Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L434-L446, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37642674

ABSTRACT

Bronchiolitis obliterans (BO) is a devastating lung disease that can develop following inhalation exposure to certain chemicals. Diacetyl (DA) is one chemical commonly associated with BO development when inhaled at occupational levels. Previous studies in rats have shown that repetitive DA vapor exposures increased lung CD4+CD25+ T cells and bronchoalveolar (BAL) interleukin-17A (IL-17A) concentrations concurrent with the development of airway remodeling. We hypothesized that IL-17A neutralization would attenuate the severity of airway remodeling after repetitive DA vapor exposures. Sprague-Dawley rats were exposed to 200 parts-per-million DA vapor or filtered air (RA) for 6 h/day × 5 days and monitored for 2 wk postexposure. Treatment with IL-17A neutralization (αIL-17A) or IgG (control) began immediately following exposures and continued twice weekly until study's end. Lungs were harvested for histology, flow cytometry, and BAL analyses. Survival, oxygen saturations, and percent weight change decreased significantly in DA-exposed versus RA-exposed rats, but did not differ significantly between DA + αIL-17A versus DA + IgG. Similarly, the number nor severity of airway lesions did not differ significantly between DA + αIL-17A versus DA + IgG rats despite the percentage of lung regulatory T cells increasing with decreased BAL IL-17A concentrations. Ashcroft scoring of the distal lung parenchyma suggested worse parenchymal remodeling in DA + αIL-17A versus DA + IgG rats with increased expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), and nuclear factor-kappa B (NF-κB). Collectively, IL-17A neutralization in DA-exposed rats failed to attenuate airway remodeling with increased expression of pro-inflammatory cytokines TNF-α, IL-1ß, and NF-κB.NEW & NOTEWORTHY Interleukin-17A (IL-17A) neutralization has shown benefit previously in preclinical models of transplant-associated bronchiolitis obliterans (BO), yet it remains unknown whether IL-17A neutralization has similar benefit for other forms of BO. Here, IL-17A neutralization fails to prevent severe airway remodeling in rats exposed repetitively to the flavoring chemical diacetyl, and instead, promotes a proinflammatory microenvironment with increased expression of TNF-α, IL-1ß, and NF-κB within the lung.


Subject(s)
Bronchiolitis Obliterans , Interleukin-17 , Rats , Animals , Diacetyl , Airway Remodeling , NF-kappa B , Tumor Necrosis Factor-alpha , Rats, Sprague-Dawley , Bronchiolitis Obliterans/chemically induced , Lung , Immunoglobulin G
2.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L571-L583, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36881561

ABSTRACT

E-cigarette liquids are complex mixtures of chemicals consisting of humectants, such as propylene glycol (PG) and vegetable glycerin (VG), with nicotine or flavorings added. Published literature emphasizes the toxicity of e-cigarette aerosols with flavorings whereas much less attention has been given to the biologic effects of humectants. The purpose of the current study was to provide a comprehensive view of the acute biologic effects of e-cigarette aerosols on rat bronchoalveolar lavage (BAL) using mass spectrometry-based global proteomics. Sprague-Dawley rats were exposed to e-cigarette aerosol for 3 h/day for three consecutive days. Groups included: PG/VG alone, PG/VG + 2.5% nicotine (N), or PG/VG + N + 3.3% vanillin (V). Right lung lobes were lavaged for BAL and supernatants prepared for proteomics. Extracellular BAL S100A9 concentrations and BAL cell staining for citrullinated histone H3 (citH3) were also performed. From global proteomics, ∼2,100 proteins were identified from rat BAL. The greatest change in number of BAL proteins occurred with PG/VG exposures alone compared with controls with biological pathways enriched for acute phase responses, extracellular trap formation, and coagulation. Extracellular BAL S100A9 concentrations and the number of citH3 + BAL cells also increased significantly in PG/VG and PG/VG + 2.5% N. In contrast to PG/VG or PG/VG + N, the addition of vanillin to PG/VG + N increased BAL neutrophilia and downregulated lipid transport proteins. In summary, global proteomics support e-cigarette aerosol exposures to PG/VG alone as having a significant biologic effect on the lung independent of nicotine or flavoring with increased markers of extracellular trap formation.


Subject(s)
Biological Products , Electronic Nicotine Delivery Systems , Rats , Animals , Nicotine , Proteome , Hygroscopic Agents , Rats, Sprague-Dawley , Propylene Glycol/pharmacology , Glycerol/pharmacology , Aerosols , Histones , Flavoring Agents , Bronchoalveolar Lavage
3.
Arch Toxicol ; 95(7): 2469-2483, 2021 07.
Article in English | MEDLINE | ID: mdl-34031698

ABSTRACT

Bronchiolitis obliterans (BO) is a devastating lung disease seen commonly after lung transplant, following severe respiratory tract infection or chemical inhalation exposure. Diacetyl (DA; 2,3-butanedione) is a highly reactive alpha-diketone known to cause BO when inhaled, however, the mechanisms of how inhalation exposure leads to BO development remains poorly understood. In the current work, we combined two clinically relevant models for studying the pathogenesis of DA-induced BO: (1) an in vivo rat model of repetitive DA vapor exposures with recovery and (2) an in vitro model of primary human airway epithelial cells exposed to pure DA vapors. Rats exposed to 5 consecutive days 200 parts-per-million DA 6 h per day had worsening survival, persistent hypoxemia, poor weight gain, and histologic evidence of BO 14 days after DA exposure cessation. At the end of exposure, increased expression of the ubiquitin stress protein ubiquitin-C accumulated within DA-exposed rat lung homogenates and localized primarily to the airway epithelium, the primary site of BO development. Lung proteasome activity increased concurrently with ubiquitin-C expression after DA exposure, supportive of significant proteasome stress. In primary human airway cultures, global proteomics identified 519 significantly modified proteins in DA-exposed samples relative to controls with common pathways of the ubiquitin proteasome system, endosomal reticulum transport, and response to unfolded protein pathways being upregulated and cell-cell adhesion and oxidation-reduction pathways being downregulated. Collectively, these two models suggest that diacetyl inhalation exposure causes abundant protein damage and subsequent ubiquitin proteasome stress prior to the development of chemical-induced BO pathology.


Subject(s)
Bronchiolitis Obliterans , Diacetyl , Animals , Bronchiolitis Obliterans/chemically induced , Bronchiolitis Obliterans/metabolism , Bronchiolitis Obliterans/pathology , Diacetyl/metabolism , Diacetyl/toxicity , Flavoring Agents/toxicity , Proteasome Endopeptidase Complex/metabolism , Rats , Respiratory Mucosa/metabolism , Ubiquitin/metabolism
4.
Metab Eng ; 42: 134-144, 2017 07.
Article in English | MEDLINE | ID: mdl-28625755

ABSTRACT

A multilevel approach was implemented in Saccharomyces cerevisiae to optimize the precursor module of the aromatic amino acid biosynthesis pathway, which is a rich resource for synthesizing a great variety of chemicals ranging from polymer precursor, to nutraceuticals and pain-relief drugs. To facilitate the discovery of novel targets to enhance the pathway flux, we incorporated the computational tool YEASTRACT for predicting novel transcriptional repressors and OptForce strain-design for identifying non-intuitive pathway interventions. The multilevel approach consisted of (i) relieving the pathway from strong transcriptional repression, (ii) removing competing pathways to ensure high carbon capture, and (iii) rewiring precursor pathways to increase the carbon funneling to the desired target. The combination of these interventions led to the establishment of a S. cerevisiae strain with shikimic acid (SA) titer reaching as high as 2.5gL-1, 7-fold higher than the base strain. Further expansion of the platform led to the titer of 2.7gL-1 of muconic acid (MA) and its intermediate protocatechuic acid (PCA) together. Both the SA and MA production platforms demonstrated increases in titer and yield nearly 300% from the previously reported, highest-producing S. cerevisiae strains. Further examination elucidated the diverged impacts of disrupting the oxidative branch (ZWF1) of the pentose phosphate pathway on the titers of desired products belonging to different portions of the pathway. The investigation of other non-intuitive interventions like the deletion of the Pho13 enzyme also revealed the important role of the transaldolase in determining the fate of the carbon flux in the pathways of study. This integrative approach identified novel determinants at both transcriptional and metabolic levels that constrain the flux entering the aromatic amino acid pathway. In the future, this platform can be readily used for engineering the downstream modules toward the production of important plant-sourced aromatic secondary metabolites.


Subject(s)
Amino Acids, Aromatic/biosynthesis , Metabolic Engineering , Saccharomyces cerevisiae/metabolism , Amino Acids, Aromatic/genetics , Saccharomyces cerevisiae/genetics
5.
Soc Psychiatry Psychiatr Epidemiol ; 51(1): 15-26, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26687238

ABSTRACT

PURPOSE: Current measures of anxiety and depression for children and young people (CYP) include somatic symptoms and can be lengthy. They can inflate scores in cases where there is also physical illness, contain potentially distressing symptoms for some settings and be impractical in clinical practice. The present study aimed to develop and evaluate a new questionnaire, the paediatric index of emotional distress (PI-ED), to screen for emotional distress in CYP, modelled on the hospital anxiety and depression scale. METHODS: A school-based sample (n = 1026) was employed to examine the PI-ED's psychometric properties and a clinical sample of CYP (n = 143) was used to establish its sensitivity and specificity. RESULTS: Exploratory and confirmatory factor analyses identified a bi-factor model with a general emotional distress factor ('cothymia') and anxiety and depression as co-factors. The PI-ED demonstrated good psychometric properties and clinical utility with a cutoff score of 20. CONCLUSION: The PI-ED is a brief, valid and reliable clinical screening tool for emotional distress in CYP.


Subject(s)
Anxiety/diagnosis , Depression/diagnosis , Psychiatric Status Rating Scales/standards , Psychometrics/instrumentation , Stress, Psychological/diagnosis , Adolescent , Child , Female , Humans , Male , Reproducibility of Results , Sensitivity and Specificity
6.
Toxics ; 9(12)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34941793

ABSTRACT

Diacetyl (DA) is a highly reactive alpha diketone associated with flavoring-related lung disease. In rodents, acute DA vapor exposure can initiate an airway-centric, inflammatory response. However, this immune response has yet to be fully characterized in the context of flavoring-related lung disease progression. The following studies were designed to characterize the different T cell populations within the lung following repetitive DA vapor exposures. Sprague-Dawley rats were exposed to 200 parts-per-million DA vapor for 5 consecutive days × 6 h/day. Lung tissue and bronchoalveolar lavage fluid (BALF) were analyzed for changes in histology by H&E and Trichrome stain, T cell markers by flow cytometry, total BALF cell counts and differentials, BALF IL17a and total protein immediately, 1 and 2 weeks post-exposure. Lung histology and BALF cell composition demonstrated mixed, granulocytic lung inflammation with bronchial lymphoid aggregates at all time points in DA-exposed lungs compared to air controls. While no significant change was seen in percent lung CD3+, CD4+, or CD8+ T cells, a significant increase in lung CD4+CD25+ T cells developed at 1 week that persisted at 2 weeks post-exposure. Further characterization of this CD4+CD25+ T cell population identified Foxp3+ T cells at 1 week that failed to persist at 2 weeks. Conversely, BALF IL-17a increased significantly at 2 weeks in DA-exposed rats compared to air controls. Lung CD4+CD25+ T cells and BALF IL17a correlated directly with BALF total protein and inversely with rat oxygen saturations. Repetitive DA vapor exposure at occupationally relevant concentrations induced mixed, granulocytic lung inflammation with increased CD4+CD25+ T cells in the rat lung.

SELECTION OF CITATIONS
SEARCH DETAIL