targeted murine antibody near-infrared conjugate, termed AR9.6-IRDye800, that showed efficacy in detecting pancreatic cancer. To build on the translational potential of this imaging probe, a humanized variant of the AR9.6 fluorescent conjugate was developed and investigated herein. This conjugate, termed huAR9.6-IRDye800, showed equivalent binding properties to its murine counterpart. Using an optimized dye:protein ratio of 1:1, in vivo studies demonstrated high tumor to background ratios in MUC16-expressing tumor models, and delineation of tumors in a patient-derived xenograft model. Safety, biodistribution, and toxicity studies were conducted. These studies demonstrated that huAR9.6-IRDye800 was safe, did not yield evidence of histological toxicity, and was well tolerated in vivo. The results from this work suggest that AR9.6-IRDye800 is an efficacious and safe imaging agent for identifying pancreatic cancer intraoperatively through fluorescence-guided surgery.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , CA-125 Antigen/metabolism , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/surgery , Cell Line, Tumor , Fluorescent Dyes/chemistry , Humans , Membrane Proteins/metabolism , Mice , Neoplasm Recurrence, Local , Optical Imaging/methods , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/surgery , Tissue Distribution , Pancreatic Neoplasms
10.
Nature ; 534(7607): 407-411, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27281208

ABSTRACT

Pancreatic intraepithelial neoplasia is a pre-malignant lesion that can progress to pancreatic ductal adenocarcinoma, a highly lethal malignancy marked by its late stage at clinical presentation and profound drug resistance. The genomic alterations that commonly occur in pancreatic cancer include activation of KRAS2 and inactivation of p53 and SMAD4 (refs 2-4). So far, however, it has been challenging to target these pathways therapeutically; thus the search for other key mediators of pancreatic cancer growth remains an important endeavour. Here we show that the stem cell determinant Musashi (Msi) is a critical element of pancreatic cancer progression both in genetic models and in patient-derived xenografts. Specifically, we developed Msi reporter mice that allowed image-based tracking of stem cell signals within cancers, revealing that Msi expression rises as pancreatic intraepithelial neoplasia progresses to adenocarcinoma, and that Msi-expressing cells are key drivers of pancreatic cancer: they preferentially harbour the capacity to propagate adenocarcinoma, are enriched in circulating tumour cells, and are markedly drug resistant. This population could be effectively targeted by deletion of either Msi1 or Msi2, which led to a striking defect in the progression of pancreatic intraepithelial neoplasia to adenocarcinoma and an improvement in overall survival. Msi inhibition also blocked the growth of primary patient-derived tumours, suggesting that this signal is required for human disease. To define the translational potential of this work we developed antisense oligonucleotides against Msi; these showed reliable tumour penetration, uptake and target inhibition, and effectively blocked pancreatic cancer growth. Collectively, these studies highlight Msi reporters as a unique tool to identify therapy resistance, and define Msi signalling as a central regulator of pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Drug Resistance, Neoplasm/drug effects , Molecular Imaging , Nerve Tissue Proteins/genetics , Pancreatic Neoplasms/drug therapy , RNA-Binding Proteins/genetics , Animals , Carcinoma in Situ/genetics , Carcinoma in Situ/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Transformation, Neoplastic/genetics , Disease Models, Animal , Disease Progression , Drug Resistance, Neoplasm/genetics , Female , Gene Deletion , Genes, Reporter/genetics , Humans , Male , Mice , Models, Genetic , Neoplastic Cells, Circulating/metabolism , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/metabolism , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/pharmacokinetics , Oligonucleotides, Antisense/therapeutic use , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , RNA-Binding Proteins/metabolism , Signal Transduction/drug effects , Survival Rate , Xenograft Model Antitumor Assays
12.
Nature ; 538(7625): 378-382, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27732578

ABSTRACT

Pancreatic cancer, a highly aggressive tumour type with uniformly poor prognosis, exemplifies the classically held view of stepwise cancer development. The current model of tumorigenesis, based on analyses of precursor lesions, termed pancreatic intraepithelial neoplasm (PanINs) lesions, makes two predictions: first, that pancreatic cancer develops through a particular sequence of genetic alterations (KRAS, followed by CDKN2A, then TP53 and SMAD4); and second, that the evolutionary trajectory of pancreatic cancer progression is gradual because each alteration is acquired independently. A shortcoming of this model is that clonally expanded precursor lesions do not always belong to the tumour lineage, indicating that the evolutionary trajectory of the tumour lineage and precursor lesions can be divergent. This prevailing model of tumorigenesis has contributed to the clinical notion that pancreatic cancer evolves slowly and presents at a late stage. However, the propensity for this disease to rapidly metastasize and the inability to improve patient outcomes, despite efforts aimed at early detection, suggest that pancreatic cancer progression is not gradual. Here, using newly developed informatics tools, we tracked changes in DNA copy number and their associated rearrangements in tumour-enriched genomes and found that pancreatic cancer tumorigenesis is neither gradual nor follows the accepted mutation order. Two-thirds of tumours harbour complex rearrangement patterns associated with mitotic errors, consistent with punctuated equilibrium as the principal evolutionary trajectory. In a subset of cases, the consequence of such errors is the simultaneous, rather than sequential, knockout of canonical preneoplastic genetic drivers that are likely to set-off invasive cancer growth. These findings challenge the current progression model of pancreatic cancer and provide insights into the mutational processes that give rise to these aggressive tumours.


Subject(s)
Carcinogenesis/genetics , Carcinogenesis/pathology , Gene Rearrangement/genetics , Genome, Human/genetics , Models, Biological , Mutagenesis/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Carcinoma in Situ/genetics , Chromothripsis , DNA Copy Number Variations/genetics , Disease Progression , Evolution, Molecular , Female , Genes, Neoplasm/genetics , Humans , Male , Mitosis/genetics , Mutation/genetics , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Polyploidy , Precancerous Conditions/genetics
13.
Mol Ther ; 29(4): 1557-1571, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33359791

ABSTRACT

Aberrant expression of CA125/MUC16 is associated with pancreatic ductal adenocarcinoma (PDAC) progression and metastasis. However, knowledge of the contribution of MUC16 to pancreatic tumorigenesis is limited. Here, we show that MUC16 expression is associated with disease progression, basal-like and squamous tumor subtypes, increased tumor metastasis, and short-term survival of PDAC patients. MUC16 enhanced tumor malignancy through the activation of AKT and GSK3ß oncogenic signaling pathways. Activation of these oncogenic signaling pathways resulted in part from increased interactions between MUC16 and epidermal growth factor (EGF)-type receptors, which were enhanced for aberrant glycoforms of MUC16. Treatment of PDAC cells with monoclonal antibody (mAb) AR9.6 significantly reduced MUC16-induced oncogenic signaling. mAb AR9.6 binds to a unique conformational epitope on MUC16, which is influenced by O-glycosylation. Additionally, treatment of PDAC tumor-bearing mice with either mAb AR9.6 alone or in combination with gemcitabine significantly reduced tumor growth and metastasis. We conclude that the aberrant expression of MUC16 enhances PDAC progression to an aggressive phenotype by modulating oncogenic signaling through ErbB receptors. Anti-MUC16 mAb AR9.6 blocks oncogenic activities and tumor growth and could be a novel immunotherapeutic agent against MUC16-mediated PDAC tumor malignancy.


Subject(s)
Adenocarcinoma/drug therapy , CA-125 Antigen/genetics , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/drug therapy , ErbB Receptors/genetics , Membrane Proteins/genetics , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Animals , Antibodies, Monoclonal/pharmacology , CA-125 Antigen/immunology , Carcinogenesis/immunology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/immunology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/immunology , Mice , Neoplasm Metastasis , Protein Isoforms/genetics , Protein Isoforms/immunology , Signal Transduction
14.
Int J Mol Sci ; 23(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35628269

ABSTRACT

Elevated levels of Mucin-16 (MUC16) in conjunction with a high expression of truncated O-glycans is implicated in playing crucial roles in the malignancy of pancreatic ductal adenocarcinoma (PDAC). However, the mechanisms by which such aberrant glycoforms present on MUC16 itself promote an increased disease burden in PDAC are yet to be elucidated. This study demonstrates that the CRISPR/Cas9-mediated genetic deletion of MUC16 in PDAC cells decreases tumor cell migration. We found that MUC16 enhances tumor malignancy by activating the integrin-linked kinase and focal adhesion kinase (ILK/FAK)-signaling axis. These findings are especially noteworthy in truncated O-glycan (Tn and STn antigen)-expressing PDAC cells. Activation of these oncogenic-signaling pathways resulted in part from interactions between MUC16 and integrin complexes (α4ß1), which showed a stronger association with aberrant glycoforms of MUC16. Using a monoclonal antibody to functionally hinder MUC16 significantly reduced the migratory cascades in our model. Together, these findings suggest that truncated O-glycan containing MUC16 exacerbates malignancy in PDAC by activating FAK signaling through specific interactions with α4 and ß1 integrin complexes on cancer cell membranes. Targeting these aberrant glycoforms of MUC16 can aid in the development of a novel platform to study and treat metastatic pancreatic cancer.


Subject(s)
CA-125 Antigen , Carcinoma, Pancreatic Ductal , Focal Adhesion Kinase 1 , Integrin alpha4beta1 , Membrane Proteins , Pancreatic Neoplasms , CA-125 Antigen/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Focal Adhesion Kinase 1/metabolism , Humans , Integrin alpha4beta1/metabolism , Membrane Proteins/metabolism , Pancreatic Hormones/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Polysaccharides/metabolism
15.
Br J Cancer ; 124(1): 166-175, 2021 01.
Article in English | MEDLINE | ID: mdl-33024269

ABSTRACT

BACKGROUND: Previously, we identified ITIH5 as a suppressor of pancreatic ductal adenocarcinoma (PDAC) metastasis in experimental models. Expression of ITIH5 correlated with decreased cell motility, invasion and metastasis without significant inhibition of primary tumour growth. Here, we tested whether secretion of ITIH5 is required to suppress liver metastasis and sought to understand the role of ITIH5 in human PDAC. METHODS: We expressed mutant ITIH5 with deletion of the N-terminal secretion sequence (ITIH5Δs) in highly metastatic human PDAC cell lines. We used a human tissue microarray (TMA) to compare ITIH5 levels in uninvolved pancreas, primary and metastatic PDAC. RESULTS: Secretion-deficient ITIH5Δs was sufficient to suppress liver metastasis. Similar to secreted ITIH5, expression of ITIH5Δs was associated with rounded cell morphology, reduced cell motility and reduction of liver metastasis. Expression of ITIH5 is low in both human primary PDAC and matched metastases. CONCLUSIONS: Metastasis suppression by ITIH5 may be mediated by an intracellular mechanism. In human PDAC, loss of ITIH5 may be an early event and ITIH5-low PDAC cells in primary tumours may be selected for liver metastasis. Further defining the ITIH5-mediated pathway in PDAC could establish future therapeutic exploitation of this biology and reduce morbidity and mortality associated with PDAC metastasis.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Liver Neoplasms/secondary , Neoplasm Invasiveness/pathology , Pancreatic Neoplasms/pathology , Proteinase Inhibitory Proteins, Secretory/metabolism , Animals , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Heterografts , Humans , Mice , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms
16.
Cell Immunol ; 363: 104317, 2021 05.
Article in English | MEDLINE | ID: mdl-33714729

ABSTRACT

Myeloid derived suppressor cells (MDSCs) can be subset into monocytic (M-), granulocytic (G-) or polymorphonuclear (PMN-), and immature (i-) or early MDSCs and have a role in many disease states. In cancer patients, the frequencies of MDSCs can positively correlate with stage, grade, and survival. Most clinical studies into MDSCs have been undertaken with peripheral blood (PB); however, in the present studies, we uniquely examined MDSCs in the spleens and PB from patients with gastrointestinal cancers. In our studies, MDSCs were rigorously subset using the following markers: Lineage (LIN) (CD3, CD19 and CD56), human leukocyte antigen (HLA)-DR, CD11b, CD14, CD15, CD33, CD34, CD45, and CD16. We observed a significantly higher frequency of PMN- and M-MDSCs in the PB of cancer patients as compared to their spleens. Expression of the T-cell suppressive enzymes arginase (ARG1) and inducible nitric oxide synthase (i-NOS) were higher on all MDSC subsets for both cancer patients PB and spleen cells as compared to MDSCs from the PB of normal donors. Similar findings for the activation markers lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), program death ligand 1 (PD-L1) and program cell death protein 1 (PD-1) were observed. Interestingly, the total MDSC cell number exported to clustering analyses was similar between all sample types; however, clustering analyses of these MDSCs, using these markers, uniquely documented novel subsets of PMN-, M- and i-MDSCs. In summary, we report a comparison of splenic MDSC frequency, subtypes, and functionality in cancer patients to their PB by clustering and cytometric analyses.


Subject(s)
Myeloid-Derived Suppressor Cells/metabolism , Spleen/immunology , Adult , Aged , Arginase/metabolism , B7-H1 Antigen/metabolism , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cluster Analysis , Female , Flow Cytometry/methods , Gastrointestinal Neoplasms/immunology , HLA-DR Antigens/metabolism , Humans , Male , Middle Aged , Myeloid-Derived Suppressor Cells/cytology , Myeloid-Derived Suppressor Cells/immunology , Neoplasms/immunology , Programmed Cell Death 1 Receptor/metabolism , Scavenger Receptors, Class E/metabolism , Spleen/pathology
17.
Nature ; 527(7578): 329-35, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26524530

ABSTRACT

Ever since Stephen Paget's 1889 hypothesis, metastatic organotropism has remained one of cancer's greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6ß4 and α6ß1 were associated with lung metastasis, while exosomal integrin αvß5 was linked to liver metastasis. Targeting the integrins α6ß4 and αvß5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.


Subject(s)
Brain/metabolism , Exosomes/metabolism , Integrins/metabolism , Liver/metabolism , Lung/metabolism , Neoplasm Metastasis/pathology , Neoplasm Metastasis/prevention & control , Tropism , Animals , Biomarkers/metabolism , Brain/cytology , Cell Line, Tumor , Endothelial Cells/cytology , Endothelial Cells/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Genes, src , Humans , Integrin alpha6beta1/metabolism , Integrin alpha6beta4/antagonists & inhibitors , Integrin alpha6beta4/metabolism , Integrin beta Chains/metabolism , Integrin beta4/metabolism , Integrins/antagonists & inhibitors , Kupffer Cells/cytology , Kupffer Cells/metabolism , Liver/cytology , Lung/cytology , Mice , Mice, Inbred C57BL , Organ Specificity , Phosphorylation , Receptors, Vitronectin/antagonists & inhibitors , Receptors, Vitronectin/metabolism , S100 Proteins/genetics
18.
Article in English | MEDLINE | ID: mdl-32081432

ABSTRACT

Metabolic reprogramming is required for tumors to meet the bioenergetic and biosynthetic demands of malignant progression. Numerous studies have established a causal relationship between oncogenic drivers and altered metabolism, most prominently aerobic glycolysis, which supports rapid growth and affects the tumor microenvironment. Less is known about how the microenvironment modulates cancer metabolism. In the present study, we found that low extracellular pH, a common feature of solid tumors, provoked PDAC cells to decrease glycolysis and become resistant to glucose starvation. This was accompanied by increased dependency on mitochondrial metabolism, in which long-chain fatty acids became a primary fuel source. Consistent with previous reports, low pH enhanced tumor cell invasiveness. A novel finding was that limiting PDAC metabolic flexibility by either suppression of oxidative phosphorylation capacity or the pharmacological inhibition of fatty-acid oxidation prevented invasion induced by low extracellular pH. Altogether, our results suggest for the first time that targeting fatty-acid oxidation may be a viable adjunct strategy for preventing metastatic progression of pancreatic cancer mediated by the acidic tumor compartment.

19.
Mol Pharm ; 17(8): 2849-2863, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32521162

ABSTRACT

In pancreatic ductal adenocarcinoma (PDAC), early onset of hypoxia triggers remodeling of the extracellular matrix, epithelial-to-mesenchymal transition, increased cell survival, the formation of cancer stem cells, and drug resistance. Hypoxia in PDAC is also associated with the development of collagen-rich, fibrous extracellular stroma (desmoplasia), resulting in severely impaired drug penetration. To overcome these daunting challenges, we created polymer nanoparticles (polymersomes) that target and penetrate pancreatic tumors, reach the hypoxic niches, undergo rapid structural destabilization, and release the encapsulated drugs. In vitro studies indicated a high cellular uptake of the polymersomes and increased cytotoxicity of the drugs under hypoxia compared to unencapsulated drugs. The polymersomes decreased tumor growth by nearly 250% and significantly increased necrosis within the tumors by 60% in mice compared to untreated controls. We anticipate that these polymer nanoparticles possess a considerable translational potential for delivering drugs to solid hypoxic tumors.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Hypoxia/drug therapy , Nanoparticles/chemistry , Pancreatic Neoplasms/drug therapy , Animals , Carcinoma, Pancreatic Ductal/drug therapy , Cell Line, Tumor , Female , Humans , Male , Mice , Mice, Nude , Neoplastic Stem Cells/drug effects , Polymers/chemistry
20.
Biomed Chromatogr ; 34(8): e4859, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32307720

ABSTRACT

A rapid, selective, and sensitive liquid chromatography coupled with tandem mass spectrometry (MS/MS) method was developed and validated for the quantitation of the novel CDK5 inhibitor '20-223' in mouse plasma. Separation of analytes was achieved by a reverse-phase ACE Excel C18 column (1.7 µm, 100 × 2.1 mm) with gradient elution using 0.1% formic acid (FA) in methanol and 0.1% FA as the mobile phase. Analytes were monitored by MS/MS with an electrospray ionization source in the positive multiple reaction monitoring mode. The MS/MS response was linear over the concentration range 0.2-500 ng/mL for 20-223. The within- and between-batch precision were within the acceptable limits as per Food and Drug Administration guidelines. The validated method was successfully applied to plasma protein binding and in vitro metabolism studies. Compound 20-223 was highly bound to mouse plasma proteins (>98% bound). Utilizing mouse S9 fractions, in vitro intrinsic clearance (CLint ) was 24.68 ± 0.99 µL/min/mg protein. A total of 12 phase I and II metabolites were identified with hydroxylation found to be the major metabolic pathway. The validate method required a low sample volume, was linear from 0.2 to 500 ng/mL, and had acceptable accuracy and precision.


Subject(s)
Chromatography, Liquid/methods , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/pharmacokinetics , Tandem Mass Spectrometry/methods , Animals , Blood Proteins/metabolism , Limit of Detection , Linear Models , Mice , Protein Binding , Protein Kinase Inhibitors/chemistry , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL