Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Cell ; 175(4): 998-1013.e20, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388456

ABSTRACT

Treatment of cancer has been revolutionized by immune checkpoint blockade therapies. Despite the high rate of response in advanced melanoma, the majority of patients succumb to disease. To identify factors associated with success or failure of checkpoint therapy, we profiled transcriptomes of 16,291 individual immune cells from 48 tumor samples of melanoma patients treated with checkpoint inhibitors. Two distinct states of CD8+ T cells were defined by clustering and associated with patient tumor regression or progression. A single transcription factor, TCF7, was visualized within CD8+ T cells in fixed tumor samples and predicted positive clinical outcome in an independent cohort of checkpoint-treated patients. We delineated the epigenetic landscape and clonality of these T cell states and demonstrated enhanced antitumor immunity by targeting novel combinations of factors in exhausted cells. Our study of immune cell transcriptomes from tumors demonstrates a strategy for identifying predictors, mechanisms, and targets for enhancing checkpoint immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunotherapy/methods , Melanoma/immunology , Transcriptome , Animals , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacology , Antigens, CD/immunology , Antineoplastic Agents, Immunological/immunology , Antineoplastic Agents, Immunological/pharmacology , Apyrase/antagonists & inhibitors , Apyrase/immunology , Cell Line, Tumor , Humans , Leukocyte Common Antigens/antagonists & inhibitors , Leukocyte Common Antigens/immunology , Melanoma/therapy , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T Cell Transcription Factor 1/metabolism
2.
Nat Immunol ; 20(7): 902-914, 2019 07.
Article in English | MEDLINE | ID: mdl-31209404

ABSTRACT

Lupus nephritis is a potentially fatal autoimmune disease for which the current treatment is ineffective and often toxic. To develop mechanistic hypotheses of disease, we analyzed kidney samples from patients with lupus nephritis and from healthy control subjects using single-cell RNA sequencing. Our analysis revealed 21 subsets of leukocytes active in disease, including multiple populations of myeloid cells, T cells, natural killer cells and B cells that demonstrated both pro-inflammatory responses and inflammation-resolving responses. We found evidence of local activation of B cells correlated with an age-associated B-cell signature and evidence of progressive stages of monocyte differentiation within the kidney. A clear interferon response was observed in most cells. Two chemokine receptors, CXCR4 and CX3CR1, were broadly expressed, implying a potentially central role in cell trafficking. Gene expression of immune cells in urine and kidney was highly correlated, which would suggest that urine might serve as a surrogate for kidney biopsies.


Subject(s)
Kidney/immunology , Lupus Nephritis/immunology , Biomarkers , Biopsy , Cluster Analysis , Computational Biology/methods , Epithelial Cells/metabolism , Flow Cytometry , Gene Expression Profiling , Gene Expression Regulation , Humans , Immunophenotyping , Interferons/metabolism , Kidney/metabolism , Kidney/pathology , Leukocytes/immunology , Leukocytes/metabolism , Lupus Nephritis/genetics , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , Lymphocytes/immunology , Lymphocytes/metabolism , Molecular Sequence Annotation , Myeloid Cells/immunology , Myeloid Cells/metabolism , Single-Cell Analysis , Transcriptome
5.
Nature ; 619(7970): 585-594, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37468583

ABSTRACT

Understanding kidney disease relies on defining the complexity of cell types and states, their associated molecular profiles and interactions within tissue neighbourhoods1. Here we applied multiple single-cell and single-nucleus assays (>400,000 nuclei or cells) and spatial imaging technologies to a broad spectrum of healthy reference kidneys (45 donors) and diseased kidneys (48 patients). This has provided a high-resolution cellular atlas of 51 main cell types, which include rare and previously undescribed cell populations. The multi-omic approach provides detailed transcriptomic profiles, regulatory factors and spatial localizations spanning the entire kidney. We also define 28 cellular states across nephron segments and interstitium that were altered in kidney injury, encompassing cycling, adaptive (successful or maladaptive repair), transitioning and degenerative states. Molecular signatures permitted the localization of these states within injury neighbourhoods using spatial transcriptomics, while large-scale 3D imaging analysis (around 1.2 million neighbourhoods) provided corresponding linkages to active immune responses. These analyses defined biological pathways that are relevant to injury time-course and niches, including signatures underlying epithelial repair that predicted maladaptive states associated with a decline in kidney function. This integrated multimodal spatial cell atlas of healthy and diseased human kidneys represents a comprehensive benchmark of cellular states, neighbourhoods, outcome-associated signatures and publicly available interactive visualizations.


Subject(s)
Gene Expression Profiling , Kidney Diseases , Kidney , Single-Cell Analysis , Transcriptome , Humans , Cell Nucleus/genetics , Kidney/cytology , Kidney/injuries , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Transcriptome/genetics , Case-Control Studies , Imaging, Three-Dimensional
6.
Cell ; 136(5): 876-90, 2009 Mar 06.
Article in English | MEDLINE | ID: mdl-19249086

ABSTRACT

Store-operated Ca(2+) channels activated by the depletion of Ca(2+) from the endoplasmic reticulum (ER) are a major Ca(2+) entry pathway in nonexcitable cells and are essential for T cell activation and adaptive immunity. After store depletion, the ER Ca(2+) sensor STIM1 and the CRAC channel protein Orai1 redistribute to ER-plasma membrane (PM) junctions, but the fundamental issue of how STIM1 activates the CRAC channel at these sites is unresolved. Here, we identify a minimal, highly conserved 107-aa CRAC activation domain (CAD) of STIM1 that binds directly to the N and C termini of Orai1 to open the CRAC channel. Purified CAD forms a tetramer that clusters CRAC channels, but analysis of STIM1 mutants reveals that channel clustering is not sufficient for channel activation. These studies establish a molecular mechanism for store-operated Ca(2+) entry in which the direct binding of STIM1 to Orai1 drives the accumulation and the activation of CRAC channels at ER-PM junctions.


Subject(s)
Calcium Channels/metabolism , Calcium Signaling , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Calcium Channels/chemistry , Cell Line , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Humans , ORAI1 Protein , Protein Structure, Tertiary , Stromal Interaction Molecule 1
7.
Kidney Int ; 90(3): 487-92, 2016 09.
Article in English | MEDLINE | ID: mdl-27344205

ABSTRACT

Lupus nephritis is a common and severe manifestation of systemic lupus erythematosus that disproportionately affects nonwhites and those in lower socioeconomic groups. This review discusses recent data on the incidence, prevalence, and outcomes of patients with lupus nephritis with a focus on low-income US Medicaid patients. We also review recent guidelines on diagnosis, treatment, and screening for new onset and relapses of lupus nephritis. Finally, we discuss the management of lupus nephritis from a rheumatologist's perspective, including vigilance for the common adverse events related to disease and treatment, and we review prevention and new treatment strategies.


Subject(s)
Glucocorticoids/adverse effects , Health Services Accessibility , Immunosuppressive Agents/therapeutic use , Lupus Nephritis/drug therapy , Lupus Nephritis/epidemiology , Administration, Oral , Chemotherapy, Adjuvant , Glucocorticoids/administration & dosage , Glucocorticoids/therapeutic use , Humans , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/adverse effects , Incidence , Lupus Nephritis/diagnosis , Medicaid , Medication Adherence , Practice Guidelines as Topic , Prevalence , Rheumatologists , Risk Factors , Socioeconomic Factors , Treatment Outcome , United States
8.
Proc Natl Acad Sci U S A ; 108(32): 13299-304, 2011 Aug 09.
Article in English | MEDLINE | ID: mdl-21788510

ABSTRACT

Store-operated Ca(2+) entry depends critically on physical interactions of the endoplasmic reticulum (ER) Ca(2+) sensor stromal interaction molecule 1 (STIM1) and the Ca(2+) release-activated Ca(2+) (CRAC) channel protein Orai1. Recent studies support a diffusion-trap mechanism in which ER Ca(2+) depletion causes STIM1 to accumulate at ER-plasma membrane (PM) junctions, where it binds to Orai1, trapping and activating mobile CRAC channels in the overlying PM. To determine the stoichiometric requirements for CRAC channel trapping and activation, we expressed mCherry-STIM1 and Orai1-GFP at varying ratios in HEK cells and quantified CRAC current (I(CRAC)) activation and the STIM1:Orai1 ratio at ER-PM junctions after store depletion. By competing for a limited amount of STIM1, high levels of Orai1 reduced the junctional STIM1:Orai1 ratio to a lower limit of 0.3-0.6, indicating that binding of one to two STIM1s is sufficient to immobilize the tetrameric CRAC channel at ER-PM junctions. In cells expressing a constant amount of STIM1, CRAC current was a highly nonlinear bell-shaped function of Orai1 expression and the minimum stoichiometry for channel trapping failed to evoke significant activation. Peak current occurred at a ratio of ∼2 STIM1:Orai1, suggesting that maximal CRAC channel activity requires binding of eight STIM1s to each channel. Further increases in Orai1 caused channel activity and fast Ca(2+)-dependent inactivation to decline in parallel. The data are well described by a model in which STIM1 binds to Orai1 with negative cooperativity and channels open with positive cooperativity as a result of stabilization of the open state by STIM1.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Ion Channel Gating , Membrane Proteins/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , HEK293 Cells , Humans , Models, Biological , Nonlinear Dynamics
9.
bioRxiv ; 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38293222

ABSTRACT

Lupus nephritis (LN) is a frequent manifestation of systemic lupus erythematosus, and fewer than half of patients achieve complete renal response with standard immunosuppressants. Identifying non-invasive, blood-based pathologic immune alterations associated with renal injury could aid therapeutic decisions. Here, we used mass cytometry immunophenotyping of peripheral blood mononuclear cells in 145 patients with biopsy-proven LN and 40 healthy controls to evaluate the heterogeneity of immune activation in patients with LN and to identify correlates of renal parameters and treatment response. Unbiased analysis identified 3 immunologically distinct groups of patients with LN that were associated with different patterns of histopathology, renal cell infiltrates, urine proteomic profiles, and treatment response at one year. Patients with enriched circulating granzyme B+ T cells at baseline showed more severe disease and increased numbers of activated CD8 T cells in the kidney, yet they had the highest likelihood of treatment response. A second group characterized primarily by a high type I interferon signature had a lower likelihood of response to therapy, while a third group appeared immunologically inactive by immunophenotyping at enrollment but with chronic renal injuries. Main immune profiles could be distilled down to 5 simple cytometric parameters that recapitulate several of the associations, highlighting the potential for blood immune profiling to translate to clinically useful non-invasive metrics to assess immune-mediated disease in LN.

10.
Cell Rep Med ; 2(5): 100287, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33969320

ABSTRACT

Mechanisms underlying severe coronavirus disease 2019 (COVID-19) disease remain poorly understood. We analyze several thousand plasma proteins longitudinally in 306 COVID-19 patients and 78 symptomatic controls, uncovering immune and non-immune proteins linked to COVID-19. Deconvolution of our plasma proteome data using published scRNA-seq datasets reveals contributions from circulating immune and tissue cells. Sixteen percent of patients display reduced inflammation yet comparably poor outcomes. Comparison of patients who died to severely ill survivors identifies dynamic immune-cell-derived and tissue-associated proteins associated with survival, including exocrine pancreatic proteases. Using derived tissue-specific and cell-type-specific intracellular death signatures, cellular angiotensin-converting enzyme 2 (ACE2) expression, and our data, we infer whether organ damage resulted from direct or indirect effects of infection. We propose a model in which interactions among myeloid, epithelial, and T cells drive tissue damage. These datasets provide important insights and a rich resource for analysis of mechanisms of severe COVID-19 disease.

11.
Chest ; 158(1): 350-358, 2020 07.
Article in English | MEDLINE | ID: mdl-32173491

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) adversely affects patient's exercise capacity in interstitial lung disease (ILD). The impact of pulmonary vascular and right ventricular (RV) dysfunction, however, has traditionally been believed to be mild and clinically relevant principally in advanced lung disease states. RESEARCH QUESTION: The aim of this study was to evaluate the relative contributions of pulmonary mechanics, pulmonary vascular function, and RV function to the ILD exercise limit. STUDY DESIGN AND METHODS: Forty-nine patients with ILD who underwent resting right heart catheterization followed by invasive exercise testing were evaluated. Patients with PH at rest (ILD + rPH) and with PH diagnosed exclusively during exercise (ILD + ePH) were contrasted with ILD patients without PH (ILD non-PH). RESULTS: Peak oxygen consumption was reduced in ILD + rPH (61 ± 10% predicted) and ILD + ePH (67 ± 13% predicted) compared with ILD non-PH (81 ± 16% predicted; P < .001 and P = .016, respectively). Each ILD hemodynamic phenotype presented distinct patterns of dynamic changes of pulmonary vascular compliance relative to pulmonary vascular resistance from rest to peak exercise. Peak RV stroke work index was increased in ILD + ePH (24.7 ± 8.2 g/m2 per beat) and ILD + rPH (30.9 ± 6.1 g/m2 per beat) compared with ILD non-PH (18.3 ± 6.4 g/m2 per beat; P = .020 and P = .014). Ventilatory reserve was reduced in ILD + rPH compared with the other groups at the anaerobic threshold, but it was similar between ILD + ePH and ILD non-PH at the anaerobic threshold (0.32 ± 0.13 vs 0.30 ± 0.11; P = .921) and at peak exercise (0.70 ± 0.17 vs 0.73 ± 0.24; P = .872). INTERPRETATION: ILD with resting and exercise PH is associated with increased exercise RV work, reduced pulmonary vascular reserve, and reduced peak oxygen consumption. The findings highlight the role of pulmonary vascular and RV burden to ILD exercise limit.


Subject(s)
Exercise Tolerance/physiology , Hypertension, Pulmonary/complications , Lung Diseases, Interstitial/complications , Lung Diseases, Interstitial/physiopathology , Ventricular Dysfunction, Right/complications , Adult , Aged , Case-Control Studies , Exercise , Exercise Test , Female , Humans , Hypertension, Pulmonary/physiopathology , Male , Middle Aged , Oxygen Consumption , Respiratory Mechanics , Vascular Resistance , Ventricular Dysfunction, Right/physiopathology
12.
bioRxiv ; 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33173871

ABSTRACT

COVID-19 has caused over 1 million deaths globally, yet the cellular mechanisms underlying severe disease remain poorly understood. By analyzing several thousand plasma proteins in 306 COVID-19 patients and 78 symptomatic controls over serial timepoints using two complementary approaches, we uncover COVID-19 host immune and non-immune proteins not previously linked to this disease. Integration of plasma proteomics with nine published scRNAseq datasets shows that SARS-CoV-2 infection upregulates monocyte/macrophage, plasmablast, and T cell effector proteins. By comparing patients who died to severely ill patients who survived, we identify dynamic immunomodulatory and tissue-associated proteins associated with survival, providing insights into which host responses are beneficial and which are detrimental to survival. We identify intracellular death signatures from specific tissues and cell types, and by associating these with angiotensin converting enzyme 2 (ACE2) expression, we map tissue damage associated with severe disease and propose which damage results from direct viral infection rather than from indirect effects of illness. We find that disease severity in lung tissue is driven by myeloid cell phenotypes and cell-cell interactions with lung epithelial cells and T cells. Based on these results, we propose a model of immune and epithelial cell interactions that drive cell-type specific and tissue-specific damage in severe COVID-19.

13.
Semin Arthritis Rheum ; 49(3): 396-404, 2019 12.
Article in English | MEDLINE | ID: mdl-31277928

ABSTRACT

BACKGROUND: Interstitial fibrosis and tubular atrophy (IFTA) and vascular injury are frequent histologic features of lupus nephritis renal biopsies, but their clinical correlates and prognostic value are not well understood. This cohort study investigated demographic, clinical and laboratory characteristics, and outcomes, associated with IFTA and vascular injury in lupus nephritis. METHODS: Reports of all renal biopsies performed at an academic medical center (1990-2017) with WHO/ISN/RPS Class II-V lupus nephritis were reviewed. Demographics, clinical variables and labs at biopsy, treatment, and date of death were collected. Additional data from the U.S. Renal Data System (USRDS) provided dates of ESRD and death after ESRD. Multivariable regression analyses identified demographic and clinical factors associated with each histologic finding. Cumulative incidence functions and multivariable Cox proportional hazard models estimated the risk of progression to ESRD and death. RESULTS: Within 202 initial biopsies, IFTA was associated with the patient's SLICC/ACR damage index (without renal domain) and serum creatinine, and vascular injury was associated with serum creatinine in multivariable models. In Cox regression models adjusting for age, sex, race, serum creatinine, calendar year, and biopsy class, moderate/severe IFTA was associated with elevated ESRD (HRSD 5.18, 95% CI 2.53, 10.59) and death (HR 4.19, 95%CI 1.27, 13.81). After adjustment for age, sex and race, moderate/severe vascular injury was associated with ESRD (HRSD 2.13, 95% CI 1.21, 3.75) and but this relationship was not significant after adjustment for serum creatinine and calendar year. CONCLUSIONS: IFTA is a strong predictor of ESRD and death, even in proliferative nephritis, and a risk factor for poor outcomes independent of class. Vascular injury is a strong predictor of prognosis, but not independent of serum creatinine and class. The prognostic value of these lesions calls for consideration when determining treatment for lupus nephritis.


Subject(s)
Biopsy/methods , Kidney Tubules/pathology , Lupus Nephritis/pathology , Renal Artery/pathology , Adult , Atrophy/pathology , Disease Progression , Female , Fibrosis/pathology , Humans , Male , Retrospective Studies , Risk Factors
14.
Appl Environ Microbiol ; 68(1): 427-9, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11772657

ABSTRACT

Combinations of 10 Cryptosporidium parvum oocysts, with various ratios of genotype I to genotype II, were isolated and subjected to PCR-restriction fragment length polymorphism analysis. Amplification of both genotypes in these samples ranged from 31 to 74% and yielded no information about the genotype proportions. In addition, since both genotypes were not always detected, amplification of a single genotype is not conclusive evidence that the sample contains only a single genotype.


Subject(s)
Cryptosporidium parvum/classification , Cryptosporidium parvum/genetics , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Animals , Cryptosporidium parvum/growth & development , DNA, Ribosomal/analysis , Genotype , RNA, Ribosomal, 18S/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL