Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 40: 559-587, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35113732

ABSTRACT

The immune system employs recognition tools to communicate with its microbial evolutionary partner. Among all the methods of microbial perception, T cells enable the widest spectrum of microbial recognition resolution, ranging from the crudest detection of whole groups of microbes to the finest detection of specific antigens. The application of this recognition capability to the crucial task of combatting infections has been the focus of classical immunology. We now appreciate that the coevolution of the immune system and the microbiota has led to development of a lush immunological decision tree downstream of microbial recognition, of which an inflammatory response is but one branch. In this review we discuss known T cell-microbe interactions in the gut and place them in the context of an algorithmic framework of recognition, context-dependent interpretation, and response circuits across multiple levels of microbial recognition resolution. The malleability of T cells in response to the microbiota presents an opportunity to edit immune response cellularity, identity, and functionality by utilizing microbiota-controlled pathways to promote human health.


Subject(s)
Microbiota , T-Lymphocytes , Animals , Humans
2.
Cell ; 185(19): 3501-3519.e20, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36041436

ABSTRACT

How intestinal microbes regulate metabolic syndrome is incompletely understood. We show that intestinal microbiota protects against development of obesity, metabolic syndrome, and pre-diabetic phenotypes by inducing commensal-specific Th17 cells. High-fat, high-sugar diet promoted metabolic disease by depleting Th17-inducing microbes, and recovery of commensal Th17 cells restored protection. Microbiota-induced Th17 cells afforded protection by regulating lipid absorption across intestinal epithelium in an IL-17-dependent manner. Diet-induced loss of protective Th17 cells was mediated by the presence of sugar. Eliminating sugar from high-fat diets protected mice from obesity and metabolic syndrome in a manner dependent on commensal-specific Th17 cells. Sugar and ILC3 promoted outgrowth of Faecalibaculum rodentium that displaced Th17-inducing microbiota. These results define dietary and microbiota factors posing risk for metabolic syndrome. They also define a microbiota-dependent mechanism for immuno-pathogenicity of dietary sugar and highlight an elaborate interaction between diet, microbiota, and intestinal immunity in regulation of metabolic disorders.


Subject(s)
Metabolic Syndrome , Microbiota , Animals , Diet, High-Fat , Dietary Sugars , Interleukin-17 , Intestinal Mucosa , Lipids , Mice , Mice, Inbred C57BL , Obesity , Th17 Cells
3.
Cell ; 185(16): 2879-2898.e24, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35931020

ABSTRACT

Human gut commensals are increasingly suggested to impact non-communicable diseases, such as inflammatory bowel diseases (IBD), yet their targeted suppression remains a daunting unmet challenge. In four geographically distinct IBD cohorts (n = 537), we identify a clade of Klebsiella pneumoniae (Kp) strains, featuring a unique antibiotics resistance and mobilome signature, to be strongly associated with disease exacerbation and severity. Transfer of clinical IBD-associated Kp strains into colitis-prone, germ-free, and colonized mice enhances intestinal inflammation. Stepwise generation of a lytic five-phage combination, targeting sensitive and resistant IBD-associated Kp clade members through distinct mechanisms, enables effective Kp suppression in colitis-prone mice, driving an attenuated inflammation and disease severity. Proof-of-concept assessment of Kp-targeting phages in an artificial human gut and in healthy volunteers demonstrates gastric acid-dependent phage resilience, safety, and viability in the lower gut. Collectively, we demonstrate the feasibility of orally administered combination phage therapy in avoiding resistance, while effectively inhibiting non-communicable disease-contributing pathobionts.


Subject(s)
Bacteriophages , Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Animals , Colitis/therapy , Humans , Inflammation/therapy , Inflammatory Bowel Diseases/therapy , Klebsiella pneumoniae , Mice
4.
Cell ; 182(6): 1441-1459.e21, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32888430

ABSTRACT

Throughout a 24-h period, the small intestine (SI) is exposed to diurnally varying food- and microbiome-derived antigenic burdens but maintains a strict immune homeostasis, which when perturbed in genetically susceptible individuals, may lead to Crohn disease. Herein, we demonstrate that dietary content and rhythmicity regulate the diurnally shifting SI epithelial cell (SIEC) transcriptional landscape through modulation of the SI microbiome. We exemplify this concept with SIEC major histocompatibility complex (MHC) class II, which is diurnally modulated by distinct mucosal-adherent SI commensals, while supporting downstream diurnal activity of intra-epithelial IL-10+ lymphocytes regulating the SI barrier function. Disruption of this diurnally regulated diet-microbiome-MHC class II-IL-10-epithelial barrier axis by circadian clock disarrangement, alterations in feeding time or content, or epithelial-specific MHC class II depletion leads to an extensive microbial product influx, driving Crohn-like enteritis. Collectively, we highlight nutritional features that modulate SI microbiome, immunity, and barrier function and identify dietary, epithelial, and immune checkpoints along this axis to be potentially exploitable in future Crohn disease interventions.


Subject(s)
Crohn Disease/microbiology , Epithelial Cells/metabolism , Gastrointestinal Microbiome , Histocompatibility Antigens Class II/metabolism , Intestine, Small/immunology , Intestine, Small/microbiology , Transcriptome/genetics , Animals , Anti-Bacterial Agents/pharmacology , Circadian Clocks/physiology , Crohn Disease/immunology , Crohn Disease/metabolism , Diet , Epithelial Cells/cytology , Epithelial Cells/immunology , Flow Cytometry , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Gene Expression Profiling , Histocompatibility Antigens Class II/genetics , Homeostasis , In Situ Hybridization, Fluorescence , Interleukin-10/metabolism , Interleukin-10/pharmacology , Intestine, Small/physiology , Lymphocytes , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Periodicity , T-Lymphocytes/immunology , Transcriptome/physiology
5.
Annu Rev Immunol ; 30: 759-95, 2012.
Article in English | MEDLINE | ID: mdl-22224764

ABSTRACT

The mammalian alimentary tract harbors hundreds of species of commensal microorganisms (microbiota) that intimately interact with the host and provide it with genetic, metabolic, and immunological attributes. Recent reports have indicated that the microbiota composition and its collective genomes (microbiome) are major factors in predetermining the type and robustness of mucosal immune responses. In this review, we discuss the recent advances in our understanding of host-microbiota interactions and their effect on the health and disease susceptibility of the host.


Subject(s)
Communicable Diseases/immunology , Communicable Diseases/microbiology , Inflammation/immunology , Inflammation/microbiology , Metagenome/immunology , Adaptive Immunity , Animals , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Immunity, Mucosal , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Signal Transduction
6.
Cell ; 167(6): 1495-1510.e12, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27912059

ABSTRACT

The intestinal microbiota undergoes diurnal compositional and functional oscillations that affect metabolic homeostasis, but the mechanisms by which the rhythmic microbiota influences host circadian activity remain elusive. Using integrated multi-omics and imaging approaches, we demonstrate that the gut microbiota features oscillating biogeographical localization and metabolome patterns that determine the rhythmic exposure of the intestinal epithelium to different bacterial species and their metabolites over the course of a day. This diurnal microbial behavior drives, in turn, the global programming of the host circadian transcriptional, epigenetic, and metabolite oscillations. Surprisingly, disruption of homeostatic microbiome rhythmicity not only abrogates normal chromatin and transcriptional oscillations of the host, but also incites genome-wide de novo oscillations in both intestine and liver, thereby impacting diurnal fluctuations of host physiology and disease susceptibility. As such, the rhythmic biogeography and metabolome of the intestinal microbiota regulates the temporal organization and functional outcome of host transcriptional and epigenetic programs.


Subject(s)
Circadian Rhythm , Colon/microbiology , Gastrointestinal Microbiome , Transcriptome , Animals , Chromatin/metabolism , Colon/metabolism , Germ-Free Life , Liver/metabolism , Mice , Microscopy, Electron, Scanning
7.
Cell ; 163(2): 367-80, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26411289

ABSTRACT

Intestinal Th17 cells are induced and accumulate in response to colonization with a subgroup of intestinal microbes such as segmented filamentous bacteria (SFB) and certain extracellular pathogens. Here, we show that adhesion of microbes to intestinal epithelial cells (ECs) is a critical cue for Th17 induction. Upon monocolonization of germ-free mice or rats with SFB indigenous to mice (M-SFB) or rats (R-SFB), M-SFB and R-SFB showed host-specific adhesion to small intestinal ECs, accompanied by host-specific induction of Th17 cells. Citrobacter rodentium and Escherichia coli O157 triggered similar Th17 responses, whereas adhesion-defective mutants of these microbes failed to do so. Moreover, a mixture of 20 bacterial strains, which were selected and isolated from fecal samples of a patient with ulcerative colitis on the basis of their ability to cause a robust induction of Th17 cells in the mouse colon, also exhibited EC-adhesive characteristics.


Subject(s)
Bacterial Adhesion , Citrobacter rodentium/physiology , Enterobacteriaceae Infections/immunology , Escherichia coli Infections/immunology , Escherichia coli O157/physiology , Intestinal Mucosa/immunology , Th17 Cells/immunology , Animals , Bacterial Infections/immunology , Epithelial Cells/immunology , Epithelial Cells/microbiology , Epithelial Cells/ultrastructure , Feces/microbiology , Humans , Immunoglobulin A/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Microscopy, Electron, Scanning , Rats , Rats, Inbred F344 , Species Specificity
8.
Nature ; 629(8013): 901-909, 2024 May.
Article in English | MEDLINE | ID: mdl-38658756

ABSTRACT

The liver is the main gateway from the gut, and the unidirectional sinusoidal flow from portal to central veins constitutes heterogenous zones, including the periportal vein (PV) and the pericentral vein zones1-5. However, functional differences in the immune system in each zone remain poorly understood. Here intravital imaging revealed that inflammatory responses are suppressed in PV zones. Zone-specific single-cell transcriptomics detected a subset of immunosuppressive macrophages enriched in PV zones that express high levels of interleukin-10 and Marco, a scavenger receptor that sequesters pro-inflammatory pathogen-associated molecular patterns and damage-associated molecular patterns, and consequently suppress immune responses. Induction of Marco+ immunosuppressive macrophages depended on gut microbiota. In particular, a specific bacterial family, Odoribacteraceae, was identified to induce this macrophage subset through its postbiotic isoallolithocholic acid. Intestinal barrier leakage resulted in inflammation in PV zones, which was markedly augmented in Marco-deficient conditions. Chronic liver inflammatory diseases such as primary sclerosing cholangitis (PSC) and non-alcoholic steatohepatitis (NASH) showed decreased numbers of Marco+ macrophages. Functional ablation of Marco+ macrophages led to PSC-like inflammatory phenotypes related to colitis and exacerbated steatosis in NASH in animal experimental models. Collectively, commensal bacteria induce Marco+ immunosuppressive macrophages, which consequently limit excessive inflammation at the gateway of the liver. Failure of this self-limiting system promotes hepatic inflammatory disorders such as PSC and NASH.


Subject(s)
Cholangitis, Sclerosing , Gastrointestinal Microbiome , Inflammation , Liver , Macrophages , Non-alcoholic Fatty Liver Disease , Symbiosis , Animals , Female , Humans , Male , Mice , Bacteroidetes/metabolism , Cholangitis, Sclerosing/immunology , Cholangitis, Sclerosing/microbiology , Cholangitis, Sclerosing/pathology , Gastrointestinal Microbiome/immunology , Gastrointestinal Microbiome/physiology , Gene Expression Profiling , Inflammation/immunology , Inflammation/microbiology , Inflammation/pathology , Interleukin-10/immunology , Interleukin-10/metabolism , Liver/immunology , Liver/pathology , Liver/microbiology , Macrophages/cytology , Macrophages/immunology , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/pathology , Portal Vein , Receptors, Immunologic/deficiency , Receptors, Immunologic/metabolism , Single-Cell Analysis , Symbiosis/immunology
9.
Nat Immunol ; 17(5): 505-513, 2016 05.
Article in English | MEDLINE | ID: mdl-26998764

ABSTRACT

The effect of alterations in intestinal microbiota on microbial metabolites and on disease processes such as graft-versus-host disease (GVHD) is not known. Here we carried out an unbiased analysis to identify previously unidentified alterations in gastrointestinal microbiota-derived short-chain fatty acids (SCFAs) after allogeneic bone marrow transplant (allo-BMT). Alterations in the amount of only one SCFA, butyrate, were observed only in the intestinal tissue. The reduced butyrate in CD326(+) intestinal epithelial cells (IECs) after allo-BMT resulted in decreased histone acetylation, which was restored after local administration of exogenous butyrate. Butyrate restoration improved IEC junctional integrity, decreased apoptosis and mitigated GVHD. Furthermore, alteration of the indigenous microbiota with 17 rationally selected strains of high butyrate-producing Clostridia also decreased GVHD. These data demonstrate a heretofore unrecognized role of microbial metabolites and suggest that local and specific alteration of microbial metabolites has direct salutary effects on GVHD target tissues and can mitigate disease severity.


Subject(s)
Epithelial Cells/immunology , Gastrointestinal Microbiome/immunology , Graft vs Host Disease/immunology , Intestines/immunology , Metabolome/immunology , Acetylation/drug effects , Animals , Bone Marrow Transplantation/adverse effects , Bone Marrow Transplantation/methods , Butyrates/immunology , Butyrates/metabolism , Butyrates/pharmacology , Cells, Cultured , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Fatty Acids, Volatile/immunology , Fatty Acids, Volatile/metabolism , Female , Gas Chromatography-Mass Spectrometry , Gastrointestinal Microbiome/physiology , Gene Expression/immunology , Graft vs Host Disease/etiology , Graft vs Host Disease/microbiology , Histone Acetyltransferases/genetics , Histone Acetyltransferases/immunology , Histone Acetyltransferases/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/immunology , Histone Deacetylases/metabolism , Histones/immunology , Histones/metabolism , Immunoblotting , Intestines/cytology , Intestines/microbiology , Mice, Inbred BALB C , Mice, Inbred C57BL , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transplantation, Homologous
10.
Nature ; 609(7927): 582-589, 2022 09.
Article in English | MEDLINE | ID: mdl-36071157

ABSTRACT

Increased levels of proteases, such as trypsin, in the distal intestine have been implicated in intestinal pathological conditions1-3. However, the players and mechanisms that underlie protease regulation in the intestinal lumen have remained unclear. Here we show that Paraprevotella strains isolated from the faecal microbiome of healthy human donors are potent trypsin-degrading commensals. Mechanistically, Paraprevotella recruit trypsin to the bacterial surface through type IX secretion system-dependent polysaccharide-anchoring proteins to promote trypsin autolysis. Paraprevotella colonization protects IgA from trypsin degradation and enhances the effectiveness of oral vaccines against Citrobacter rodentium. Moreover, Paraprevotella colonization inhibits lethal infection with murine hepatitis virus-2, a mouse coronavirus that is dependent on trypsin and trypsin-like proteases for entry into host cells4,5. Consistently, carriage of putative genes involved in trypsin degradation in the gut microbiome was associated with reduced severity of diarrhoea in patients with SARS-CoV-2 infection. Thus, trypsin-degrading commensal colonization may contribute to the maintenance of intestinal homeostasis and protection from pathogen infection.


Subject(s)
Gastrointestinal Microbiome , Intestine, Large , Symbiosis , Trypsin , Administration, Oral , Animals , Bacterial Secretion Systems , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/immunology , Bacteroidetes/isolation & purification , Bacteroidetes/metabolism , COVID-19/complications , Citrobacter rodentium/immunology , Diarrhea/complications , Feces/microbiology , Gastrointestinal Microbiome/genetics , Humans , Immunoglobulin A/metabolism , Intestine, Large/metabolism , Intestine, Large/microbiology , Mice , Murine hepatitis virus/metabolism , Murine hepatitis virus/pathogenicity , Proteolysis , SARS-CoV-2/pathogenicity , Trypsin/metabolism , Virus Internalization
11.
Mol Cell ; 79(1): 43-53.e4, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32464093

ABSTRACT

The physiological role of immune cells in the regulation of postprandial glucose metabolism has not been fully elucidated. We have found that adipose tissue macrophages produce interleukin-10 (IL-10) upon feeding, which suppresses hepatic glucose production in cooperation with insulin. Both elevated insulin and gut-microbiome-derived lipopolysaccharide in response to feeding are required for IL-10 production via the Akt/mammalian target of rapamycin (mTOR) pathway. Indeed, myeloid-specific knockout of the insulin receptor or bone marrow transplantation of mutant TLR4 marrow cells results in increased expression of gluconeogenic genes and impaired glucose tolerance. Furthermore, myeloid-specific Akt1 and Akt2 knockout results in similar phenotypes that are rescued by additional knockout of TSC2, an inhibitor of mTOR. In obesity, IL-10 production is impaired due to insulin resistance in macrophages, whereas adenovirus-mediated expression of IL-10 ameliorates postprandial hyperglycemia. Thus, the orchestrated response of the endogenous hormone and gut environment to feeding is a key regulator of postprandial glycemia.


Subject(s)
Adipose Tissue/drug effects , Hyperglycemia/pathology , Insulin/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Proto-Oncogene Proteins c-akt/physiology , TOR Serine-Threonine Kinases/metabolism , Adipose Tissue/metabolism , Animals , Blood Glucose/analysis , Gluconeogenesis/genetics , Hyperglycemia/etiology , Hyperglycemia/metabolism , Hypoglycemic Agents/pharmacology , Insulin Resistance , Interleukin-10/physiology , Macrophages/metabolism , Male , Mice , Mice, Inbred C3H , Mice, Knockout , Postprandial Period , Signal Transduction , TOR Serine-Threonine Kinases/genetics , Tuberous Sclerosis Complex 2 Protein/physiology
12.
Nature ; 599(7885): 458-464, 2021 11.
Article in English | MEDLINE | ID: mdl-34325466

ABSTRACT

Centenarians have a decreased susceptibility to ageing-associated illnesses, chronic inflammation and infectious diseases1-3. Here we show that centenarians have a distinct gut microbiome that is enriched in microorganisms that are capable of generating unique secondary bile acids, including various isoforms of lithocholic acid (LCA): iso-, 3-oxo-, allo-, 3-oxoallo- and isoallolithocholic acid. Among these bile acids, the biosynthetic pathway for isoalloLCA had not been described previously. By screening 68 bacterial isolates from the faecal microbiota of a centenarian, we identified Odoribacteraceae strains as effective producers of isoalloLCA both in vitro and in vivo. Furthermore, we found that the enzymes 5α-reductase (5AR) and 3ß-hydroxysteroid dehydrogenase (3ß-HSDH) were responsible for the production of isoalloLCA. IsoalloLCA exerted potent antimicrobial effects against Gram-positive (but not Gram-negative) multidrug-resistant pathogens, including Clostridioides difficile and Enterococcus faecium. These findings suggest that the metabolism of specific bile acids may be involved in reducing the risk of infection with pathobionts, thereby potentially contributing to the maintenance of intestinal homeostasis.


Subject(s)
Bacteria/metabolism , Biosynthetic Pathways , Centenarians , Gastrointestinal Microbiome , Lithocholic Acid/analogs & derivatives , Lithocholic Acid/biosynthesis , 3-Hydroxysteroid Dehydrogenases/metabolism , Aged, 80 and over , Animals , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/metabolism , Bacteria/classification , Bacteria/enzymology , Bacteria/isolation & purification , Cholestenone 5 alpha-Reductase/metabolism , Feces/chemistry , Feces/microbiology , Female , Gram-Positive Bacteria/metabolism , Humans , Lithocholic Acid/metabolism , Male , Mice , Symbiosis
13.
Nat Immunol ; 15(6): 571-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24777532

ABSTRACT

Intestinal regulatory T cells (Treg cells) are necessary for the suppression of excessive immune responses to commensal bacteria. However, the molecular machinery that controls the homeostasis of intestinal Treg cells has remained largely unknown. Here we report that colonization of germ-free mice with gut microbiota upregulated expression of the DNA-methylation adaptor Uhrf1 in Treg cells. Mice with T cell-specific deficiency in Uhrf1 (Uhrf1(fl/fl)Cd4-Cre mice) showed defective proliferation and functional maturation of colonic Treg cells. Uhrf1 deficiency resulted in derepression of the gene (Cdkn1a) that encodes the cyclin-dependent kinase inhibitor p21 due to hypomethylation of its promoter region, which resulted in cell-cycle arrest of Treg cells. As a consequence, Uhrf1(fl/fl)Cd4-Cre mice spontaneously developed severe colitis. Thus, Uhrf1-dependent epigenetic silencing of Cdkn1a was required for the maintenance of gut immunological homeostasis. This mechanism enforces symbiotic host-microbe interactions without an inflammatory response.


Subject(s)
Colitis/immunology , Colon/immunology , Cyclin-Dependent Kinase Inhibitor p21/genetics , Epigenesis, Genetic , Nuclear Proteins/immunology , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Animals , CCAAT-Enhancer-Binding Proteins , Cell Cycle Checkpoints , Cell Proliferation , Cells, Cultured , Clostridium/immunology , Colitis/genetics , Colon/microbiology , DNA Methylation , Gene Expression Profiling , Interleukin-2 , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microbiota/immunology , Nuclear Proteins/biosynthesis , Nuclear Proteins/genetics , Promoter Regions, Genetic , RNA Interference , RNA, Small Interfering , Symbiosis/immunology , Ubiquitin-Protein Ligases , Up-Regulation
15.
Nature ; 583(7816): 441-446, 2020 07.
Article in English | MEDLINE | ID: mdl-32641826

ABSTRACT

Connections between the gut and brain monitor the intestinal tissue and its microbial and dietary content1, regulating both physiological intestinal functions such as nutrient absorption and motility2,3, and brain-wired feeding behaviour2. It is therefore plausible that circuits exist to detect gut microorganisms and relay this information to areas of the central nervous system that, in turn, regulate gut physiology4. Here we characterize the influence of the microbiota on enteric-associated neurons by combining gnotobiotic mouse models with transcriptomics, circuit-tracing methods and functional manipulations. We find that the gut microbiome modulates gut-extrinsic sympathetic neurons: microbiota depletion leads to increased expression of the neuronal transcription factor cFos, and colonization of germ-free mice with bacteria that produce short-chain fatty acids suppresses cFos expression in the gut sympathetic ganglia. Chemogenetic manipulations, translational profiling and anterograde tracing identify a subset of distal intestine-projecting vagal neurons that are positioned to have an afferent role in microbiota-mediated modulation of gut sympathetic neurons. Retrograde polysynaptic neuronal tracing from the intestinal wall identifies brainstem sensory nuclei that are activated during microbial depletion, as well as efferent sympathetic premotor glutamatergic neurons that regulate gastrointestinal transit. These results reveal microbiota-dependent control of gut-extrinsic sympathetic activation through a gut-brain circuit.


Subject(s)
Gastrointestinal Microbiome/physiology , Intestines/innervation , Neurons/physiology , Sympathetic Nervous System/cytology , Sympathetic Nervous System/physiology , Animals , Dysbiosis/physiopathology , Female , Ganglia, Sympathetic/cytology , Ganglia, Sympathetic/physiology , Gastrointestinal Motility , Germ-Free Life , Intestines/microbiology , Male , Mice , Mice, Inbred C57BL , Models, Animal , Neural Pathways/physiology , Proto-Oncogene Proteins c-fos/metabolism , Transcriptome
16.
Nat Immunol ; 14(3): 281-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23334788

ABSTRACT

TCRαß thymocytes differentiate into either CD8αß(+) cytotoxic T lymphocytes or CD4(+) helper T cells. This functional dichotomy is controlled by key transcription factors, including the helper T cell master regulator ThPOK, which suppresses the cytolytic program in major histocompatibility complex (MHC) class II-restricted CD4(+) thymocytes. ThPOK continues to repress genes of the CD8 lineage in mature CD4(+) T cells, even as they differentiate into effector helper T cell subsets. Here we found that the helper T cell fate was not fixed and that mature, antigen-stimulated CD4(+) T cells terminated expression of the gene encoding ThPOK and reactivated genes of the CD8 lineage. This unexpected plasticity resulted in the post-thymic termination of the helper T cell program and the functional differentiation of distinct MHC class II-restricted CD4(+) cytotoxic T lymphocytes.


Subject(s)
T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/immunology , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Cell Differentiation , Cell Lineage , Citrobacter rodentium/immunology , Histocompatibility Antigens Class II/immunology , Homeodomain Proteins/genetics , Interleukin-7/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/metabolism , Thymocytes/metabolism
17.
Nature ; 572(7771): 665-669, 2019 08.
Article in English | MEDLINE | ID: mdl-31435014

ABSTRACT

Intestinal commensal bacteria can inhibit dense colonization of the gut by vancomycin-resistant Enterococcus faecium (VRE), a leading cause of hospital-acquired infections1,2. A four-strained consortium of commensal bacteria that contains Blautia producta BPSCSK can reverse antibiotic-induced susceptibility to VRE infection3. Here we show that BPSCSK reduces growth of VRE by secreting a lantibiotic that is similar to the nisin-A produced by Lactococcus lactis. Although the growth of VRE is inhibited by BPSCSK and L. lactis in vitro, only BPSCSK colonizes the colon and reduces VRE density in vivo. In comparison to nisin-A, the BPSCSK lantibiotic has reduced activity against intestinal commensal bacteria. In patients at high risk of VRE infection, high abundance of the lantibiotic gene is associated with reduced density of E. faecium. In germ-free mice transplanted with patient-derived faeces, resistance to VRE colonization correlates with abundance of the lantibiotic gene. Lantibiotic-producing commensal strains of the gastrointestinal tract reduce colonization by VRE and represent potential probiotic agents to re-establish resistance to VRE.


Subject(s)
Bacteriocins/metabolism , Bacteriocins/pharmacology , Enterococcus faecium/drug effects , Lactococcus lactis/metabolism , Probiotics , Vancomycin Resistance/drug effects , Vancomycin-Resistant Enterococci/drug effects , Animals , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteriocins/genetics , Bacteriocins/isolation & purification , Enterococcus faecium/growth & development , Enterococcus faecium/isolation & purification , Feces/microbiology , Female , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/microbiology , Germ-Free Life , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Humans , Lactococcus lactis/chemistry , Lactococcus lactis/growth & development , Lactococcus lactis/physiology , Mice , Microbial Sensitivity Tests , Microbiota/genetics , Nisin/chemistry , Nisin/pharmacology , Symbiosis/drug effects , Vancomycin/pharmacology , Vancomycin-Resistant Enterococci/growth & development , Vancomycin-Resistant Enterococci/isolation & purification
18.
Nature ; 565(7741): 600-605, 2019 01.
Article in English | MEDLINE | ID: mdl-30675064

ABSTRACT

There is a growing appreciation for the importance of the gut microbiota as a therapeutic target in various diseases. However, there are only a handful of known commensal strains that can potentially be used to manipulate host physiological functions. Here we isolate a consortium of 11 bacterial strains from healthy human donor faeces that is capable of robustly inducing interferon-γ-producing CD8 T cells in the intestine. These 11 strains act together to mediate the induction without causing inflammation in a manner that is dependent on CD103+ dendritic cells and major histocompatibility (MHC) class Ia molecules. Colonization of mice with the 11-strain mixture enhances both host resistance against Listeria monocytogenes infection and the therapeutic efficacy of immune checkpoint inhibitors in syngeneic tumour models. The 11 strains primarily represent rare, low-abundance components of the human microbiome, and thus have great potential as broadly effective biotherapeutics.


Subject(s)
Adenocarcinoma/immunology , Adenocarcinoma/therapy , Bacteria/classification , CD8-Positive T-Lymphocytes/immunology , Gastrointestinal Microbiome/immunology , Listeriosis/prevention & control , Symbiosis/immunology , Adenocarcinoma/pathology , Animals , Antigens, CD/metabolism , Bacteria/immunology , Bacteria/isolation & purification , CD8-Positive T-Lymphocytes/cytology , Cell Line, Tumor , Dendritic Cells/immunology , Feces/microbiology , Female , Healthy Volunteers , Histocompatibility Antigens Class I/immunology , Humans , Integrin alpha Chains/metabolism , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Listeria monocytogenes/immunology , Listeriosis/immunology , Listeriosis/microbiology , Male , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Xenograft Model Antitumor Assays
19.
Nat Immunol ; 13(7): 659-66, 2012 May 20.
Article in English | MEDLINE | ID: mdl-22610141

ABSTRACT

Although the mechanisms by which innate pathogen-recognition receptors enhance adaptive immune responses are increasingly well understood, whether signaling events from distinct classes of receptors affect each other in modulating adaptive immunity remains unclear. We found here that the activation of cytosolic RIG-I-like receptors (RLRs) resulted in the selective suppression of transcription of the gene encoding the p40 subunit of interleukin 12 (Il12b) that was effectively induced by the activation of Toll-like receptors (TLRs). The RLR-activated transcription factor IRF3 bound dominantly, relative to IRF5, to the Il12b promoter, where it interfered with the TLR-induced assembly of a productive transcription-factor complex. The activation of RLRs in mice attenuated TLR-induced responses of the T helper type 1 cell (T(H)1 cell) and interleukin 17-producing helper T cell (T(H)17 cell) subset types and, consequently, viral infection of mice caused death at sublethal doses of bacterial infection. The innate immune receptor cross-interference we describe may have implications for infection-associated clinical episodes.


Subject(s)
Signal Transduction/immunology , T-Lymphocytes/immunology , Toll-Like Receptors/immunology , Amino Acid Sequence , Animals , Bacterial Infections/immunology , Cells, Cultured , Gene Expression Regulation/immunology , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factors/metabolism , Interleukin-12 Subunit p40/metabolism , Macrophages, Peritoneal/immunology , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Promoter Regions, Genetic , Th1 Cells/immunology , Th17 Cells/immunology , Transcription Factors/metabolism , Virus Diseases/immunology
20.
Immunity ; 43(2): 343-53, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26287682

ABSTRACT

Activated retina-specific T cells that have acquired the ability to break through the blood-retinal barrier are thought to be causally involved in autoimmune uveitis, a major cause of human blindness. It is unclear where these autoreactive T cells first become activated, given that their cognate antigens are sequestered within the immune-privileged eye. We demonstrate in a novel mouse model of spontaneous uveitis that activation of retina-specific T cells is dependent on gut commensal microbiota. Retina-specific T cell activation involved signaling through the autoreactive T cell receptor (TCR) in response to non-cognate antigen in the intestine and was independent of the endogenous retinal autoantigen. Our findings not only have implications for the etiology of human uveitis, but also raise the possibility that activation of autoreactive TCRs by commensal microbes might be a more common trigger of autoimmune diseases than is currently appreciated.


Subject(s)
Intestines/immunology , Microbiota/immunology , Retina/immunology , T-Lymphocytes/immunology , Uveitis/immunology , Animals , Antigens, Bacterial/administration & dosage , Autoantigens/immunology , Autoimmunity , Blood-Retinal Barrier/immunology , Cells, Cultured , Disease Models, Animal , Eye Proteins/genetics , Eye Proteins/immunology , Eye Proteins/metabolism , Immune Tolerance , Intestines/microbiology , Lymphocyte Activation , Mice, Inbred Strains , Mice, Knockout , Receptors, Antigen, T-Cell/metabolism , Retinol-Binding Proteins/genetics , Retinol-Binding Proteins/immunology , Retinol-Binding Proteins/metabolism , Uveitis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL