Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Affiliation country
Publication year range
1.
Chembiochem ; 24(16): e202300323, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37169724

ABSTRACT

Photodynamic therapy (PDT) is one common ROS-generating therapeutic method with high tumor selectivity and low side effects. But the GSH-upregulation often alleviates its therapeutic efficiency. Here, we proposed a new strategy of jointly depleting GSH to enhance the therapeutic effect of PDT by preparing a nanomicelle by self-assembly method from GSH-activated photosensitizer DMT, curcumin, and amphiphilic polymer TPGS.


Subject(s)
Curcumin , Nanoparticles , Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Neoplasms/drug therapy , Curcumin/pharmacology , Glutathione , Cell Line, Tumor
2.
Angew Chem Int Ed Engl ; 62(25): e202303470, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37069137

ABSTRACT

The development of aryl alkyl sulfides as dichotomous electrophiles for site-selective silylation via C-S bond cleavage has been achieved. Iron-catalyzed selective cleavage of C(aryl)-S bonds can occur in the presence of ß-diketimine ligands, and the cleavage of C(alkyl)-S bonds can be achieved by t-BuONa without the use of transition metals, resulting in the corresponding silylated products in moderate to excellent yields. Mechanistic studies suggest that Fe-Si species may undergo metathesis reactions during the cleavage of C(aryl)-S bonds, while silyl radicals are involved during the cleavage of C(alkyl)-S bonds.


Subject(s)
Sulfides , Transition Elements , Catalysis , Iron , Ligands
3.
Anal Chem ; 94(32): 11238-11247, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35926123

ABSTRACT

As a new form of regulated cell death, ferroptosis is closely related to various diseases. To interpret this biological behavior and monitor related pathological processes, it is necessary to develop appropriate detection strategies and tools. Considering that ferroptosis is featured with remarkable lipid peroxidation of various cell membranes, it is logical to detect membranes' structural and environmental changes for the direct assessment of ferroptosis. For this sake, we designed novel polarity-sensitive fluorescent probes Mem-C1C18 and Mem-C18C18, which have superior plasma membrane anchorage, high brightness, and sensitive responses to environmental polarity by changing their fluorescence lifetimes. Mem-C1C18 with much less tendency to aggregate than Mem-C18C18 outperformed the latter in high resolution fluorescence labeling of artificial vesicle membranes and plasma membranes of live cells. Thus, Mem-C1C18 was selected to monitor plasma membranes damaged along ferroptosis process for the first time, in combination with the technique of fluorescence lifetime imaging (FLIM). After treating HeLa cells with Erastin, a typical ferroptosis inducer, the mean fluorescence lifetime of Mem-C1C18 displayed a considerable increase from 3.00 to 4.93 ns, with a 64% increase (corresponding to the polarity parameter Δf increased from 0.213 to 0.232). Therefore, our idea to utilize a probe to quantitate the changes in polarity of plasma membranes proves to be an effective method in the evaluation of the ferroptosis process.


Subject(s)
Ferroptosis , Fluorescent Dyes/chemistry , HeLa Cells , Humans , Microscopy, Fluorescence/methods , Optical Imaging
4.
Sci Total Environ ; 905: 167090, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37716675

ABSTRACT

Understanding the sensitivity of vegetation growth and greenness to vegetation water content change is crucial for elucidating the mechanism of terrestrial ecosystems response to water availability change caused by climate change. Nevertheless, we still have limited knowledge of such aspects in urban in different climatic contexts under the influence of human activities. In this study, we employed Google Earth Engine (GEE), remote sensing satellite imagery, meteorological data, and Vegetation Photosynthesis Model (VPM) to explore the spatiotemporal pattern of vegetation growth and greenness sensitivity to vegetation water content in three megacities (Beijing, Shanghai, and Guangzhou) located in eastern China from 2001 to 2020. We found a significant increase (slope > 0, p < 0.05) in the sensitivity of urban vegetation growth and greenness to vegetation water content (SLSWI). This indicates the increasing dependence of urban vegetation ecosystems on vegetation water resources. Moreover, evident spatial heterogeneity was observed in both SLSWI and the trends of SLSWI, and spatial heterogeneity in SLSWI and the trends of SLSWI was also present among identical vegetation types within the same city. Additionally, both SLSWI of vegetation growth and greenness and the trend of SLSWI showed obvious spatial distribution differences (e.g., standard deviations of trends in SLSWI of open evergreen needle-leaved forest of GPP is 14.36 × 10-2 and standard deviations of trends in SLSWI of open evergreen needle-leaved forest of EVI is 10.16 × 10-2), closely associated with factors such as vegetation type, climatic conditions, and anthropogenic influences.


Subject(s)
Ecosystem , Water , Humans , Cities , China , Forests
5.
Sci Total Environ ; 829: 154710, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35331766

ABSTRACT

As remarkable human-induced temperature anomalies on the land surface, variations of urban heat island (UHI) and its driving factors have been investigated in numerous studies. However, few studies discussed the spatiotemporal heterogeneity of the driving forces exerted by land surface energy fluxes, i.e., net radiation, sensible heat, latent heat and heat storage, on UHI behaviors at large scale and long term. In this study, a comprehensive application of multisource datasets and statistical methods have been implemented based on land surface energy balance theory, the spatiotemporal variations of surface UHI intensity (urban-rural temperature difference) and changes of their driving forces have been quantified. The results demonstrate the dynamics of UHI intensity in 32 major cities of China from 2003 to 2017 are generally coherent with the common perception, the overall surface UHI intensity is 4.57 K higher in summer than in winter. The spatial variations of the fluxes that alter UHI intensity can be largely attributed to the varied energy interactions between vegetated/paved surface and atmosphere and the differences of background temperature and precipitation, the contribution of latent heat to UHI changes declines nearly 40% from semiarid/arid climate at the north to subtropical humid climate at the south, while the contributions of other fluxes are stable. The temporal changes of the effect of these fluxes, however, imply more complex mechanisms. The contributions of sensible heat and latent heat to UHI intensity variations are three times and eight times larger in the warm season than in the cold season respectively, indicating the influence of seasonality of background temperature, precipitation and vegetation. The low contributions of these fluxes in the cold season also suggest the significant effect of other driving forces such as anthropogenic heat, especially in semiarid/semihumid climate zones. This study highlights the temporal shifts of major driving forces of UHI intensity, the mitigation tactics for UHI in different cities and seasons should be customized for better validity.


Subject(s)
Environmental Monitoring , Hot Temperature , Cities , Desert Climate , Humans , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL