Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
PLoS Pathog ; 9(1): e1003106, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23300456

ABSTRACT

Vaccine candidates for HIV-1 so far have not been able to elicit broadly neutralizing antibodies (bNAbs) although they express the epitopes recognized by bNAbs to the HIV envelope glycoprotein (Env). To understand whether and how Env immunogens interact with the predicted germline versions of known bNAbs, we screened a large panel (N:56) of recombinant Envs (from clades A, B and C) for binding to the germline predecessors of the broadly neutralizing anti-CD4 binding site antibodies b12, NIH45-46 and 3BNC60. Although the mature antibodies reacted with diverse Envs, the corresponding germline antibodies did not display Env-reactivity. Experiments conducted with engineered chimeric antibodies combining the mature and germline heavy and light chains, respectively and vice-versa, revealed that both antibody chains are important for the known cross-reactivity of these antibodies. Our results also indicate that in order for b12 to display its broad cross-reactivity, multiple somatic mutations within its VH region are required. A consequence of the failure of the germline b12 to bind recombinant soluble Env is that Env-induced B-cell activation through the germline b12 BCR does not take place. Our study provides a new explanation for the difficulties in eliciting bNAbs with recombinant soluble Env immunogens. Our study also highlights the need for intense efforts to identify rare naturally occurring or engineered Envs that may engage the germline BCR versions of bNAbs.


Subject(s)
Antibodies, Neutralizing/immunology , CD4 Antigens/immunology , HIV Antibodies/immunology , HIV-1/genetics , HIV-1/immunology , AIDS Vaccines/immunology , Antibodies, Anti-Idiotypic/immunology , Antibody Affinity/immunology , Antigens, Viral/immunology , B-Lymphocytes/immunology , Cell Line , Epitopes/immunology , HEK293 Cells , HIV Infections/immunology , Humans , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/immunology , Lymphocyte Activation , Neutralization Tests , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology
2.
Eukaryot Cell ; 12(5): 725-38, 2013 May.
Article in English | MEDLINE | ID: mdl-23475705

ABSTRACT

Sterol import has been characterized under various conditions in three distinct fungal species, the model organism Saccharomyces cerevisiae and two human fungal pathogens Candida glabrata and Candida albicans, employing cholesterol, the sterol of higher eukaryotes, as well as its fungal equivalent, ergosterol. Import was confirmed by the detection of esterified cholesterol within the cells. Comparing the three fungal species, we observe sterol import under three different conditions. First, as previously well characterized, we observe sterol import under low oxygen levels in S. cerevisiae and C. glabrata, which is dependent on the transcription factor Upc2 and/or its orthologs or paralogs. Second, we observe sterol import under aerobic conditions exclusively in the two pathogenic fungi C. glabrata and C. albicans. Uptake emerges during post-exponential-growth phases, is independent of the characterized Upc2-pathway and is slower compared to the anaerobic uptake in S. cerevisiae and C. glabrata. Third, we observe under normoxic conditions in C. glabrata that Upc2-dependent sterol import can be induced in the presence of fetal bovine serum together with fluconazole. In summary, C. glabrata imports sterols both in aerobic and anaerobic conditions, and the limited aerobic uptake can be further stimulated by the presence of serum together with fluconazole. S. cerevisiae imports sterols only in anaerobic conditions, demonstrating aerobic sterol exclusion. Finally, C. albicans imports sterols exclusively aerobically in post-exponential-growth phases, independent of Upc2. For the first time, we provide direct evidence of sterol import into the human fungal pathogen C. albicans, which until now was believed to be incapable of active sterol import.


Subject(s)
Candida albicans/metabolism , Candida glabrata/metabolism , Cholesterol/metabolism , Ergosterol/metabolism , Saccharomyces cerevisiae/metabolism , Aerobiosis , Anaerobiosis , Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/growth & development , Candida glabrata/drug effects , Candida glabrata/genetics , Candida glabrata/growth & development , Culture Media , Esterification , Fluconazole/pharmacology , Gene Knockout Techniques , Microbial Sensitivity Tests , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development
3.
J Exp Med ; 210(4): 655-63, 2013 Apr 08.
Article in English | MEDLINE | ID: mdl-23530120

ABSTRACT

Broadly neutralizing antibodies (bnAbs) against HIV are believed to be a critical component of the protective responses elicited by an effective HIV vaccine. Neutralizing antibodies against the evolutionarily conserved CD4-binding site (CD4-BS) on the HIV envelope glycoprotein (Env) are capable of inhibiting infection of diverse HIV strains, and have been isolated from HIV-infected individuals. Despite the presence of anti-CD4-BS broadly neutralizing antibody (bnAb) epitopes on recombinant Env, Env immunization has so far failed to elicit such antibodies. Here, we show that Env immunogens fail to engage the germline-reverted forms of known bnAbs that target the CD4-BS. However, we found that the elimination of a conserved glycosylation site located in Loop D and two glycosylation sites located in variable region 5 of Env allows Env-binding to, and activation of, B cells expressing the germline-reverted BCRs of two potent broadly neutralizing antibodies, VRC01 and NIH45-46. Our results offer a possible explanation as to why Env immunogens have been ineffective in stimulating the production of such bNAbs. Importantly, they provide key information as to how such immunogens can be engineered to initiate the process of antibody-affinity maturation against one of the most conserved Env regions.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , CD4 Antigens/immunology , HIV Antibodies/immunology , HIV-1/immunology , Protein Engineering , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/genetics , Antibodies, Neutralizing/genetics , CD4 Antigens/genetics , Cell Line, Tumor , Glycosylation , HIV Antibodies/genetics , HIV-1/genetics , Humans , Protein Structure, Secondary , env Gene Products, Human Immunodeficiency Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL