Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
BMC Biol ; 21(1): 303, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38129834

ABSTRACT

BACKGROUND: Identifying the key factors that underlie complex traits during domestication is a great challenge for evolutionary and biological studies. In addition to the protein-coding region differences caused by variants, a large number of variants are located in the noncoding regions containing multiple types of regulatory elements. However, the roles of accumulated variants in gene regulatory elements during duck domestication and economic trait improvement are poorly understood. RESULTS: We constructed a genomics, transcriptomics, and epigenomics map of the duck genome and assessed the evolutionary forces that have been in play across the whole genome during domestication. In total, 304 (42.94%) gene promoters have been specifically selected in Pekin duck among all selected genes. Joint multi-omics analysis reveals that 218 genes (72.01%) with selected promoters are located in open and active chromatin, and 267 genes (87.83%) with selected promoters were highly and differentially expressed in domestic trait-related tissues. One important candidate gene ELOVL3, with a strong signature of differentiation on the core promoter region, is known to regulate fatty acid elongation. Functional experiments showed that the nearly fixed variants in the top selected ELOVL3 promoter in Pekin duck decreased binding ability with HLF and increased gene expression, with the overexpression of ELOVL3 able to increase lipid deposition and unsaturated fatty acid enrichment. CONCLUSIONS: This study presents genome resequencing, RNA-Seq, Hi-C, and ATAC-Seq data of mallard and Pekin duck, showing that selection of the gene promoter region plays an important role in gene expression and phenotypic changes during domestication and highlights that the variants of the ELOVL3 promoter may have multiple effects on fat and long-chain fatty acid content in ducks.


Subject(s)
Domestication , Ducks , Animals , Ducks/genetics , Ducks/metabolism , Multifactorial Inheritance , Promoter Regions, Genetic , Fatty Acids/metabolism
2.
Anim Genet ; 54(2): 211-215, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36593642

ABSTRACT

Angel wing is a developmental wing deformity that can influence breeding and reproduction in the commercial duck industry. The nutrition foundation of angel wing trait was initially explored, but the genetic basic remains poorly understood. In this study, we identified candidate genes and single-nucleotide polymorphisms (SNPs) associated with angel wing trait in Pekin ducks using a genome-wide association study (GWAS) and selective sweep analysis. The GWAS results showed that nine SNPs across five chromosomes were significantly correlated with the angel wing trait. In total, 468 selection signals were shown between the angel wing ducks and normal ducks, and these signals harbored 154 genes, which were enriched in the nervous system and metabolism. This study provides the new insights into the genetic factors that may influence duck angel wing.


Subject(s)
Ducks , Genome-Wide Association Study , Animals , Ducks/genetics , Ducks/metabolism , Genome-Wide Association Study/veterinary , Phenotype
3.
Genomics ; 114(6): 110518, 2022 11.
Article in English | MEDLINE | ID: mdl-36347326

ABSTRACT

The Muscovy duck (Cairina moschata) is an economically important poultry species, which is susceptible to fatty liver. Thus, the Muscovy duck may serve as an excellent candidate animal model of non-alcoholic fatty liver disease. However, the mechanisms underlying fatty liver development in this species are poorly understood. In this study, we report a chromosome-level genome assembly of the Muscovy duck, with a contig N50 of 11.8 Mb and scaffold N50 of 83.16 Mb. The susceptibility of Muscovy duck to fatty liver was mainly attributed to weak lipid catabolism capabilities (fatty acid ß-oxidation and lipolysis). Furthermore, conserved noncoding elements (CNEs) showing accelerated evolution contributed to fatty liver formation by down-regulating the expression of genes involved in hepatic lipid catabolism. We propose that the susceptibility of Muscovy duck to fatty liver is an evolutionary by-product. In conclusion, this study revealed the potential mechanisms underlying the susceptibility of Muscovy duck to fatty liver.


Subject(s)
Fatty Liver , Humans , Fatty Liver/genetics , Fatty Liver/veterinary , Chromosomes , Lipids
4.
BMC Genomics ; 22(1): 334, 2021 May 08.
Article in English | MEDLINE | ID: mdl-33964893

ABSTRACT

BACKGROUND: Feeding behavior traits are an essential part of livestock production. However, the genetic base of feeding behavior traits remains unclear in Pekin ducks. This study aimed to determine novel loci related to feeding behavior in Pekin ducks. RESULTS: In this study, the feeding information of 540 Pekin ducks was recorded, and individual genotype was evaluated using genotyping-by-sequencing methods. Genome-wide association analysis (GWAS) was conducted for feeding behavior traits. Overall, thirty significant (P-value < 4.74E-06) SNPs for feeding behavior traits were discovered, and four of them reached the genome-wide significance level (P-value < 2.37E-07). One genome-wide significance locus associated with daily meal times was located in a 122.25 Mb region on chromosome 2, which was within the intron of gene ubiquitin-conjugating enzyme E2 E2 (UBE2E2), and could explain 2.64% of the phenotypic variation. This locus was also significantly associated with meal feed intake, and explained 2.72% of this phenotypic variation. CONCLUSIONS: This study is the first GWAS for feeding behavior traits in ducks. Our results provide a list of candidate genes associated with feeding behavior, and also help to better understand the genetic mechanisms of feeding behavior patterns in ducks.


Subject(s)
Ducks , Genome-Wide Association Study , Animals , Ducks/genetics , Feeding Behavior , Genotype , Phenotype
5.
Genomics ; 112(1): 243-251, 2020 01.
Article in English | MEDLINE | ID: mdl-30772430

ABSTRACT

The avian embryo develops within a specialized biological container (eggshell) that contains crucial nutritional compartments (albumen, yolk). We analyzed the transcriptome of ovary and three segments of oviduct, including magnum, isthmus and uterus in the chicken during egg formation. RNA-Seq libraries (42 in total) for ovary and three different parts of the oviduct were sequenced for two different phases of egg formation. We obtained 8365 novel transcripts with an mRNA length longer than 200 bp; of these, 6832 were long intergenic non-coding RNA transcripts. We identified 547 differentially expressed genes in magnum (actively secreting albumen versus inactive) and 585 in uterus (active eggshell calcification versus quiescent). By combining QTL, transcriptome and proteome data, we obtained high quality gene lists for chicken egg formation. This is the first study to describe the ovary and oviduct transcriptomes by mRNA sequencing, and to elucidate the global repertoire of functional genes involved in egg formation.


Subject(s)
Chickens/genetics , Ovary/metabolism , Oviducts/metabolism , Ovum/physiology , Transcriptome , Animals , Chick Embryo , Chickens/metabolism , Female , Molecular Sequence Annotation , RNA, Messenger/chemistry , RNA, Messenger/metabolism , RNA-Seq , Uterus/metabolism
6.
Genomics ; 112(6): 5021-5028, 2020 11.
Article in English | MEDLINE | ID: mdl-32927007

ABSTRACT

Feeding and bone traits are vital for breeding and reproduction in the commercial duck industry. In this study, we performed a genome-wide association study for feeding and bone traits in a population of 540 lean-type Pekin ducks, followed by genotyping-by-sequencing procedures. The genetic parameters of feeding and bone traits were also estimated using genomic information. In total, seventy-eight significant SNPs were determined, and eleven of them reached the genome-wide significant level for 7 traits except for body weight at 42-day old. A peak of genome-wide significant SNPs was detected on chromosome 2 for feed conversion ratio (P-value = 7.46E-11), and the top SNP (P-value = 2.23E-08) for bone-breaking strength was also obtained in the upstream of gene RAPGEF5. This study provided a list of novel markers and candidate genes associated with feeding and bone traits in Pekin ducks, which could contribute to the genetic selection in duck breeding.


Subject(s)
Bone and Bones , Ducks/genetics , Animals , Body Weight , Bone Density , Eating/genetics , Genome-Wide Association Study , Genotype , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci
7.
Genomics ; 112(5): 3687-3695, 2020 09.
Article in English | MEDLINE | ID: mdl-32334113

ABSTRACT

Duck egg quality improvement is an essential target for Asian poultry breeding. In total, 15 RNA-Seq libraries (magnum, isthmus, and uterus at two different physiological states) were sequenced from 48 weeks old Pekin ducks. De novo assembly and annotation methods were utilized to generate new reference transcripts. Our results revealed that 1264 and 2517 genes were differentially expressed in magnum and uterus in the presence versus absence of an egg, respectively. We identified 1089 genes that were differentially expressed in isthmus compared to uterus (in both presence and absence of a calcifying egg). We observed that 11 common DEGs were detected in the egg white proteomes of 6 different bird species including domestic Chicken, Duck, Goose, Turkey, Quail, and Pigeon. On the other hand, only one of the top five most highly expressed genes in duck isthmus was in this category for the chicken isthmus (SPINK7). Among the large number of DEGs during eggshell formation in ducks, only 41 genes showed a similar differential expression pattern in both duck and chicken. By combining chicken QTL database, chicken oviduct transcriptome and egg proteome data for five bird species, we have obtained high-quality gene lists for egg formation. This is the first study to elucidate the transcriptomic changes in different duck oviduct segments during egg formation, and to integrate QTL, proteome and transcriptome data to probe the functional genes associated with albumen secretion and eggshell mineralization.


Subject(s)
Albumins/biosynthesis , Egg Shell/metabolism , Proteome , Quantitative Trait Loci , Transcriptome , Animals , Ducks
8.
Genomics ; 112(1): 379-387, 2020 01.
Article in English | MEDLINE | ID: mdl-30818062

ABSTRACT

Blood components are considered to reflect nutrient metabolism and immune activity in both humans and animals. In this study, we measured 12 blood components in Pekin ducks and performed genome-wide association analysis to identify the QTLs (quantitative trait locus) using a genotyping-by-sequencing strategy. A total of 54 QTLs were identified for blood components. One genome-wide significant QTL for alkaline phosphatase was identified within the intron-region of the OTOG gene (P = 1.31E-07). Moreover, 21 genome-wide significant SNPs for the level of serum cholinesterase were identified on six different scaffolds. In addition, for serum calcium, one genome-wide significant QTL was identified in the upstream region of gene RAB11B. These results provide new markers for functional studies in Pekin ducks, and several candidate genes were identified, which may provide additional insights into specific mechanisms for blood metabolism in ducks and their potential application for duck breeding programs.


Subject(s)
Ducks/blood , Ducks/genetics , Alkaline Phosphatase/blood , Animals , Biomarkers/blood , Calcium/blood , Cholinesterases/blood , Female , Genome-Wide Association Study , Inheritance Patterns , Male , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci
9.
Proteomics ; 19(11): e1900011, 2019 06.
Article in English | MEDLINE | ID: mdl-30950572

ABSTRACT

The avian egg is a valuable model for the calcitic biomineralization process as it is the fastest calcification process occurring in nature and is a clear example of biomineralization. In this study, iTRAQ MS/MS is used to detect and study for the first time: 1) the overall duck eggshell proteome; 2) regional differences in the proteome between the inner and outer portions of the duck eggshell. The new reference protein datasets allow us to identify 179 more eggshell proteins than solely using the current release of Ensembl duck annotations. In total, 484 proteins are identified in the entire duck eggshell proteome. Twenty-eight novel proteins of unknown function that are involved in eggshell formation are also identified. Among the identified eggshell proteins, 54 proteins show differential abundances between the inner, partially mineralized eggshell (obtained 16 h after ovulation) compared to the overall complete eggshell (normally expulsed eggshell). At least 64 of the abundant matrix proteins are common to eggshell of 4 different domesticated bird species (chicken, duck, quail, turkey) and zebra finch. This study provides a new resource for avian eggshell proteomics, and augments the inventory of eggshell matrix proteins that will lead to a deeper understanding of calcitic biomineralization.


Subject(s)
Avian Proteins/analysis , Ducks , Egg Shell/chemistry , Animals , Avian Proteins/metabolism , Biomineralization , Ducks/growth & development , Egg Shell/growth & development , Proteomics , Tandem Mass Spectrometry
10.
BMC Genomics ; 20(1): 1, 2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30606130

ABSTRACT

BACKGROUND: Pekin duck products have become popular in Asia over recent decades and account for an increasing market share. However, the genetic mechanisms affecting carcass growth in Pekin ducks remain unknown. This study aimed to identify quantitative trait loci affecting body size and carcass yields in Pekin ducks. RESULTS: We measured 18 carcass traits in 639 Pekin ducks and performed genotyping using genotyping-by-sequencing (GBS). Loci-based association analysis detected 37 significant loci for the 17 traits. Thirty-seven identified candidate genes were involved in many biological processes. One single nucleotide polymorphism (SNP) (Chr1_140105435 A > T) located in the intron of the ATPase phospholipid transporting 11A gene (ATP11A) attained genome-wide significance associated with five weight traits. Eight SNPs were significantly associated with three body size traits, including the candidate gene plexin domain containing 2 (PLXDC2) associated with breast width and tensin 3 (TNS3) associated with fossil bone length. Only two SNPs were significantly associated with foot weight and four SNPs were significantly associated with heart weight. In the gene-based analysis, three genes (LOC101791418, TUBGCP3 (encoding tubulin gamma complex-associated protein 3), and ATP11A) were associated with four traits (42-day body weight, eviscerated weight, half-eviscerated weight, and leg muscle weight percentage). However, no loci were significantly associated with leg muscle weight in this study. CONCLUSIONS: The novel results of this study improve our understanding of the genetic mechanisms regulating body growth in ducks and thus provide a genetic basis for breeding programs aimed at maximizing the economic potential of Pekin ducks.


Subject(s)
Body Size/genetics , Ducks/genetics , Genome-Wide Association Study , Quantitative Trait Loci/genetics , Animals , Body Weight/genetics , Breeding , Genotype , Meat , Phenotype , Polymorphism, Single Nucleotide/genetics
11.
BMC Genomics ; 20(1): 4, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30611188

ABSTRACT

BACKGROUND: Argument remains as to whether birds have lost genes compared with mammals and non-avian vertebrates during speciation. High quality-reference gene sets are necessary for precisely evaluating gene gain and loss. It is essential to explore new reference transcripts from large-scale de novo assembled transcriptomes to recover the potential hidden genes in avian genomes. RESULTS: We explored 196 high quality transcriptomic datasets from five bird species to reconstruct transcripts for the purpose of discovering potential hidden genes in the avian genomes. We constructed a relatively complete and high-quality bird transcript database (1,623,045 transcripts after quality control in five birds) from a large amount of avian transcriptomic data, and found most of the presumed missing genes (83.2%) could be recovered in at least one bird species. Most of these genes have been identified for the first time in birds. Our results demonstrate that 67.94% genes have GC content over 50%, while 2.91% genes are AT-rich (AT% > 60%). In our results, 239 (53.59%) genes had a tissue-specific expression index of more than 0.9 in chicken. The missing genes also have lower Ka/Ks values than average (genome-wide: Ka/Ks = 0.99; missing gene: Ka/Ks = 0.90; t-test = 1.25E-14). Among all presumed missing genes, there were 135 for which we did not find any meaningful orthologues in any of the 5 species studied. CONCLUSION: Insufficient reference genome quality is the major reason for wrongly inferring missing genes in birds. Those presumably missing genes often have a very strong tissue-specific expression pattern. We show multi-tissue transcriptomic data from various species are necessary for inferring gene family evolution for species with only draft reference genomes.


Subject(s)
Birds/genetics , Evolution, Molecular , Genome/genetics , Transcriptome/genetics , Animals , Base Composition , Genomics , Mammals/genetics , Phylogeny , Vertebrates/genetics
13.
Mol Phylogenet Evol ; 117: 2-9, 2017 12.
Article in English | MEDLINE | ID: mdl-28916155

ABSTRACT

Anthropoid primates arose during the Eocene approximately 55 million years ago (mya), and extant anthropoids share a most recent common ancestor ∼40mya. Paleontology has been very successful at describing the morphological phenotypes of extinct anthropoids. Less well understood is the molecular biology of these extinct species as well as the phenotypic consequences of evolutionary variation in their genomes. Here we resurrect the most recent common ancestral anthropoid estrogen receptor ß gene (ESR2) and demonstrate that the function of this ancestral estrogen receptor has been maintained during human descent but was altered during early New World monkey (NWM) evolution by becoming a more potent transcriptional activator. We tested hypotheses of adaptive evolution in the protein coding sequences of ESR2, and determined that ESR2 evolved via episodic positive selection on the NWM stem lineage. We separately co-transfected ESR2 constructs for human, NWM, and the anthropoid ancestor along with reporter gene vectors and performed hormone binding dose response experiments that measure transactivation activity. We found the transactivation potentials of the ancestral and human sequences to be significantly lower (p<0.0001 in each comparison) than that of the NWM when treated with estradiol, the most prevalent estrogen. We conclude the difference in fold activation is due to positive selection in the NWM ERß ligand binding domain. Our study validates inferential methods for detecting adaptive evolution that predict functional consequences of nucleotide substitutions and points a way toward examining the functional consequences of positive Darwinian selection.


Subject(s)
Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Evolution, Molecular , Platyrrhini/genetics , Selection, Genetic , Animals , Humans , Open Reading Frames/genetics , Phylogeny , Transcription, Genetic
14.
Anim Genet ; 46(6): 636-45, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26545935

ABSTRACT

Breast muscle yield and feed conversion efficiency are the major breeding aims in duck breeding. Understanding the role of specific transcripts in the muscle and small intestine might lead to the elucidation of interrelated biological processes. In this study, we obtained jejunum and breast muscle samples from two strains of Peking ducks that were sorted by feed conversion ratio (FCR) and breast muscle percentage into two-tailed populations. Ten RNA-Seq libraries were developed from the pooled samples and sequenced using the Hiseq2000 platform. We created a reference duck transcript database using de novo assembly methods, which included 16 663 irredundant contigs with an N50 length of 1530 bp. This new duck reference cDNA dataset significantly improved the mapping rate for RNA-Seq data, from 50% to 70%. Mapping and annotation were followed by Gene Ontology analysis, which showed that numerous genes were differentially expressed between the low and high FCR groups. The differentially expressed genes in the jejunum were enriched in biological processes related to immune response and immune response activation, whereas those in the breast muscle were significantly enriched in biological processes related to muscle cell differentiation and organ development. We identified new candidate genes, that is, PCK1, for improving the FCR and breast muscle yield of ducks and obtained much better reference duck transcripts. This study suggested that de novo assembly is essential when applying transcriptome analysis to a species with an incomplete genome.


Subject(s)
Ducks/genetics , Jejunum/growth & development , Muscle, Skeletal/growth & development , Transcriptome , Animal Feed , Animals , Animals, Domestic/genetics , Animals, Domestic/growth & development , Databases, Genetic , Ducks/growth & development , Male , Meat
15.
BMC Genet ; 14: 90, 2013 Sep 24.
Article in English | MEDLINE | ID: mdl-24059973

ABSTRACT

BACKGROUND: Eggshell quality is important for the poultry industry. During eggshell formation a mass of inorganic minerals is deposited. The Sodium Channel (SCNN1) gene family plays an essential role in cation transportation. The objective of this study was to investigate the pattern of expression of members of the SCNN1 gene family, their variation and their effects on eggshell quality. RESULT: The highest expression of SCNN1a, SCNN1b, and SCNN1g genes were in the active uterus during eggshell mineralization, while SCNN1d showed its highest expression level in the quiescent uterus (no egg present). Nineteen candidate SNPs from the four genes were genotyped in a population of 338 White Leghorn layers. Association analysis between SNPs (haplotypes/diplotypes) and eggshell traits was performed. Among seven significant SNPs, five SNPs were associated with eggshell strength, eggshell thickness, eggshell percentage or/and egg weight, while the other two SNPs within SCNN1d were only associated with eggshell percentage. These SNPs had a 0.25-6.99% contribution to phenotypic variance, depending on the trait. In haplotype analysis, SCNN1b and SCNN1d were associated with egg weight. The SCNN1b and SCNN1g were significantly associated with eggshell weight while only SCNN1g explained 2.04% of phenotypic variance. All the alleles of the members of SCNN1 gene family were associated with eggshell percentage and eggshell thickness, and others members had an association with eggshell strength except for SCNN1a. The contribution of different haplotypes of the SCNN1 gene family to eggshell phenotypic variance ranged from 0.09% to 5.74%. CONCLUSIONS: Our study indicated that the SCNN1 gene family showed tissue expression specificity and was significantly associated with eggshell traits in chicken. This study provides evidence that genetic variation in members of the sodium channel can influence eggshell quality.


Subject(s)
Chickens/genetics , Chickens/metabolism , Egg Shell/chemistry , Epithelial Sodium Channels/genetics , Gene Expression Regulation , Uterus/metabolism , Animals , Egg Shell/metabolism , Epithelial Sodium Channels/metabolism , Female , Genotype , Haplotypes , Phenotype , Polymorphism, Single Nucleotide
16.
Poult Sci ; 102(3): 102436, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36623335

ABSTRACT

The microbiota has received plenty of attention in recent years due to its influence on host health and productivity. The striped eggs have reduced hatching performance and resulted in economic loss. The reasons are still unknown. Microbiota is one of the potentially important factors contributing to striped egg formation. This study investigates the relationship between the microbiota and striped eggs. The litter samples, feed samples, and cloacal swab samples of female ducks that produce striped eggs and normal eggs were performed for microbial diversity and composition using 16S rRNA sequencing. The results showed that there was no significant difference between feed microbiota and cloacal swab microbiota by alpha diversity, whereas, the number of microorganisms in the litter samples of female ducks that produced striped eggs was less than those of female ducks with normal eggs. There were compositional differences in litter microbiota of female ducks between the striped egg and the normal eggs. Among them, the abundance of Staphylococcus, Corynebacterium, and Brevibacterium in the litter of female ducks that produced striped eggs was significantly higher than that produced normal eggs. And these differential bacteria maybe affect the health of female ducks and cause abnormalities in the formation process of duck eggs. Therefore, the reduction of harmful bacteria may protect the reproductive health of female ducks and decrease the proportion of striped eggs. It provides an important reference to explore why female ducks produce striped eggs.


Subject(s)
Ducks , Microbiota , Animals , Female , Ducks/genetics , RNA, Ribosomal, 16S/genetics , Chickens/genetics , Ovum , Bacteria/genetics , Eggs/analysis
17.
Commun Biol ; 6(1): 1233, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38057566

ABSTRACT

A set of high-quality pan-genomes would help identify important genes that are still hidden/incomplete in bird reference genomes. In an attempt to address these issues, we have assembled a de novo chromosome-level reference genome of the Silkie (Gallus gallus domesticus), which is an important avian model for unique traits, like fibromelanosis, with unclear genetic foundation. This Silkie genome includes the complete genomic sequences of well-known, but unresolved, evolutionarily, endocrinologically, and immunologically important genes, including leptin, ovocleidin-17, and tumor-necrosis factor-α. The gap-less and manually annotated MHC (major histocompatibility complex) region possesses 38 recently identified genes, with differentially regulated genes recovered in response to pathogen challenges. We also provide whole-genome methylation and genetic variation maps, and resolve a complex genetic region that may contribute to fibromelanosis in these animals. Finally, we experimentally show leptin binding to the identified leptin receptor in chicken, confirming an active leptin ligand-receptor system. The Silkie genome assembly not only provides a rich data resource for avian genome studies, but also lays a foundation for further functional validation of resolved genes.


Subject(s)
Chickens , Leptin , Animals , Chickens/genetics , Leptin/genetics , Genome , Genomics , Chromosomes
18.
Mol Phylogenet Evol ; 62(1): 214-23, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21985965

ABSTRACT

Previous phylogenetic analyses of the melanogaster species group have led to conflicting hypotheses concerning their relationship; therefore the addition of new sequence data is necessary to discover the phylogeny of this species group. Here we present new data derived from 17 genes and representing 48 species to reconstruct the phylogeny of the melanogaster group. A variety of statistical tests, as well as maximum likelihood mapping analysis, were performed to estimate data quality, suggesting that all genes had a high degree of contribution to resolve the phylogeny. Individual locus was analyzed using maximum likelihood (ML), and the concatenated dataset (12,988 bp) were analyzed using partitioned maximum likelihood (ML) and Bayesian analyses. Separated analysis produced various phylogenetic relationships, however, phylogenetic topologies from ML and Bayesian analysis based on concatenated dataset, at the subgroup level, were completely identical to each other with high levels of support. Our results recovered three major clades: the ananassae subgroup, followed by the montium subgroup, the melanogaster subgroup and the oriental subgroups form the third monophyletic clade, in which melanogaster (takahashii, suzukii) forms one subclade and ficusphila [eugracilis (elegans, rhopaloa)] forms another. However, more data are necessary to determine the phylogenetic position of Drosophila lucipennis which proved difficult to place.


Subject(s)
Drosophila melanogaster/classification , Drosophila melanogaster/genetics , Phylogeny , Animals , Bayes Theorem , Drosophila Proteins/genetics , Evolution, Molecular , Genes, Mitochondrial , Likelihood Functions , Models, Genetic , RNA, Ribosomal, 28S/genetics , Sequence Alignment
19.
Proc Natl Acad Sci U S A ; 106(49): 20824-9, 2009 Dec 08.
Article in English | MEDLINE | ID: mdl-19926857

ABSTRACT

Specific sets of brain-expressed genes, such as aerobic energy metabolism genes, evolved adaptively in the ancestry of humans and may have evolved adaptively in the ancestry of other large-brained mammals. The recent addition of genomes from two afrotherians (elephant and tenrec) to the expanding set of publically available sequenced mammalian genomes provided an opportunity to test this hypothesis. Elephants resemble humans by having large brains and long life spans; tenrecs, in contrast, have small brains and short life spans. Thus, we investigated whether the phylogenomic patterns of adaptive evolution are more similar between elephant and human than between either elephant and tenrec lineages or human and mouse lineages, and whether aerobic energy metabolism genes are especially well represented in the elephant and human patterns. Our analyses encompassed approximately 6,000 genes in each of these lineages with each gene yielding extensive coding sequence matches in interordinal comparisons. Each gene's nonsynonymous and synonymous nucleotide substitution rates and dN/dS ratios were determined. Then, from gene ontology information on genes with the higher dN/dS ratios, we identified the more prevalent sets of genes that belong to specific functional categories and that evolved adaptively. Elephant and human lineages showed much slower nucleotide substitution rates than tenrec and mouse lineages but more adaptively evolved genes. In correlation with absolute brain size and brain oxygen consumption being largest in elephants and next largest in humans, adaptively evolved aerobic energy metabolism genes were most evident in the elephant lineage and next most evident in the human lineage.


Subject(s)
Adaptation, Physiological/genetics , Elephants/genetics , Evolution, Molecular , Genome/genetics , Phylogeny , Animals , DNA, Mitochondrial/genetics , Fossils , Humans , Open Reading Frames/genetics , Phenotype
20.
J Hum Evol ; 61(3): 295-305, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21620437

ABSTRACT

The phylogenetic position of tarsiers within the primates has been a controversial subject for over a century. Despite numerous morphological and molecular studies, there has been weak support for grouping tarsiers with either strepsirrhine primates in a prosimian clade or with anthropoids in a haplorrhine clade. Here, we take advantage of the recently released whole genome assembly of the Philippine tarsier, Tarsius syrichta, in order to infer the phylogenetic relationship of Tarsius within the order Primates. We also present estimates of divergence times within the primates. Using a 1.26 million base pair multiple sequence alignment derived from 1078 orthologous genes, we provide overwhelming statistical support for the presence of a haplorrhine clade. We also present divergence date estimates using local relaxed molecular clock methods. The estimated time of the most recent common ancestor of extant Primates ranged from 64.9 Ma to 72.6 Ma, and haplorrhines were estimated to have a most recent common ancestor between 58.9 Ma and 68.6 Ma. Examination of rates of nucleotide substitution in the three major extant primate clades show that anthropoids have a slower substitution rate than either strepsirrhines or tarsiers. Our results provide the framework on which primate morphological, reproductive, and genomic features can be reconstructed in the broader context of mammalian phylogeny.


Subject(s)
Evolution, Molecular , Genome , Strepsirhini/classification , Strepsirhini/genetics , Tarsiidae/classification , Tarsiidae/genetics , Animals , Bayes Theorem , Databases, Genetic , Humans , Likelihood Functions , Phylogeny , Primates/classification , Primates/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL