Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Oncologist ; 29(4): e514-e525, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38297981

ABSTRACT

PURPOSE: This first-in-human phase I dose-escalation study evaluated the safety, pharmacokinetics, and efficacy of tinengotinib (TT-00420), a multi-kinase inhibitor targeting fibroblast growth factor receptors 1-3 (FGFRs 1-3), Janus kinase 1/2, vascular endothelial growth factor receptors, and Aurora A/B, in patients with advanced solid tumors. PATIENTS AND METHODS: Patients received tinengotinib orally daily in 28-day cycles. Dose escalation was guided by Bayesian modeling using escalation with overdose control. The primary objective was to assess dose-limiting toxicities (DLTs), maximum tolerated dose (MTD), and dose recommended for dose expansion (DRDE). Secondary objectives included pharmacokinetics and efficacy. RESULTS: Forty-eight patients were enrolled (dose escalation, n = 40; dose expansion, n = 8). MTD was not reached; DRDE was 12 mg daily. DLTs were palmar-plantar erythrodysesthesia syndrome (8 mg, n = 1) and hypertension (15 mg, n = 2). The most common treatment-related adverse event was hypertension (50.0%). In 43 response-evaluable patients, 13 (30.2%) achieved partial response (PR; n = 7) or stable disease (SD) ≥ 24 weeks (n = 6), including 4/11 (36.4%) with FGFR2 mutations/fusions and cholangiocarcinoma (PR n = 3; SD ≥ 24 weeks n = 1), 3/3 (100.0%) with hormone receptor (HR)-positive/HER2-negative breast cancer (PR n = 2; SD ≥ 24 weeks n = 1), 2/5 (40.0%) with triple-negative breast cancer (TNBC; PR n = 1; SD ≥ 24 weeks n = 1), and 1/1 (100.0%) with castrate-resistant prostate cancer (CRPC; PR). Four of 12 patients (33.3%; HR-positive/HER2-negative breast cancer, TNBC, prostate cancer, and cholangiocarcinoma) treated at DRDE had PRs. Tinengotinib's half-life was 28-34 hours. CONCLUSIONS: Tinengotinib was well tolerated with favorable pharmacokinetic characteristics. Preliminary findings indicated potential clinical benefit in FGFR inhibitor-refractory cholangiocarcinoma, HER2-negative breast cancer (including TNBC), and CRPC. Continued evaluation of tinengotinib is warranted in phase II trials.


Subject(s)
Antineoplastic Agents , Cholangiocarcinoma , Hypertension , Neoplasms , Prostatic Neoplasms, Castration-Resistant , Triple Negative Breast Neoplasms , Male , Humans , Triple Negative Breast Neoplasms/drug therapy , Bayes Theorem , Prostatic Neoplasms, Castration-Resistant/drug therapy , Vascular Endothelial Growth Factor A , Neoplasms/drug therapy , Neoplasms/genetics , Antineoplastic Agents/adverse effects , Cholangiocarcinoma/drug therapy , Hypertension/chemically induced , Maximum Tolerated Dose
2.
Clin Adv Hematol Oncol ; 22 Suppl 5(6): 1-20, 2024.
Article in English | MEDLINE | ID: mdl-38953725

ABSTRACT

Neurotrophic tyrosine receptor kinase (NTRK) gene fusions are implicated in various cancers, including those of the lung and thyroid. The prevalence of NTRK fusions is 0.1 to 0.3% in non-small cell lung cancer (NSCLC) and as high as 26% in pediatric papillary thyroid carcinoma. Detection methods include immunohistochemistry, fluorescence in situ hybridization, reverse transcription polymerase chain reaction, and next-generation sequencing. Management of NTRK fusion-positive lung cancer primarily involves targeted therapies, notably the tyrosine receptor kinase (TRK) inhibitors larotrectinib and entrectinib. Both agents demonstrate high response rates and durable disease control, particularly in metastatic adenocarcinoma of the lung. They are preferred as first-line treatments because of their efficacy over immunotherapy. Possible adverse events include dizziness, weight gain, neuropathy-like pain, and liver enzyme elevation. Larotrectinib and entrectinib also produce robust and durable responses in NTRK fusion-positive thyroid cancer that is refractory to radioactive iodine. Second-generation TRK inhibitors that have been designed to overcome acquired resistance are under investigation.


Subject(s)
Indazoles , Lung Neoplasms , Oncogene Proteins, Fusion , Protein Kinase Inhibitors , Pyrazoles , Pyrimidines , Thyroid Neoplasms , Humans , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/adverse effects , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Indazoles/therapeutic use , Indazoles/adverse effects , Pyrazoles/therapeutic use , Pyrazoles/adverse effects , Oncogene Proteins, Fusion/genetics , Pyrimidines/therapeutic use , Pyrimidines/adverse effects , Receptor, trkA/genetics , Receptor, trkA/antagonists & inhibitors , Benzamides/therapeutic use , Treatment Outcome
5.
Article in English | MEDLINE | ID: mdl-38750814

ABSTRACT

There has been a long-standing appreciation in child and adolescent psychiatry for the influence of the family or caregiver. In clinical practice, parents are routinely identified as both a key biological and a key environmental figure in child psychopathology. This is perhaps best represented by the identified patient construct, which recognizes that while symptoms in a child are often the explicit driver for a family to present for psychiatric care, these symptoms do not occur in a vacuum. Instead, within a family systems theory framework, the manifestation of symptoms in a child represents the broader reciprocal relationship between a child and their family unit.

6.
J Cancer Immunol (Wilmington) ; 6(2): 62-69, 2024.
Article in English | MEDLINE | ID: mdl-39175850

ABSTRACT

KRAS is a commonly mutated gene in advanced colorectal cancer (CRC). Recently, inhibitors of KRAS G12C were developed and have shown promising efficacy for KRAS G12C mutated non-small cell lung cancer. However, KRAS G12C inhibitor monotherapy has not demonstrated excellent efficacy for KRAS G12C mutated advanced CRC due to multiple resistance mechanisms, especially receptor tyrosine kinase (RTK) signaling activation. To overcome this resistance mechanism, various combinations of epithelial growth factor receptor (EGFR) and KRAS G12C inhibitors, including panitumumab plus sotorasib, have been investigated in clinical trials. The combination of EGFR and KRAS G12C inhibitors for KRAS G12C mutated CRC demonstrated overall response rates ranging from 26% to 62.5% in seven clinical trials of phase I to III, whose data are available so far. The median progression-free survival in these trials ranged from 3.9 to 8.1 months. These efficacy data suggest that KRAS G12C inhibitor combination with EGFR inhibitors is more effective for KRAS G12C mutated advanced CRC than KRAS G12C inhibitor monotherapy. They also showed reasonable safety of the combination regimen. Based on these results, phase III clinical trials are being conducted to investigate EGFR and KRAS G12C inhibitor combinations as a first or second-line treatment for KRAS G12C mutated advanced CRC. Furthermore, other KRAS G12C inhibitors, KRAS G12D inhibitors, and pan-RAS inhibitors are being developed, which could make more patients with advanced CRC eligible for KRAS inhibition.

7.
Front Oncol ; 14: 1380584, 2024.
Article in English | MEDLINE | ID: mdl-38756650

ABSTRACT

Although KRAS G12C inhibitors have proven that KRAS is a "druggable" target of cancer, KRAS G12C inhibitor monotherapies have demonstrated limited clinical efficacy due to primary and acquired resistance mechanisms. Multiple combinations of KRAS G12C inhibitors with other targeted therapies, such as RTK, SHP2, and MEK inhibitors, have been investigated in clinical trials to overcome the resistance. They have demonstrated promising efficacy especially by combining KRAS G12C and EGFR inhibitors for KRAS G12C-mutated colorectal cancer. Many clinical trials of combinations of KRAS G12C inhibitors with other targeted therapies, such as SOS1, ERK, CDK4/6, and wild-type RAS, are ongoing. Furthermore, preclinical data have suggested additional promising KRAS G12C combinations with YAP/TAZ-TEAD inhibitors, FAK inhibitors, and farnesyltransferase inhibitors. The combinations of KRAS G12C inhibitors with immunotherapies and chemotherapies have also been investigated, and the preliminary results were reported. More recently, KRAS-targeted therapies not limited to KRAS G12C are being developed, potentially broadening the treatment landscape of KRAS-mutated cancers. Rationally combining KRAS inhibitors with other therapeutics is likely to play a significant role in future treatment for KRAS-mutated solid tumors.

8.
J Immunother Cancer ; 12(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991727

ABSTRACT

The clinical research pipeline is critical to ensuring continued development of novel treatments that can offer patients with cancer safe and effective options. Unfortunately, progress has slowed since the COVID-19 pandemic due to uncovered, systemic inefficiencies across critical processes. Towards initiating discussion on how to reinvigorate clinical research, the Society for Immunotherapy of Cancer (SITC) hosted a virtual summit that characterized issues and formed potential solutions. This commentary serves to highlight the crisis facing clinical research as well as stimulate field-wide discussion on how to better serve patients into the future.


Subject(s)
Biomedical Research , COVID-19 , Immunotherapy , Neoplasms , SARS-CoV-2 , Humans , COVID-19/epidemiology , SARS-CoV-2/immunology , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy/methods , Pandemics
9.
Cancer Treat Rev ; 126: 102725, 2024 May.
Article in English | MEDLINE | ID: mdl-38574507

ABSTRACT

Intermittent fasting is a dietary intervention that is increasingly being tested for positive outcomes in patients receiving cancer treatment. In this review, we examine the impact of intermittent fasting on symptoms, toxicities, and quality of life in patients undergoing cancer therapy and highlight unmet investigative areas to prompt future research. While current evidence is preliminary and conclusions mixed, some promising clinical studies suggest that intermittent fasting interventions may improve fatigue and reduce gastrointestinal toxicities in certain patients with cancer. Emerging clinical evidence also demonstrates that intermittent fasting may reduce off-target DNA damage, and induce favorable cellular-level immune remodeling. Furthermore, intermittent fasting has the potential to lower hyperglycemia and the ratio of fat to lean body mass, which may benefit patients at risk of hyperglycemia and weight-related adverse effects of some common pharmacological cancer treatments. Larger controlled studies are necessary to evaluate intermittent fasting in relation to these endpoints and determine the effectiveness of intermittent fasting as an adjunct intervention during cancer care. Future cancer trials should evaluate intermittent fasting diets in the context of multimodal diet, exercise, and nutrition strategies, and also evaluate the impact of intermittent fasting on other important areas such as the circadian system and the gut microbiome.


Subject(s)
Intermittent Fasting , Neoplasms , Quality of Life , Humans , Neoplasms/drug therapy , Neoplasms/therapy
10.
Trends Cancer ; 10(7): 598-609, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821852

ABSTRACT

Colorectal cancer (CRC) is a prevalent gastrointestinal cancer posing significant clinical challenges. CRC management traditionally involves surgery, often coupled with chemotherapy. However, unresectable or metastatic CRC (mCRC) presents a complex challenge necessitating innovative treatment strategies. Targeted therapies have emerged as the cornerstone of treatment in such cases, with interventions tailored to specific molecular attributes. Concurrently, immunotherapies have revolutionized cancer treatment by harnessing the immune system to combat malignant cells. This review explores the evolving landscape of CRC treatment, focusing on the synergy between immunotherapies and targeted therapies, thereby offering new avenues for enhancing the effectiveness of therapy for CRC.


Subject(s)
Colorectal Neoplasms , Immunotherapy , Molecular Targeted Therapy , Humans , Colorectal Neoplasms/therapy , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Molecular Targeted Therapy/methods , Immunotherapy/methods , Combined Modality Therapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
11.
Res Sq ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38586046

ABSTRACT

We present a study where predictive mechanistic modeling is used in combination with deep learning methods to predict individual patient survival probabilities under immune checkpoint inhibitor (ICI) therapy. This hybrid approach enables prediction based on both measures that are calculable from mechanistic models (but may not be directly measurable in the clinic) and easily measurable quantities or characteristics (that are not always readily incorporated into predictive mechanistic models). The mechanistic model we have applied here can predict tumor response from CT or MRI imaging based on key mechanisms underlying checkpoint inhibitor therapy, and in the present work, its parameters were combined with readily-available clinical measures from 93 patients into a hybrid training set for a deep learning time-to-event predictive model. Analysis revealed that training an artificial neural network with both mechanistic modeling-derived and clinical measures achieved higher per-patient predictive accuracy based on event-time concordance, Brier score, and negative binomial log-likelihood-based criteria than when only mechanistic model-derived values or only clinical data were used. Feature importance analysis revealed that both clinical and model-derived parameters play prominent roles in neural network decision making, and in increasing prediction accuracy, further supporting the advantage of our hybrid approach. We anticipate that many existing mechanistic models may be hybridized with deep learning methods in a similar manner to improve predictive accuracy through addition of additional data that may not be readily implemented in mechanistic descriptions.

12.
NPJ Syst Biol Appl ; 10(1): 88, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143136

ABSTRACT

We present a study where predictive mechanistic modeling is combined with deep learning methods to predict individual patient survival probabilities under immune checkpoint inhibitor (ICI) immunotherapy. This hybrid approach enables prediction based on both measures that are calculable from mechanistic models of key mechanisms underlying ICI therapy that may not be directly measurable in the clinic and easily measurable quantities or patient characteristics that are not always readily incorporated into predictive mechanistic models. A deep learning time-to-event predictive model trained on a hybrid mechanistic + clinical data set from 93 patients achieved higher per-patient predictive accuracy based on event-time concordance, Brier score, and negative binomial log-likelihood-based criteria than when trained on only mechanistic model-derived values or only clinical data. Feature importance analysis revealed that both clinical and model-derived parameters play prominent roles in increasing prediction accuracy, further supporting the advantage of our hybrid approach.


Subject(s)
Deep Learning , Immune Checkpoint Inhibitors , Immunotherapy , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Precision Medicine/methods , Neoplasms/immunology , Neoplasms/drug therapy , Male , Survival Analysis , Female
13.
Psychiatry Res ; 333: 115702, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219346

ABSTRACT

The Patient Health Questionnaire 9 (PHQ-9) is the current standard outpatient screening tool for measuring and tracking the nine symptoms of major depressive disorder (MDD). While the PHQ-9 was originally conceptualized as a unidimensional measure, it has become clear that MDD is not a monolithic construct, as evidenced by high comorbidities with other theoretically distinct diagnoses and common symptom overlap between depression and other diagnoses. Therefore, identifying reliable and temporally stable subfactors of depressive symptoms could allow research and care to be tailored to different depression phenotypes. This study improved on previous factor analysis studies of the PHQ-9 by leveraging samples that were clinical (participants with depression only), large (N = 1483 depressed individuals in total), longitudinal (up to 5 years), and from three diverse (matching racial distribution of the United States) datasets. By refraining from assuming the number of factors or item loadings a priori, and thus utilizing a solely data-driven approach, we identified a ranked list of best-fitting models, with the parsimonious one achieving good model fit across studies at most timepoints (average TLI >= 0.90). This model categorizes the PHQ-9 items into four factors: (1) Affective (Anhedonia + Depressed Mood), (2) Somatic (Sleep + Fatigue + Appetite), (3) Internalizing (Worth/Guilt + Suicidality), (4) Sensorimotor (Concentration + Psychomotor), which may be used to further precision psychiatry by testing factor-specific interventions in research and clinical settings.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/psychology , Surveys and Questionnaires , Patient Health Questionnaire , Anhedonia , Suicidal Ideation , Depression/psychology
14.
Lung Cancer ; 190: 107512, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417277

ABSTRACT

OBJECTIVES: Dysregulated signaling by mesenchymal epithelial transition factor (MET) and heightened AXL activation are implicated in the pathogenesis of non-small cell lung cancer (NSCLC). Glesatinib (MGCD265) is an investigational, oral inhibitor of MET and AXL. MATERIALS AND METHODS: This open-label, Phase II study investigated glesatinib (free-base suspension [FBS] capsule 1050 mg BID or spray-dried dispersion [SDD] tablet 750 mg BID) in patients with advanced, previously treated NSCLC across four cohorts grouped according to presence of MET activating mutations or amplification in tumor or ctDNA. The primary endpoint was objective response rate (ORR). RESULTS: Sixty-eight patients were enrolled: n = 28 and n = 8 with MET exon 14 skipping mutations in tumor tissue and ctDNA, respectively, and n = 20 and n = 12 with MET gene amplification in tumor tissue and ctDNA, respectively. Overall, ORR was 11.8 %, median progression-free survival was 4.0 months, and median overall survival was 7.0 months. Among patients with MET activating mutations, ORR was 10.7 % with tumor testing and 25.0 % with ctDNA testing. For MET amplification, responses were observed only in patients enrolled by tumor testing (ORR 15.0 %). Diarrhea (82.4 %), nausea (50.0 %), increased alanine aminotransferase (41.2 %), fatigue (38.2 %), and increased aspartate aminotransferase (36.8 %) were the most frequent adverse events assessed as related to study medication. Glesatinib exposure was similar with the SDD tablet and FBS capsule formulations. The study was terminated early by the sponsor due to modest clinical activity. CONCLUSIONS: Glesatinib had an acceptable safety profile in patients with advanced, pre-treated NSCLC with MET activating alterations. Modest clinical activity was observed, which likely reflects suboptimal drug bioavailability suggested by previously reported Phase I data, and pharmacodynamic findings of lower than anticipated increases in circulating soluble shed MET ectodomain (s-MET).


Subject(s)
Benzeneacetamides , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Pyridines , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Tablets/therapeutic use , Protein Kinase Inhibitors/adverse effects
15.
Cancer Res Commun ; 4(2): 378-387, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38126764

ABSTRACT

BACKGROUND: Sapanisertib (CB-228/TAK-228) is a potent, selective ATP-competitive, dual inhibitor of mTORC1/2. Metformin is thought to inhibit the mTOR pathway through upstream activation of 5'-AMP-activated protein kinase (AMPK) suggesting combination therapy may enhance antitumor activity of sapanisertib. We report preliminary safety, tolerability, and efficacy from the dose-escalation study of sapanisertib in combination with metformin in patients with advanced solid tumors. METHODS: Patients with advanced metastatic solid tumors resistant or refractory to standard treatment, with and without mTOR/AKT/PI3K pathway alterations, received sapanisertib 3 or 4 mg daily together with metformin once to three times daily (500-1,500 mg). All patients underwent 14-day titration period for metformin in cycle 1. Tumor measurements were performed following cycle 2 and subsequently every 8 weeks. RESULTS: A total of 30 patients were enrolled across four cohorts (3 mg/500 mg; 3 mg/1,000 mg, 4 mg/1,000 mg; 4 mg/1,500 mg). 19 were female (63%), median age was 57 (range: 30-77), all were Eastern Cooperative Oncology Group performance status 1. Tumor types included sarcoma (6), breast (4), ovarian (4), head and neck (3), colorectal (2), lung (2), renal cell (2), endometrial (2), gastroesophageal junction (1), prostate (1), stomach (1), urachus (1), and cervical cancer (1). Median number of prior lines of therapy was 4. Most common genomic alterations included PIK3CA (27%), PTEN (17%), AKT1/2 (10%), mTOR (10%). Of 30 patients evaluable for response, 4 patients achieved partial response (PR); 15 patients achieved stable disease (SD) as best response. Disease control rate (PR+SD) was 63%. Of the responders in PR, 3 of 4 patients had documented PTEN mutations (3/5 patients enrolled with PTEN mutations had PR); 2 of 4 of patients in PR had comutations (patient with leiomyosarcoma had both PTEN and TSC; patient with breast cancer had both PTEN and STK11); 1 of 4 patients in PR had AKT and mTOR mutation; tumor types included leiomyosarcoma (n = 2), breast (n = 1), and endometrial cancer (n = 1). Most common treatment-emergent adverse events included nausea, anorexia, diarrhea, and rash. Grade (G) 3-5 treatment-related adverse events included hyperglycemia (4/30; 13%), fatigue (2/30; 7%), hypertriglyceridemia (1/30; 3%), rash (2/20; 7%), diarrhea (2/30; 7%), creatinine increase (1/30; 3%), acidosis (1/30; 3%). No dose-limiting toxicities (DLT) were reported in the 3 mg/500 mg cohort. One of 6 patient had DLT in the 3 mg/1,000 mg cohort (G3 diarrhea) and 2 of 11 patients had DLTs in the 4 mg/1,500 mg cohort (G3 fatigue, G3 rash). 4 mg/1,000 mg was defined as the MTD. CONCLUSIONS: The safety profile of mTORC1/2 inhibitor sapanisertib in combination with metformin was generally tolerable, with antitumor activity observed in patients with advanced malignancies harboring PTEN mutations and AKT/mTOR pathway alterations. SIGNIFICANCE: Sapanisertib (CB-228/TAK-228) is a potent, selective ATP-competitive, next-generation dual inhibitor of mTORC1/2. Metformin is thought to inhibit the mTOR pathway through upstream activation of AMPK suggesting combination therapy may enhance antitumor activity of sapanisertib. This dose-escalation study of sapanisertib and metformin in advanced solid tumors and mTOR/AKT/PI3K pathway alterations, demonstrates safety, tolerability, and early clinical activity in advanced malignancies harboring PTEN mutations and AKT/mTOR pathway alterations.Clinical trial information: NCT03017833.


Subject(s)
Adenine/analogs & derivatives , Benzoxazoles , Exanthema , Leiomyosarcoma , Metformin , Male , Humans , Female , Middle Aged , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/genetics , Mechanistic Target of Rapamycin Complex 1 , Metformin/adverse effects , AMP-Activated Protein Kinases , TOR Serine-Threonine Kinases/genetics , Diarrhea , Adenosine Triphosphate
16.
Nat Med ; 30(1): 265-270, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177853

ABSTRACT

The current third-line (and beyond) treatment options for RAS-mutant metastatic colorectal cancer have yielded limited efficacy. At the time of study start, the combination of sotorasib, a KRAS (Kirsten rat sarcoma viral oncogene homolog)-G12C inhibitor, and panitumumab, an epidermal growth factor receptor (EGFR) inhibitor, was hypothesized to overcome treatment-induced resistance. This phase 1b substudy of the CodeBreaK 101 master protocol evaluated sotorasib plus panitumumab in patients with chemotherapy-refractory KRASG12C-mutated metastatic colorectal cancer. Here, we report the results in a dose-exploration cohort and a dose-expansion cohort. Patients received sotorasib (960 mg, once daily) plus panitumumab (6 mg kg-1, once every 2 weeks). The primary endpoints were safety and tolerability. Secondary endpoints included efficacy and pharmacokinetics. Exploratory biomarkers at baseline were assessed. Forty-eight patients (dose-exploration cohort, n = 8; dose-expansion cohort, n = 40) were treated. Treatment-related adverse events of any grade and grade ≥3 occurred in 45 (94%) and 13 (27%) patients, respectively. In the dose-expansion cohort, the confirmed objective response rate was 30.0% (95% confidence interval (CI) 16.6%, 46.5%). Median progression-free survival was 5.7 months (95% CI 4.2, 7.7 months). Median overall survival was 15.2 months (95% CI 12.5 months, not estimable). Prevalent genomic coalterations included APC (84%), TP53 (74%), SMAD4 (33%), PIK3CA (28%) and EGFR (26%). Sotorasib-panitumumab demonstrated acceptable safety with promising efficacy in chemotherapy-refractory KRASG12C-mutated metastatic colorectal cancer. ClinicalTrials.gov identifier: NCT04185883 .


Subject(s)
Colorectal Neoplasms , Piperazines , Proto-Oncogene Proteins p21(ras) , Pyridines , Pyrimidines , Humans , Panitumumab/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Antibodies, Monoclonal/adverse effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , ErbB Receptors , Mutation/genetics , Antineoplastic Combined Chemotherapy Protocols/adverse effects
17.
Clin Cancer Res ; 30(14): 2986-2995, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38687597

ABSTRACT

PURPOSE: We aimed to describe RAS mutations in gynecologic cancers as they relate to clinicopathologic and genomic features, survival, and therapeutic implications. EXPERIMENTAL DESIGN: Gynecologic cancers with available somatic molecular profiling data at our institution between February 2010 and August 2022 were included and grouped by RAS mutation status. Overall survival was estimated by the Kaplan-Meier method, and multivariable analysis was performed using the Cox proportional hazard model. RESULTS: Of 3,328 gynecologic cancers, 523 (15.7%) showed any RAS mutation. Patients with RAS-mutated tumors were younger (57 vs. 60 years nonmutated), had a higher prevalence of endometriosis (27.3% vs. 16.9%), and lower grades (grade 1/2, 43.2% vs. 8.1%, all P < 0.0001). The highest prevalence of KRAS mutation was in mesonephric-like endometrial (100%, n = 9/9), mesonephric-like ovarian (83.3%, n = 5/6), mucinous ovarian (60.4%), and low-grade serous ovarian (44.4%) cancers. After adjustment for age, cancer type, and grade, RAS mutation was associated with worse overall survival [hazard ratio (HR) = 1.3; P = 0.001]. Specific mutations were in KRAS (13.5%), NRAS (2.0%), and HRAS (0.51%), most commonly KRAS G12D (28.4%) and G12V (26.1%). Common co-mutations were PIK3CA (30.9%), PTEN (28.8%), ARID1A (28.0%), and TP53 (27.9%), of which 64.7% were actionable. RAS + MAPK pathway-targeted therapies were administered to 62 patients with RAS-mutated cancers. While overall survival was significantly higher with therapy [8.4 years [(95% confidence interval (CI), 5.5-12.0) vs. 5.5 years (95% CI, 4.6-6.6); HR = 0.67; P = 0.031], this effect did not persist in multivariable analysis. CONCLUSIONS: RAS mutations in gynecologic cancers have a distinct histopathologic distribution and may impact overall survival. PIK3CA, PTEN, and ARID1A are potentially actionable co-alterations. RAS pathway-targeted therapy should be considered.


Subject(s)
Genital Neoplasms, Female , Mutation , Humans , Female , Genital Neoplasms, Female/genetics , Genital Neoplasms, Female/pathology , Genital Neoplasms, Female/mortality , Middle Aged , Aged , Adult , Proto-Oncogene Proteins p21(ras)/genetics , Genomics/methods , Prognosis , Biomarkers, Tumor/genetics , ras Proteins/genetics , DNA-Binding Proteins , Transcription Factors
18.
Oncoimmunology ; 13(1): 2290787, 2024.
Article in English | MEDLINE | ID: mdl-38170160

ABSTRACT

Ieramilimab, a humanized anti-LAG-3 monoclonal antibody, was well tolerated in combination with the anti-PD-1 antibody spartalizumab in a phase 1 study. This phase 2 study aimed to further investigate the efficacy and safety of combination treatment in patients with selected advanced (locally advanced or metastatic) solid malignancies. Eligible patients with non-small cell lung cancer (NSCLC), melanoma, renal cell carcinoma (RCC), mesothelioma, and triple-negative breast cancer (TNBC) were grouped depending on prior anti-PD-1/L1 therapy (anti-PD-1/L1 naive or anti-PD-1/L1 pretreated). Patients received ieramilimab (400 mg) followed by spartalizumab (300 mg) every 3 weeks. The primary endpoint was objective response rate (ORR), along with safety, pharmacokinetics, and biomarker assessments. Of 235 patients, 142 were naive to anti-PD-1/L1 and 93 were pretreated with anti-PD-1/L1 antibodies. Durable responses (>24 months) were seen across all indications for patients naive to anti-PD-1/L1 and in melanoma and RCC patients pretreated with anti-PD1/L1. The most frequent study drug-related AEs were pruritus (15.5%), fatigue (10.6%), and rash (10.6%) in patients naive to anti-PD-1/L1 and fatigue (18.3%), rash (14.0%), and nausea (10.8%) in anti-PD-1/L1 pretreated patients. Biomarker assessment indicated higher expression of T-cell-inflamed gene signature at baseline among responding patients. Response to treatment was durable (>24 months) in some patients across all enrolled indications, and safety findings were in accordance with previous and current studies exploring LAG-3/PD-1 blockade.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Renal Cell , Exanthema , Kidney Neoplasms , Lung Neoplasms , Melanoma , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Melanoma/drug therapy , Melanoma/genetics , Carcinoma, Renal Cell/drug therapy , Lung Neoplasms/drug therapy , Antibodies, Monoclonal/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Kidney Neoplasms/drug therapy , Biomarkers , Fatigue/chemically induced , Fatigue/drug therapy , Exanthema/chemically induced , Exanthema/drug therapy
19.
Cancer Discov ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975897

ABSTRACT

Resistance to inactive state-selective RASG12C inhibitors frequently entails accumulation of RASGTP, rendering effective inhibition of active RAS potentially desirable. Here, we evaluated the anti-tumor activity of the RAS(ON) multi-selective tri-complex inhibitor RMC-7977 and dissected mechanisms of response and tolerance in KRASG12C-mutant NSCLC. Broad-spectrum, reversible RASGTP inhibition with or without concurrent covalent targeting of active RASG12C yielded superior and differentiated antitumor activity across diverse co-mutational KRASG12C-mutant NSCLC mouse models of primary or acquired RASG12C(ON) or (OFF) inhibitor resistance. Interrogation of time-resolved single cell transcriptional responses established an in vivo atlas of multi-modal acute and chronic RAS pathway inhibition in the NSCLC ecosystem and uncovered a regenerative mucinous transcriptional program that supports long-term tumor cell persistence. In patients with advanced KRASG12C-mutant NSCLC, the presence of mucinous histological features portended poor response to sotorasib or adagrasib. Our results have potential implications for personalized medicine and the development of rational RAS inhibitor-anchored therapeutic strategies.

20.
Mol Ther Methods Clin Dev ; 32(2): 101265, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872830

ABSTRACT

T cell receptor (TCR) T cell therapies target tumor antigens in a human leukocyte antigen (HLA)-restricted manner. Biomarker-defined therapies require validation of assays suitable for determination of patient eligibility. For clinical trials evaluating TCR T cell therapies targeting melanoma-associated antigen A4 (MAGE-A4), screening in studies NCT02636855 and NCT04044768 assesses patient eligibility based on: (1) high-resolution HLA typing and (2) tumor MAGE-A4 testing via an immunohistochemical assay in HLA-eligible patients. The HLA/MAGE-A4 assays validation, biomarker data, and their relationship to covariates (demographics, cancer type, histopathology, tissue location) are reported here. HLA-A∗02 eligibility was 44.8% (2,959/6,606) in patients from 43 sites across North America and Europe. While HLA-A∗02:01 was the most frequent HLA-A∗02 allele, others (A∗02:02, A∗02:03, A∗02:06) considerably increased HLA eligibility in Hispanic, Black, and Asian populations. Overall, MAGE-A4 prevalence based on clinical trial enrollment was 26% (447/1,750) across 10 solid tumor types, and was highest in synovial sarcoma (70%) and lowest in gastric cancer (9%). The covariates were generally not associated with MAGE-A4 expression, except for patient age in ovarian cancer and histology in non-small cell lung cancer. This report shows the eligibility rate from biomarker screening for TCR T cell therapies and provides epidemiological data for future clinical development of MAGE-A4-targeted therapies.

SELECTION OF CITATIONS
SEARCH DETAIL