Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Nature ; 539(7627): 112-117, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27595394

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is characterized by inactivation of the von Hippel-Lindau tumour suppressor gene (VHL). Because no other gene is mutated as frequently in ccRCC and VHL mutations are truncal, VHL inactivation is regarded as the governing event. VHL loss activates the HIF-2 transcription factor, and constitutive HIF-2 activity restores tumorigenesis in VHL-reconstituted ccRCC cells. HIF-2 has been implicated in angiogenesis and multiple other processes, but angiogenesis is the main target of drugs such as the tyrosine kinase inhibitor sunitinib. HIF-2 has been regarded as undruggable. Here we use a tumourgraft/patient-derived xenograft platform to evaluate PT2399, a selective HIF-2 antagonist that was identified using a structure-based design approach. PT2399 dissociated HIF-2 (an obligatory heterodimer of HIF-2α-HIF-1ß) in human ccRCC cells and suppressed tumorigenesis in 56% (10 out of 18) of such lines. PT2399 had greater activity than sunitinib, was active in sunitinib-progressing tumours, and was better tolerated. Unexpectedly, some VHL-mutant ccRCCs were resistant to PT2399. Resistance occurred despite HIF-2 dissociation in tumours and evidence of Hif-2 inhibition in the mouse, as determined by suppression of circulating erythropoietin, a HIF-2 target and possible pharmacodynamic marker. We identified a HIF-2-dependent gene signature in sensitive tumours. Gene expression was largely unaffected by PT2399 in resistant tumours, illustrating the specificity of the drug. Sensitive tumours exhibited a distinguishing gene expression signature and generally higher levels of HIF-2α. Prolonged PT2399 treatment led to resistance. We identified binding site and second site suppressor mutations in HIF-2α and HIF-1ß, respectively. Both mutations preserved HIF-2 dimers despite treatment with PT2399. Finally, an extensively pretreated patient whose tumour had given rise to a sensitive tumourgraft showed disease control for more than 11 months when treated with a close analogue of PT2399, PT2385. We validate HIF-2 as a target in ccRCC, show that some ccRCCs are HIF-2 independent, and set the stage for biomarker-driven clinical trials.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/metabolism , Indans/pharmacology , Indans/therapeutic use , Kidney Neoplasms/drug therapy , Kidney Neoplasms/metabolism , Sulfones/pharmacology , Sulfones/therapeutic use , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Binding Sites , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic , Drug Resistance, Neoplasm/drug effects , Erythropoietin/antagonists & inhibitors , Erythropoietin/blood , Female , Gene Expression Regulation, Neoplastic , Humans , Indans/administration & dosage , Indoles/pharmacology , Indoles/therapeutic use , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Targeted Therapy , Mutation , Pyrroles/pharmacology , Pyrroles/therapeutic use , Reproducibility of Results , Sulfones/administration & dosage , Sunitinib , Xenograft Model Antitumor Assays
2.
Nat Genet ; 47(1): 13-21, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25401301

ABSTRACT

To further understand the molecular distinctions between kidney cancer subtypes, we analyzed exome, transcriptome and copy number alteration data from 167 primary human tumors that included renal oncocytomas and non-clear cell renal cell carcinomas (nccRCCs), consisting of papillary (pRCC), chromophobe (chRCC) and translocation (tRCC) subtypes. We identified ten significantly mutated genes in pRCC, including MET, NF2, SLC5A3, PNKD and CPQ. MET mutations occurred in 15% (10/65) of pRCC samples and included previously unreported recurrent activating mutations. In chRCC, we found TP53, PTEN, FAAH2, PDHB, PDXDC1 and ZNF765 to be significantly mutated. Gene expression analysis identified a five-gene set that enabled the molecular classification of chRCC, renal oncocytoma and pRCC. Using RNA sequencing, we identified previously unreported gene fusions, including ACTG1-MITF fusion. Ectopic expression of the ACTG1-MITF fusion led to cellular transformation and induced the expression of downstream target genes. Finally, we observed upregulation of the anti-apoptotic factor BIRC7 in MiTF-high RCC tumors, suggesting a potential therapeutic role for BIRC7 inhibitors.


Subject(s)
Carcinoma, Renal Cell/classification , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Kidney Neoplasms/genetics , Mutation , Adenoma, Oxyphilic/classification , Adenoma, Oxyphilic/genetics , Adenoma, Oxyphilic/pathology , Amino Acid Sequence , Base Sequence , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , DNA, Neoplasm , Gene Dosage , Genomic Instability , Humans , Kidney Neoplasms/classification , Kidney Neoplasms/pathology , Molecular Sequence Data , Neoplasm Proteins/genetics , Neoplasm Proteins/physiology , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/physiology , Polymorphism, Single Nucleotide , Protein Conformation , Proto-Oncogene Proteins c-met/chemistry , Proto-Oncogene Proteins c-met/genetics , Translocation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL