Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Transl Med ; 20(1): 564, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36474270

ABSTRACT

BACKGROUND: Genetic risk factors for chemotherapy-induced peripheral neuropathy (CIPN), a major dose-limiting side-effect of paclitaxel, are not well understood. METHODS: We performed a genome-wide association study (GWAS) in 183 paclitaxel-treated patients to identify genetic loci associated with CIPN assessed via comprehensive neuropathy phenotyping tools (patient-reported, clinical and neurological grading scales). Bioinformatic analyses including pathway enrichment and polygenic risk score analysis were used to identify mechanistic pathways of interest. RESULTS: In total, 77% of the cohort were classified with CIPN (n = 139), with moderate/severe neuropathy in 36%. GWAS was undertaken separately for the three measures of CIPN. GWAS of patient-reported CIPN identified 4 chromosomal regions that exceeded genome-wide significance (rs9846958, chromosome 3; rs117158921, chromosome 18; rs4560447, chromosome 4; rs200091415, chromosome 10). rs4560447 is located within a protein-coding gene, LIMCH1, associated with actin and neural development and expressed in the dorsal root ganglia (DRG). There were additional risk loci that exceeded the statistical threshold for suggestive genome-wide association (P < 1 × 10-5) for all measures. A polygenic risk score calculated from the top 46 ranked SNPs was highly correlated with patient-reported CIPN (r2 = 0.53; P = 1.54 × 10-35). Overlap analysis was performed to identify 3338 genes which were in common between the patient-reported CIPN, neurological grading scale and clinical grading scale GWAS. The common gene set was subsequently analysed for enrichment of gene ontology (GO) and Reactome pathways, identifying a number of pathways, including the axon development pathway (GO:0061564; P = 1.78 × 10-6) and neuronal system (R-HSA-112316; adjusted P = 3.33 × 10-7). CONCLUSIONS: Our findings highlight the potential role of axon development and regeneration pathways in paclitaxel-induced CIPN.


Subject(s)
Genome-Wide Association Study , Peripheral Nervous System Diseases , Humans , Paclitaxel/adverse effects , Gene Ontology , Computational Biology , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/genetics
2.
Int J Mol Sci ; 23(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35563596

ABSTRACT

Most neurodegenerative disorders take decades to develop, and their early detection is challenged by confounding non-pathological ageing processes. Therefore, the discovery of genes and molecular pathways in both peripheral and brain tissues that are highly predictive of disease evolution is necessary. To find genes that influence Alzheimer's disease (AD) and Parkinson's disease (PD) pathogenesis, human RNA-Seq transcriptomic data from Brodmann Area 9 (BA9) of the dorsolateral prefrontal cortex (DLPFC), whole blood (WB), and peripheral blood mononuclear cells (PBMC) were analysed using a combination of differential gene expression and a random forest-based machine learning algorithm. The results suggest that there is little overlap between PD and AD, and the AD brain signature is unique mainly compared to blood-based samples. Moreover, the AD-BA9 was characterised by changes in 'nervous system development' with Myocyte-specific enhancer factor 2C (Mef2C), encoding a transcription factor that induces microglia activation, a prominent feature. The peripheral AD transcriptome was associated with alterations in 'viral process', and FYN, which has been previously shown to link amyloid-beta and tau, was the prominent feature. However, in the absence of any overlap with the central transcriptome, it is unclear whether peripheral FYN levels reflect AD severity or progression. In PD, central and peripheral signatures are characterised by anomalies in 'exocytosis' and specific genes related to the SNARE complex, including Vesicle-associated membrane protein 2 (VAMP2), Syntaxin 1A (STX1A), and p21-activated kinase 1 (PAK1). This is consistent with our current understanding of the physiological role of alpha-synuclein and how alpha-synuclein oligomers compromise vesicle docking and neurotransmission. Overall, the results describe distinct disease-specific pathomechanisms, both within the brain and peripherally, for the two most common neurodegenerative disorders.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Parkinson Disease , Alzheimer Disease/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Parkinson Disease/metabolism , Transcriptome , alpha-Synuclein/metabolism
3.
Mol Cell Biochem ; 423(1-2): 141-149, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27704464

ABSTRACT

In this study, we examined cytotoxic effect of GL-9 peptide on A459 cell line through studying the changes in TNF-α and CD44 gene expression and ROS production. Real-time PCR analysis showed that the treated A549 cells highly over expressed TNF-α, which was associated with a significant reduction of CD44 gene expression levels (p  <  0.05). ROS production rate was measured through the usage of DCFH-DA primer. Results demonstrated that GL-9 peptide could also induce cell death via ROS production. The effect of GL-9 peptide on human erythrocytes and leukocytes was analyzed. GL-9 peptide showed no significant toxic effect on human blood cells. Our results suggested that the GL-9 peptide as a potent natural agent could modulate gene expression of cancer cell markers.


Subject(s)
Adenocarcinoma/metabolism , Biomarkers, Tumor/biosynthesis , Gene Expression Regulation, Neoplastic/drug effects , Hyaluronan Receptors/biosynthesis , Lung Neoplasms/metabolism , Neoplasm Proteins/biosynthesis , Peptides/pharmacology , Tumor Necrosis Factor-alpha/biosynthesis , Adenocarcinoma/pathology , Cell Line, Tumor , Humans , Lung Neoplasms/pathology
4.
Transl Neurodegener ; 10(1): 46, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34789332

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective, early degeneration of motor neurons in the brain and spinal cord. Motor neurons have long axonal projections, which rely on the integrity of neuronal cytoskeleton and mitochondria to regulate energy requirements for maintaining axonal stability, anterograde and retrograde transport, and signaling between neurons. The formation of protein aggregates which contain cytoskeletal proteins, and mitochondrial dysfunction both have devastating effects on the function of neurons and are shared pathological features across several neurodegenerative conditions, including ALS, Alzheimer's disease, Parkinson's disease, Huntington's disease and Charcot-Marie-Tooth disease. Furthermore, it is becoming increasingly clear that cytoskeletal integrity and mitochondrial function are intricately linked. Therefore, dysregulations of the cytoskeletal network and mitochondrial homeostasis and localization, may be common pathways in the initial steps of neurodegeneration. Here we review and discuss known contributors, including variants in genetic loci and aberrant protein activities, which modify cytoskeletal integrity, axonal transport and mitochondrial localization in ALS and have overlapping features with other neurodegenerative diseases. Additionally, we explore some emerging pathways that may contribute to this disruption in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/pathology , Cytoskeleton/metabolism , Cytoskeleton/pathology , Humans , Mitochondria/metabolism , Motor Neurons/pathology , Neurodegenerative Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL