Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cell ; 154(3): 505-17, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23911318

ABSTRACT

Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acid synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH) due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a potentially treatable early-onset neurodegenerative disease.


Subject(s)
AMP Deaminase/metabolism , Olivopontocerebellar Atrophies/metabolism , Purines/biosynthesis , AMP Deaminase/chemistry , AMP Deaminase/genetics , Animals , Brain Stem/pathology , Cerebellum/pathology , Child , Female , Guanosine Triphosphate/metabolism , Humans , Male , Mice , Mice, Knockout , Mutation , Neural Stem Cells/metabolism , Olivopontocerebellar Atrophies/genetics , Olivopontocerebellar Atrophies/pathology , Protein Biosynthesis , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism
2.
BMC Endocr Disord ; 14: 96, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25511531

ABSTRACT

BACKGROUND: Insulin resistance is one of the hallmark manifestations of obesity and Type II diabetes and reversal of this pathogenic abnormality is an attractive target for new therapies for Type II diabetes. A recent report that metformin, a drug known to reverse insulin resistance, demonstrated in vitro the metformin can inhibit AMP deaminase (AMPD) activity. Skeletal muscle is one of the primary organs contributing to insulin resistance and that the AMPD1 gene is selectively expressed at high levels in skeletal muscle. METHODS: Recognizing the background above, we asked if genetic disruption of the AMPD1 gene might ameliorate the manifestations of insulin resistance. AMPD1 deficient homozygous mice and control mice fed normal chow diet or a high-fat diet, and blood analysis, glucose tolerance test and insulin tolerance test were performed. Also, skeletal muscle metabolism and gene expression including nucleotide levels and activation of AMP activated protein kinase (AMP kinase) were evaluated in both conditions. RESULTS: Disruption of the AMPD1 gene leads to a less severe state of insulin resistance, improved glucose tolerance and enhanced insulin clearance in mice fed a high fat diet. Given the central role of AMP kinase in insulin action, and its response to changes in AMP concentrations in the cell, we examined the skeletal muscle of the AMPD1 deficient mice and found that they have greater AMP kinase activity as evidenced by higher levels of phosphorylated AMP kinase. CONCLUSIONS: Taken together these data suggest that AMPD may be a new drug target for the reversal of insulin resistance and the treatment of Type II diabetes.


Subject(s)
AMP Deaminase/genetics , AMP Deaminase/metabolism , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin Resistance , Muscle, Skeletal/metabolism , Obesity/metabolism , AMP-Activated Protein Kinases/drug effects , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/etiology , Diet, High-Fat , Disease Models, Animal , Gene Expression Regulation , Insulin Resistance/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Skeletal/drug effects , Obesity/etiology
3.
Mol Genet Metab Rep ; 1: 51-59, 2014.
Article in English | MEDLINE | ID: mdl-27896074

ABSTRACT

Mutation of the AMP deaminase 1 (AMPD1) gene, the predominate AMPD gene expressed in skeletal muscle, is one of the most common inherited defects in the Caucasian population; 2-3% of individuals in this ethnic group are homozygous for defects in the AMPD1 gene. Several studies of human subjects have reported variable results with some studies suggesting this gene defect may cause symptoms of a metabolic myopathy and/or easy fatigability while others indicate individuals with this inherited defect are completely asymptomatic. Because of confounding problems in assessing muscle symptoms and performance in human subjects with different genetic backgrounds and different environmental experiences such as prior exercise conditioning and diet, a strain of inbred mice with selective disruption of the AMPD1 was developed to study the consequences of muscle AMPD deficiency in isolation. Studies reported here demonstrate that these animals are a good metabolic phenocopy of human AMPD1 deficiency but they exhibit no abnormalities in muscle performance in three different exercise protocols.

6.
Control Clin Trials ; 23(3): 222-39, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12057876

ABSTRACT

The mapping and sequencing of the human genome promises rapid growth in understanding the genetically influenced mechanisms that underlie human disease. To realize this promise fully, it is necessary to relate genetic information to clinical phenotypes. Genetic tissue banking in clinical studies provides opportunities to analyze the genetic contribution to variation in response to treatments. The challenges to progress are likely to come from the complex organizational, social, political, and ethical issues that must be resolved in order to put clinical and DNA bank information together. Concerns about subjects' rights, informed consent, privacy, and ownership of genetic material require attention in the development of DNA banks. In this paper we describe one approach to the solution of these problems that was adopted by one clinical trials group, the Department of Veterans Affairs Cooperative Studies Program.


Subject(s)
Clinical Trials as Topic/methods , Ethics, Medical , Genome, Human , Informed Consent , Tissue Banks/organization & administration , Genotype , Humans , United States , United States Department of Veterans Affairs
SELECTION OF CITATIONS
SEARCH DETAIL