Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.668
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 22(3): 370-380, 2021 03.
Article in English | MEDLINE | ID: mdl-33574619

ABSTRACT

During chronic infection and cancer, a self-renewing CD8+ T cell subset maintains long-term immunity and is critical to the effectiveness of immunotherapy. These stem-like CD8+ T cells diverge from other CD8+ subsets early after chronic viral infection. However, pathways guarding stem-like CD8+ T cells against terminal exhaustion remain unclear. Here, we show that the gene encoding transcriptional repressor BACH2 is transcriptionally and epigenetically active in stem-like CD8+ T cells but not terminally exhausted cells early after infection. BACH2 overexpression enforced stem-like cell fate, whereas BACH2 deficiency impaired stem-like CD8+ T cell differentiation. Single-cell transcriptomic and epigenomic approaches revealed that BACH2 established the transcriptional and epigenetic programs of stem-like CD8+ T cells. In addition, BACH2 suppressed the molecular program driving terminal exhaustion through transcriptional repression and epigenetic silencing. Thus, our study reveals a new pathway that enforces commitment to stem-like CD8+ lineage and prevents an alternative terminally exhausted cell fate.


Subject(s)
Arenaviridae Infections/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Epigenesis, Genetic , Precursor Cells, T-Lymphoid/metabolism , Transcription, Genetic , Animals , Arenaviridae Infections/genetics , Arenaviridae Infections/immunology , Arenaviridae Infections/virology , Basic-Leucine Zipper Transcription Factors/deficiency , Basic-Leucine Zipper Transcription Factors/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cell Lineage , Cells, Cultured , Chronic Disease , Disease Models, Animal , Host-Pathogen Interactions , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/pathogenicity , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Precursor Cells, T-Lymphoid/immunology , Precursor Cells, T-Lymphoid/virology , Signal Transduction
2.
Immunity ; 57(5): 1005-1018.e7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38697116

ABSTRACT

Cytokine expression during T cell differentiation is a highly regulated process that involves long-range promoter-enhancer and CTCF-CTCF contacts at cytokine loci. Here, we investigated the impact of dynamic chromatin loop formation within the topologically associating domain (TAD) in regulating the expression of interferon gamma (IFN-γ) and interleukin-22 (IL-22); these cytokine loci are closely located in the genome and are associated with complex enhancer landscapes, which are selectively active in type 1 and type 3 lymphocytes. In situ Hi-C analyses revealed inducible TADs that insulated Ifng and Il22 enhancers during Th1 cell differentiation. Targeted deletion of a 17 bp boundary motif of these TADs imbalanced Th1- and Th17-associated immunity, both in vitro and in vivo, upon Toxoplasma gondii infection. In contrast, this boundary element was dispensable for cytokine regulation in natural killer cells. Our findings suggest that precise cytokine regulation relies on lineage- and developmental stage-specific interactions of 3D chromatin architectures and enhancer landscapes.


Subject(s)
CCCTC-Binding Factor , Cell Differentiation , Interferon-gamma , Interleukin-22 , Interleukins , Th1 Cells , Animals , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Th1 Cells/immunology , Mice , Cell Differentiation/immunology , Interferon-gamma/metabolism , Binding Sites , Interleukins/metabolism , Interleukins/genetics , Enhancer Elements, Genetic/genetics , Mice, Inbred C57BL , Chromatin/metabolism , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Toxoplasmosis/genetics , Gene Expression Regulation , Toxoplasma/immunology , Cytokines/metabolism , Cell Lineage , Th17 Cells/immunology
3.
Cell ; 173(5): 1191-1203.e12, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29706542

ABSTRACT

Human Dicer (hDicer) is a multi-domain protein belonging to the RNase III family. It plays pivotal roles in small RNA biogenesis during the RNA interference (RNAi) pathway by processing a diverse range of double-stranded RNA (dsRNA) precursors to generate ∼22 nt microRNA (miRNA) or small interfering RNA (siRNA) products for sequence-directed gene silencing. In this work, we solved the cryoelectron microscopy (cryo-EM) structure of hDicer in complex with its cofactor protein TRBP and revealed the precise spatial arrangement of hDicer's multiple domains. We further solved structures of the hDicer-TRBP complex bound with pre-let-7 RNA in two distinct conformations. In combination with biochemical analysis, these structures reveal a property of the hDicer-TRBP complex to promote the stability of pre-miRNA's stem duplex in a pre-dicing state. These results provide insights into the mechanism of RNA processing by hDicer and illustrate the regulatory role of hDicer's N-terminal helicase domain.


Subject(s)
DEAD-box RNA Helicases/chemistry , MicroRNAs/chemistry , Ribonuclease III/chemistry , Cryoelectron Microscopy , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Electrophoretic Mobility Shift Assay , Humans , MicroRNAs/metabolism , Nuclear Receptor Coactivators/chemistry , Nuclear Receptor Coactivators/genetics , Nuclear Receptor Coactivators/metabolism , Nucleic Acid Conformation , Protein Binding , Protein Domains , Protein Structure, Quaternary , RNA Cleavage , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Ribonuclease III/genetics , Ribonuclease III/metabolism
4.
Nat Immunol ; 20(7): 890-901, 2019 07.
Article in English | MEDLINE | ID: mdl-31209400

ABSTRACT

Progenitor-like CD8+ T cells mediate long-term immunity to chronic infection and cancer and respond potently to immune checkpoint blockade. These cells share transcriptional regulators with memory precursor cells, including T cell-specific transcription factor 1 (TCF1), but it is unclear whether they adopt distinct programs to adapt to the immunosuppressive environment. By comparing the single-cell transcriptomes and epigenetic profiles of CD8+ T cells responding to acute and chronic viral infections, we found that progenitor-like CD8+ T cells became distinct from memory precursor cells before the peak of the T cell response. We discovered a coexpression gene module containing Tox that exhibited higher transcriptional activity associated with more abundant active histone marks in progenitor-like cells than memory precursor cells. Moreover, thymocyte selection-associated high mobility group box protein TOX (TOX) promoted the persistence of antiviral CD8+ T cells and was required for the programming of progenitor-like CD8+ T cells. Thus, long-term CD8+ T cell immunity to chronic viral infection requires unique transcriptional and epigenetic programs associated with the transcription factor TOX.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Gene Expression Regulation , Homeodomain Proteins/genetics , Infections/etiology , Single-Cell Analysis , Animals , Biomarkers , Chromatin Immunoprecipitation , Epigenesis, Genetic , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Homeodomain Proteins/metabolism , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Immunologic Memory , Infections/metabolism , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/immunology , Mice , Time Factors , Transcriptome
5.
Cell ; 165(5): 1120-1133, 2016 May 19.
Article in English | MEDLINE | ID: mdl-27156451

ABSTRACT

Innate lymphoid cells (ILCs) play key roles in host defense, barrier integrity, and homeostasis and mirror adaptive CD4(+) T helper (Th) cell subtypes in both usage of effector molecules and transcription factors. To better understand the relationship between ILC subsets and their Th cell counterparts, we measured genome-wide chromatin accessibility. We find that chromatin in proximity to effector genes is selectively accessible in ILCs prior to high-level transcription upon activation. Accessibility of these regions is acquired in a stepwise manner during development and changes little after in vitro or in vivo activation. Conversely, dramatic chromatin remodeling occurs in naive CD4(+) T cells during Th cell differentiation using a type-2-infection model. This alteration results in a substantial convergence of Th2 cells toward ILC2 regulomes. Our data indicate extensive sharing of regulatory circuitry across the innate and adaptive compartments of the immune system, in spite of their divergent developing pathways.


Subject(s)
Gene Regulatory Networks , Lymphocytes/cytology , Lymphocytes/immunology , Animals , Cell Lineage , Female , Gene Expression Regulation , Lymphocytes/metabolism , Mice , Mice, Inbred C57BL , Transcriptome
6.
Nat Immunol ; 19(12): 1403-1414, 2018 12.
Article in English | MEDLINE | ID: mdl-30397350

ABSTRACT

Repair of tissue damaged during inflammatory processes is key to the return of local homeostasis and restoration of epithelial integrity. Here we describe CD161+ regulatory T (Treg) cells as a distinct, highly suppressive population of Treg cells that mediate wound healing. These Treg cells were enriched in intestinal lamina propria, particularly in Crohn's disease. CD161+ Treg cells had an all-trans retinoic acid (ATRA)-regulated gene signature, and CD161 expression on Treg cells was induced by ATRA, which directly regulated the CD161 gene. CD161 was co-stimulatory, and ligation with the T cell antigen receptor induced cytokines that accelerated the wound healing of intestinal epithelial cells. We identified a transcription-factor network, including BACH2, RORγt, FOSL2, AP-1 and RUNX1, that controlled expression of the wound-healing program, and found a CD161+ Treg cell signature in Crohn's disease mucosa associated with reduced inflammation. These findings identify CD161+ Treg cells as a population involved in controlling the balance between inflammation and epithelial barrier healing in the gut.


Subject(s)
Intestinal Mucosa/immunology , NK Cell Lectin-Like Receptor Subfamily B/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Tretinoin/immunology , Wound Healing/immunology , Crohn Disease/immunology , Humans
7.
Immunity ; 54(3): 514-525.e6, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33657395

ABSTRACT

MicroRNAs are important regulators of immune responses. Here, we show miR-221 and miR-222 modulate the intestinal Th17 cell response. Expression of miR-221 and miR-222 was induced by proinflammatory cytokines and repressed by the cytokine TGF-ß. Molecular targets of miR-221 and miR-222 included Maf and Il23r, and loss of miR-221 and miR-222 expression shifted the transcriptomic spectrum of intestinal Th17 cells to a proinflammatory signature. Although the loss of miR-221 and miR-222 was tolerated for maintaining intestinal Th17 cell homeostasis in healthy mice, Th17 cells lacking miR-221 and miR-222 expanded more efficiently in response to IL-23. Both global and T cell-specific deletion of miR-221 and miR-222 rendered mice prone to mucosal barrier damage. Collectively, these findings demonstrate that miR-221 and miR-222 are an integral part of intestinal Th17 cell response that are induced after IL-23 stimulation to constrain the magnitude of proinflammatory response.


Subject(s)
Inflammation/immunology , Interleukin-23/metabolism , Intestinal Mucosa/immunology , MicroRNAs/genetics , Th17 Cells/immunology , Animals , Feedback, Physiological , Mice , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Proteins c-maf/metabolism , Receptors, Interleukin/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism
8.
Cell ; 163(2): 432-44, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26451487

ABSTRACT

Most short-lived eukaryotic proteins are degraded by the proteasome. A proteolytic core particle (CP) capped by regulatory particles (RPs) constitutes the 26S proteasome complex. RP biogenesis culminates with the joining of two large subcomplexes, the lid and base. In yeast and mammals, the lid appears to assemble completely before attaching to the base, but how this hierarchical assembly is enforced has remained unclear. Using biochemical reconstitutions, quantitative cross-linking/mass spectrometry, and electron microscopy, we resolve the mechanistic basis for the linkage between lid biogenesis and lid-base joining. Assimilation of the final lid subunit, Rpn12, triggers a large-scale conformational remodeling of the nascent lid that drives RP assembly, in part by relieving steric clash with the base. Surprisingly, this remodeling is triggered by a single Rpn12 α helix. Such assembly-coupled conformational switching is reminiscent of viral particle maturation and may represent a commonly used mechanism to enforce hierarchical assembly in multisubunit complexes.


Subject(s)
Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/chemistry , Escherichia coli/metabolism , Mass Spectrometry , Microscopy, Electron , Models, Molecular , Protein Structure, Secondary , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
9.
Nature ; 628(8009): 887-893, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538796

ABSTRACT

Efficient termination is required for robust gene transcription. Eukaryotic organisms use a conserved exoribonuclease-mediated mechanism to terminate the mRNA transcription by RNA polymerase II (Pol II)1-5. Here we report two cryogenic electron microscopy structures of Saccharomyces cerevisiae Pol II pre-termination transcription complexes bound to the 5'-to-3' exoribonuclease Rat1 and its partner Rai1. Our structures show that Rat1 displaces the elongation factor Spt5 to dock at the Pol II stalk domain. Rat1 shields the RNA exit channel of Pol II, guides the nascent RNA towards its active centre and stacks three nucleotides at the 5' terminus of the nascent RNA. The structures further show that Rat1 rotates towards Pol II as it shortens RNA. Our results provide the structural mechanism for the Rat1-mediated termination of mRNA transcription by Pol II in yeast and the exoribonuclease-mediated termination of mRNA transcription in other eukaryotes.


Subject(s)
Cryoelectron Microscopy , Exoribonucleases , RNA Polymerase II , RNA, Messenger , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription Termination, Genetic , Exoribonucleases/chemistry , Exoribonucleases/metabolism , Exoribonucleases/ultrastructure , Models, Molecular , Protein Binding , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , RNA Polymerase II/ultrastructure , RNA, Messenger/biosynthesis , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/ultrastructure , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/ultrastructure , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure , Transcriptional Elongation Factors/chemistry , Transcriptional Elongation Factors/metabolism , Transcriptional Elongation Factors/ultrastructure , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/ultrastructure , Protein Domains , RNA, Fungal/biosynthesis , RNA, Fungal/chemistry , RNA, Fungal/genetics , RNA, Fungal/ultrastructure
10.
Nature ; 629(8012): 586-591, 2024 May.
Article in English | MEDLINE | ID: mdl-38720080

ABSTRACT

Light-emitting diodes (LEDs) based on perovskite quantum dots (QDs) have produced external quantum efficiencies (EQEs) of more than 25% with narrowband emission1,2, but these LEDs have limited operating lifetimes. We posit that poor long-range ordering in perovskite QD films-variations in dot size, surface ligand density and dot-to-dot stacking-inhibits carrier injection, resulting in inferior operating stability because of the large bias required to produce emission in these LEDs. Here we report a chemical treatment to improve the long-range order of perovskite QD films: the diffraction intensity from the repeating QD units increases three-fold compared with that of controls. We achieve this using a synergistic dual-ligand approach: an iodide-rich agent (aniline hydroiodide) for anion exchange and a chemically reactive agent (bromotrimethylsilane) that produces a strong acid that in situ dissolves smaller QDs to regulate size and more effectively removes less conductive ligands to enable compact, uniform and defect-free films. These films exhibit high conductivity (4 × 10-4 S m-1), which is 2.5-fold higher than that of the control, and represents the highest conductivity recorded so far among perovskite QDs. The high conductivity ensures efficient charge transportation, enabling red perovskite QD-LEDs that generate a luminance of 1,000 cd m-2 at a record-low voltage of 2.8 V. The EQE at this luminance is more than 20%. Furthermore, the stability of the operating device is 100 times better than previous red perovskite LEDs at EQEs of more than 20%.

11.
Nat Immunol ; 18(7): 813-823, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28530713

ABSTRACT

The transcriptional programs that guide lymphocyte differentiation depend on the precise expression and timing of transcription factors (TFs). The TF BACH2 is essential for T and B lymphocytes and is associated with an archetypal super-enhancer (SE). Single-nucleotide variants in the BACH2 locus are associated with several autoimmune diseases, but BACH2 mutations that cause Mendelian monogenic primary immunodeficiency have not previously been identified. Here we describe a syndrome of BACH2-related immunodeficiency and autoimmunity (BRIDA) that results from BACH2 haploinsufficiency. Affected subjects had lymphocyte-maturation defects that caused immunoglobulin deficiency and intestinal inflammation. The mutations disrupted protein stability by interfering with homodimerization or by causing aggregation. We observed analogous lymphocyte defects in Bach2-heterozygous mice. More generally, we observed that genes that cause monogenic haploinsufficient diseases were substantially enriched for TFs and SE architecture. These findings reveal a previously unrecognized feature of SE architecture in Mendelian diseases of immunity: heterozygous mutations in SE-regulated genes identified by whole-exome/genome sequencing may have greater significance than previously recognized.


Subject(s)
Autoimmune Diseases/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Immunologic Deficiency Syndromes/genetics , Adrenal Cortex Hormones/therapeutic use , Adult , Autoimmune Diseases/complications , Colitis/complications , Colitis/genetics , Colitis/pathology , Female , Fever/complications , Fever/drug therapy , Fever/genetics , Haploinsufficiency , Heterozygote , Humans , Immunologic Deficiency Syndromes/complications , Lymphopenia/complications , Lymphopenia/genetics , Male , Middle Aged , Mutation , Pancytopenia/complications , Pancytopenia/drug therapy , Pancytopenia/genetics , Pedigree , Polymorphism, Single Nucleotide , Recurrence , Respiratory Tract Infections/complications , Respiratory Tract Infections/diagnostic imaging , Respiratory Tract Infections/genetics , Splenomegaly/complications , Splenomegaly/genetics , Syndrome , Tomography, X-Ray Computed , Young Adult
12.
Immunity ; 53(4): 745-758.e4, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33010223

ABSTRACT

Innate immune responses rely on rapid and precise gene regulation mediated by accessibility of regulatory regions to transcription factors (TFs). In natural killer (NK) cells and other innate lymphoid cells, competent enhancers are primed during lineage acquisition, and formation of de novo enhancers characterizes the acquisition of innate memory in activated NK cells and macrophages. Here, we investigated how primed and de novo enhancers coordinate to facilitate high-magnitude gene induction during acute activation. Epigenomic and transcriptomic analyses of regions near highly induced genes (HIGs) in NK cells both in vitro and in a model of Toxoplasma gondii infection revealed de novo chromatin accessibility and enhancer remodeling controlled by signal-regulated TFs STATs. Acute NK cell activation redeployed the lineage-determining TF T-bet to de novo enhancers, independent of DNA-sequence-specific motif recognition. Thus, acute stimulation reshapes enhancer function through the combinatorial usage and repurposing of both lineage-determining and signal-regulated TFs to ensure an effective response.


Subject(s)
Enhancer Elements, Genetic/genetics , Enhancer Elements, Genetic/immunology , Killer Cells, Natural/immunology , Transcription Factors/genetics , Transcription Factors/immunology , Animals , Chromatin/genetics , Chromatin/immunology , Female , Gene Expression/genetics , Gene Expression/immunology , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Immunity, Innate/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Toxoplasma/immunology , Toxoplasmosis/genetics , Toxoplasmosis/immunology
13.
Cell ; 156(5): 1096-111, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24581503

ABSTRACT

Numerous studies have examined the neuronal inputs and outputs of many areas within the mammalian cerebral cortex, but how these areas are organized into neural networks that communicate across the entire cortex is unclear. Over 600 labeled neuronal pathways acquired from tracer injections placed across the entire mouse neocortex enabled us to generate a cortical connectivity atlas. A total of 240 intracortical connections were manually reconstructed within a common neuroanatomic framework, forming a cortico-cortical connectivity map that facilitates comparison of connections from different cortical targets. Connectivity matrices were generated to provide an overview of all intracortical connections and subnetwork clusterings. The connectivity matrices and cortical map revealed that the entire cortex is organized into four somatic sensorimotor, two medial, and two lateral subnetworks that display unique topologies and can interact through select cortical areas. Together, these data provide a resource that can be used to further investigate cortical networks and their corresponding functions.


Subject(s)
Cerebral Cortex/physiology , Connectome , Mice/physiology , Neural Pathways , Animals , Behavior, Animal , Male , Mice, Inbred C57BL
14.
Nature ; 616(7955): 199-206, 2023 04.
Article in English | MEDLINE | ID: mdl-36922595

ABSTRACT

In oxygenic photosynthetic organisms, light energy is captured by antenna systems and transferred to photosystem II (PSII) and photosystem I (PSI) to drive photosynthesis1,2. The antenna systems of red algae consist of soluble phycobilisomes (PBSs) and transmembrane light-harvesting complexes (LHCs)3. Excitation energy transfer pathways from PBS to photosystems remain unclear owing to the lack of structural information. Here we present in situ structures of PBS-PSII-PSI-LHC megacomplexes from the red alga Porphyridium purpureum at near-atomic resolution using cryogenic electron tomography and in situ single-particle analysis4, providing interaction details between PBS, PSII and PSI. The structures reveal several unidentified and incomplete proteins and their roles in the assembly of the megacomplex, as well as a huge and sophisticated pigment network. This work provides a solid structural basis for unravelling the mechanisms of PBS-PSII-PSI-LHC megacomplex assembly, efficient energy transfer from PBS to the two photosystems, and regulation of energy distribution between PSII and PSI.


Subject(s)
Light-Harvesting Protein Complexes , Photosystem I Protein Complex , Photosystem II Protein Complex , Phycobilisomes , Porphyridium , Energy Transfer , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/ultrastructure , Photosynthesis , Photosystem I Protein Complex/chemistry , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/ultrastructure , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/ultrastructure , Phycobilisomes/chemistry , Phycobilisomes/metabolism , Phycobilisomes/ultrastructure , Porphyridium/chemistry , Porphyridium/enzymology , Porphyridium/metabolism , Porphyridium/ultrastructure , Cryoelectron Microscopy , Single Molecule Imaging
16.
Immunity ; 50(1): 106-120.e10, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30650370

ABSTRACT

CD4+ T helper (Th) differentiation is regulated by diverse inputs, including the vitamin A metabolite retinoic acid (RA). RA acts through its receptor RARα to repress transcription of inflammatory cytokines, but is also essential for Th-mediated immunity, indicating complex effects of RA on Th specification and the outcome of the immune response. We examined the impact of RA on the genome-wide transcriptional response during Th differentiation to multiple subsets. RA effects were subset-selective and were most significant in Th9 cells. RA globally antagonized Th9-promoting transcription factors and inhibited Th9 differentiation. RA directly targeted the extended Il9 locus and broadly modified the Th9 epigenome through RARα. RA-RARα activity limited murine Th9-associated pulmonary inflammation, and human allergic inflammation was associated with reduced expression of RA target genes. Thus, repression of the Th9 program is a major function of RA-RARα signaling in Th differentiation, arguing for a role for RA in interleukin 9 (IL-9) related diseases.


Subject(s)
Hypersensitivity/immunology , Lung/physiology , Pneumonia/immunology , Retinoic Acid Receptor alpha/metabolism , T-Lymphocytes, Helper-Inducer/physiology , Animals , Epigenetic Repression , HEK293 Cells , Humans , Hypersensitivity/genetics , Interleukin-9/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Pneumonia/genetics , Retinoic Acid Receptor alpha/genetics , Signal Transduction , Transcription, Genetic , Tretinoin/metabolism
18.
Cell ; 153(1): 166-77, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23540697

ABSTRACT

Many bacteria contain an ortholog of the Ro autoantigen, a ring-shaped protein that binds noncoding RNAs (ncRNAs) called Y RNAs. In the only studied bacterium, Deinococcus radiodurans, the Ro ortholog Rsr functions in heat-stress-induced ribosomal RNA (rRNA) maturation and starvation-induced rRNA decay. However, the mechanism by which this conserved protein and its associated ncRNAs act has been obscure. We report that Rsr and the exoribonuclease polynucleotide phosphorylase (PNPase) form an RNA degradation machine that is scaffolded by Y RNA. Single-particle electron microscopy, followed by docking of atomic models into the reconstruction, suggests that Rsr channels single-stranded RNA into the PNPase cavity. Biochemical assays reveal that Rsr and Y RNA adapt PNPase for effective degradation of structured RNAs. A Ro ortholog and ncRNA also associate with PNPase in Salmonella Typhimurium. Our studies identify another ribonucleoprotein machine and demonstrate that ncRNA, by tethering a protein cofactor, can alter the substrate specificity of an enzyme.


Subject(s)
Deinococcus/chemistry , Exosome Multienzyme Ribonuclease Complex/chemistry , RNA Stability , RNA, Bacterial/chemistry , RNA, Untranslated/metabolism , Ribonucleoproteins/metabolism , Salmonella typhimurium/metabolism , Animals , Base Sequence , Deinococcus/genetics , Deinococcus/metabolism , Exosome Multienzyme Ribonuclease Complex/metabolism , Molecular Sequence Data , Polyribonucleotide Nucleotidyltransferase/chemistry , Polyribonucleotide Nucleotidyltransferase/ultrastructure , RNA, Bacterial/ultrastructure , RNA, Untranslated/ultrastructure , Ribonucleoproteins/chemistry , Ribonucleoproteins/genetics , Xenopus laevis/metabolism
19.
Cell ; 152(3): 620-32, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23352430

ABSTRACT

DNA double-strand breaks (DSBs) in B lymphocytes arise stochastically during replication or as a result of targeted DNA damage by activation-induced cytidine deaminase (AID). Here we identify recurrent, early replicating, and AID-independent DNA lesions, termed early replication fragile sites (ERFSs), by genome-wide localization of DNA repair proteins in B cells subjected to replication stress. ERFSs colocalize with highly expressed gene clusters and are enriched for repetitive elements and CpG dinucleotides. Although distinct from late-replicating common fragile sites (CFS), the stability of ERFSs and CFSs is similarly dependent on the replication-stress response kinase ATR. ERFSs break spontaneously during replication, but their fragility is increased by hydroxyurea, ATR inhibition, or deregulated c-Myc expression. Moreover, greater than 50% of recurrent amplifications/deletions in human diffuse large B cell lymphoma map to ERFSs. In summary, we have identified a source of spontaneous DNA lesions that drives instability at preferred genomic sites.


Subject(s)
Chromosome Fragile Sites , DNA Replication , Eukaryota/genetics , Genomic Instability , Prokaryotic Cells/physiology , Animals , Biomechanical Phenomena , DNA Repair , Humans
20.
Nature ; 607(7918): 399-406, 2022 07.
Article in English | MEDLINE | ID: mdl-35768513

ABSTRACT

Small interfering RNAs (siRNAs) are the key components for RNA interference (RNAi), a conserved RNA-silencing mechanism in many eukaryotes1,2. In Drosophila, an RNase III enzyme Dicer-2 (Dcr-2), aided by its cofactor Loquacious-PD (Loqs-PD), has an important role in generating 21 bp siRNA duplexes from long double-stranded RNAs (dsRNAs)3,4. ATP hydrolysis by the helicase domain of Dcr-2 is critical to the successful processing of a long dsRNA into consecutive siRNA duplexes5,6. Here we report the cryo-electron microscopy structures of Dcr-2-Loqs-PD in the apo state and in multiple states in which it is processing a 50 bp dsRNA substrate. The structures elucidated interactions between Dcr-2 and Loqs-PD, and substantial conformational changes of Dcr-2 during a dsRNA-processing cycle. The N-terminal helicase and domain of unknown function 283 (DUF283) domains undergo conformational changes after initial dsRNA binding, forming an ATP-binding pocket and a 5'-phosphate-binding pocket. The overall conformation of Dcr-2-Loqs-PD is relatively rigid during translocating along the dsRNA in the presence of ATP, whereas the interactions between the DUF283 and RIIIDb domains prevent non-specific cleavage during translocation by blocking the access of dsRNA to the RNase active centre. Additional ATP-dependent conformational changes are required to form an active dicing state and precisely cleave the dsRNA into a 21 bp siRNA duplex as confirmed by the structure in the post-dicing state. Collectively, this study revealed the molecular mechanism for the full cycle of ATP-dependent dsRNA processing by Dcr-2-Loqs-PD.


Subject(s)
Cryoelectron Microscopy , Drosophila Proteins , Drosophila melanogaster , RNA Helicases , RNA, Double-Stranded , RNA, Small Interfering , RNA-Binding Proteins , Ribonuclease III , Adenosine Triphosphate , Animals , Binding Sites , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila Proteins/ultrastructure , Phosphates/metabolism , Protein Conformation , RNA Helicases/chemistry , RNA Helicases/metabolism , RNA Helicases/ultrastructure , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/ultrastructure , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , RNA, Small Interfering/ultrastructure , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/ultrastructure , Ribonuclease III/chemistry , Ribonuclease III/metabolism , Ribonuclease III/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL