Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 188
Filter
Add more filters

Publication year range
1.
Cell ; 186(1): 32-46.e19, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36608656

ABSTRACT

We investigate a 2,000-year genetic transect through Scandinavia spanning the Iron Age to the present, based on 48 new and 249 published ancient genomes and genotypes from 16,638 modern individuals. We find regional variation in the timing and magnitude of gene flow from three sources: the eastern Baltic, the British-Irish Isles, and southern Europe. British-Irish ancestry was widespread in Scandinavia from the Viking period, whereas eastern Baltic ancestry is more localized to Gotland and central Sweden. In some regions, a drop in current levels of external ancestry suggests that ancient immigrants contributed proportionately less to the modern Scandinavian gene pool than indicated by the ancestry of genomes from the Viking and Medieval periods. Finally, we show that a north-south genetic cline that characterizes modern Scandinavians is mainly due to the differential levels of Uralic ancestry and that this cline existed in the Viking Age and possibly earlier.


Subject(s)
Genome, Human , Humans , Europe , Genetic Variation , Scandinavian and Nordic Countries , United Kingdom , White People/genetics , White People/history , Human Migration
2.
Nucleic Acids Res ; 52(D1): D174-D182, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37962376

ABSTRACT

JASPAR (https://jaspar.elixir.no/) is a widely-used open-access database presenting manually curated high-quality and non-redundant DNA-binding profiles for transcription factors (TFs) across taxa. In this 10th release and 20th-anniversary update, the CORE collection has expanded with 329 new profiles. We updated three existing profiles and provided orthogonal support for 72 profiles from the previous release's UNVALIDATED collection. Altogether, the JASPAR 2024 update provides a 20% increase in CORE profiles from the previous release. A trimming algorithm enhanced profiles by removing low information content flanking base pairs, which were likely uninformative (within the capacity of the PFM models) for TFBS predictions and modelling TF-DNA interactions. This release includes enhanced metadata, featuring a refined classification for plant TFs' structural DNA-binding domains. The new JASPAR collections prompt updates to the genomic tracks of predicted TF binding sites (TFBSs) in 8 organisms, with human and mouse tracks available as native tracks in the UCSC Genome browser. All data are available through the JASPAR web interface and programmatically through its API and the updated Bioconductor and pyJASPAR packages. Finally, a new TFBS extraction tool enables users to retrieve predicted JASPAR TFBSs intersecting their genomic regions of interest.


Subject(s)
Databases, Genetic , Protein Binding , Transcription Factors , Animals , Humans , Mice , Databases, Genetic/standards , Databases, Genetic/trends , Transcription Factors/genetics , Transcription Factors/metabolism , Plants/genetics
3.
J Intern Med ; 295(6): 785-803, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698538

ABSTRACT

In the last decades, the development of high-throughput molecular assays has revolutionised cancer diagnostics, paving the way for the concept of personalised cancer medicine. This progress has been driven by the introduction of such technologies through biomarker-driven oncology trials. In this review, strengths and limitations of various state-of-the-art sequencing technologies, including gene panel sequencing (DNA and RNA), whole-exome/whole-genome sequencing and whole-transcriptome sequencing, are explored, focusing on their ability to identify clinically relevant biomarkers with diagnostic, prognostic and/or predictive impact. This includes the need to assess complex biomarkers, for example microsatellite instability, tumour mutation burden and homologous recombination deficiency, to identify patients suitable for specific therapies, including immunotherapy. Furthermore, the crucial role of biomarker analysis and multidisciplinary molecular tumour boards in selecting patients for trial inclusion is discussed in relation to various trial concepts, including drug repurposing. Recognising that today's exploratory techniques will evolve into tomorrow's routine diagnostics and clinical study inclusion assays, the importance of emerging technologies for multimodal diagnostics, such as proteomics and in vivo drug sensitivity testing, is also discussed. In addition, key regulatory aspects and the importance of patient engagement in all phases of a clinical trial are described. Finally, we propose a set of recommendations for consideration when planning a new precision cancer medicine trial.


Subject(s)
Biomarkers, Tumor , Neoplasms , Precision Medicine , Humans , Precision Medicine/methods , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/diagnosis , Neoplasms/drug therapy , High-Throughput Nucleotide Sequencing , Clinical Trials as Topic , Medical Oncology/methods , Medical Oncology/trends
4.
Bioinformatics ; 39(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36573326

ABSTRACT

MOTIVATION: There is a rapidly growing interest in high-throughput drug combination screening to identify synergizing drug interactions for treatment of various maladies, such as cancer and infectious disease. This creates the need for pipelines that can be used to design such screens, perform quality control on the data and generate data files that can be analyzed by synergy-finding bioinformatics applications. RESULTS: screenwerk is an open-source, end-to-end modular tool available as an R-package for the design and analysis of drug combination screens. The tool allows for a customized build of pipelines through its modularity and provides a flexible approach to quality control and data analysis. screenwerk is adaptable to various experimental requirements with an emphasis on precision medicine. It can be coupled to other R packages, such as bayesynergy, to identify synergistic and antagonistic drug interactions in cell lines or patient samples. screenwerk is scalable and provides a complete solution for setting up drug sensitivity screens, read raw measurements and consolidate different datasets, perform various types of quality control and analyze, report and visualize the results of drug sensitivity screens. AVAILABILITY AND IMPLEMENTATION: The R-package and technical documentation is available at https://github.com/Enserink-lab/screenwerk; the R source code is publicly available at https://github.com/Enserink-lab/screenwerk under GNU General Public License v3.0; bayesynergy is accessible at https://github.com/ocbe-uio/bayesynergy. Selected modules are available through Galaxy, an open-source platform for FAIR data analysis at https://oncotools.elixir.no. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Documentation , Software , Drug Combinations , Data Analysis , High-Throughput Screening Assays
5.
Nucleic Acids Res ; 50(D1): D204-D210, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34850127

ABSTRACT

We describe an update of MirGeneDB, the manually curated microRNA gene database. Adhering to uniform and consistent criteria for microRNA annotation and nomenclature, we substantially expanded MirGeneDB with 30 additional species representing previously missing metazoan phyla such as sponges, jellyfish, rotifers and flatworms. MirGeneDB 2.1 now consists of 75 species spanning over ∼800 million years of animal evolution, and contains a total number of 16 670 microRNAs from 1549 families. Over 6000 microRNAs were added in this update using ∼550 datasets with ∼7.5 billion sequencing reads. By adding new phylogenetically important species, especially those relevant for the study of whole genome duplication events, and through updating evolutionary nodes of origin for many families and genes, we were able to substantially refine our nomenclature system. All changes are traceable in the specifically developed MirGeneDB version tracker. The performance of read-pages is improved and microRNA expression matrices for all tissues and species are now also downloadable. Altogether, this update represents a significant step toward a complete sampling of all major metazoan phyla, and a widely needed foundation for comparative microRNA genomics and transcriptomics studies. MirGeneDB 2.1 is part of RNAcentral and Elixir Norway, publicly and freely available at http://www.mirgenedb.org/.


Subject(s)
Computational Biology , Databases, Genetic , Evolution, Molecular , Genomics , Animals , Humans , MicroRNAs/classification , MicroRNAs/genetics , Phylogeny
6.
Hered Cancer Clin Pract ; 22(1): 6, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741120

ABSTRACT

BACKGROUND: Colorectal cancers (CRCs) in the Lynch syndromes have been assumed to emerge through an accelerated adenoma-carcinoma pathway. In this model adenomas with deficient mismatch repair have an increased probability of acquiring additional cancer driver mutation(s) resulting in more rapid progression to malignancy. If this model was accurate, the success of colonoscopy in preventing CRC would be a function of the intervals between colonoscopies and mean sojourn time of detectable adenomas. Contrary to expectations, colonoscopy did not decrease incidence of CRC in the Lynch syndromes and shorter colonoscopy intervals have not been effective in reducing CRC incidence. The prospective Lynch Syndrome Database (PLSD) was designed to examine these issues in carriers of pathogenic variants of the mis-match repair (path_MMR) genes. MATERIALS AND METHODS: We examined the CRC and colorectal adenoma incidences in 3,574 path_MLH1, path_MSH2, path_MSH6 and path_PMS2 carriers subjected to regular colonoscopy with polypectomy, and considered the results based on sojourn times and stochastic probability paradigms. RESULTS: Most of the path_MMR carriers in each genetic group had no adenomas. There was no association between incidences of CRC and the presence of adenomas. There was no CRC observed in path_PMS2 carriers. CONCLUSIONS: Colonoscopy prevented CRC in path_PMS2 carriers but not in the others. Our findings are consistent with colonoscopy surveillance blocking the adenoma-carcinoma pathway by removing identified adenomas which might otherwise become CRCs. However, in the other carriers most CRCs likely arised from dMMR cells in the crypts that have an increased mutation rate with increased stochastic chaotic probabilities for mutations. Therefore, this mechanism, that may be associated with no or only a short sojourn time of MSI tumours as adenomas, could explain the findings in our previous and current reports.

7.
Int J Mol Sci ; 25(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38791593

ABSTRACT

Epidemiological evidence suggests existing comorbidity between postmenopausal osteoporosis (OP) and cardiovascular disease (CVD), but identification of possible shared genes is lacking. The skeletal global transcriptomes were analyzed in trans-iliac bone biopsies (n = 84) from clinically well-characterized postmenopausal women (50 to 86 years) without clinical CVD using microchips and RNA sequencing. One thousand transcripts highly correlated with areal bone mineral density (aBMD) were further analyzed using bioinformatics, and common genes overlapping with CVD and associated biological mechanisms, pathways and functions were identified. Fifty genes (45 mRNAs, 5 miRNAs) were discovered with established roles in oxidative stress, inflammatory response, endothelial function, fibrosis, dyslipidemia and osteoblastogenesis/calcification. These pleiotropic genes with possible CVD comorbidity functions were also present in transcriptomes of microvascular endothelial cells and cardiomyocytes and were differentially expressed between healthy and osteoporotic women with fragility fractures. The results were supported by a genetic pleiotropy-informed conditional False Discovery Rate approach identifying any overlap in single nucleotide polymorphisms (SNPs) within several genes encoding aBMD- and CVD-associated transcripts. The study provides transcriptional and genomic evidence for genes of importance for both BMD regulation and CVD risk in a large collection of postmenopausal bone biopsies. Most of the transcripts identified in the CVD risk categories have no previously recognized roles in OP pathogenesis and provide novel avenues for exploring the mechanistic basis for the biological association between CVD and OP.


Subject(s)
Bone Density , Cardiovascular Diseases , Osteoporosis, Postmenopausal , Polymorphism, Single Nucleotide , Transcriptome , Humans , Female , Osteoporosis, Postmenopausal/genetics , Osteoporosis, Postmenopausal/pathology , Aged , Middle Aged , Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Aged, 80 and over , Bone Density/genetics , Gene Expression Profiling , RNA, Messenger/genetics , RNA, Messenger/metabolism , MicroRNAs/genetics
8.
Int J Cancer ; 153(10): 1819-1828, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37551617

ABSTRACT

Genome-scale screening experiments in cancer produce long lists of candidate genes that require extensive interpretation for biological insight and prioritization for follow-up studies. Interrogation of gene lists frequently represents a significant and time-consuming undertaking, in which experimental biologists typically combine results from a variety of bioinformatics resources in an attempt to portray and understand cancer relevance. As a means to simplify and strengthen the support for this endeavor, we have developed oncoEnrichR, a flexible bioinformatics tool that allows cancer researchers to comprehensively interrogate a given gene list along multiple facets of cancer relevance. oncoEnrichR differs from general gene set analysis frameworks through the integration of an extensive set of prior knowledge specifically relevant for cancer, including ranked gene-tumor type associations, literature-supported proto-oncogene and tumor suppressor gene annotations, target druggability data, regulatory interactions, synthetic lethality predictions, as well as prognostic associations, gene aberrations and co-expression patterns across tumor types. The software produces a structured and user-friendly analysis report as its main output, where versions of all underlying data resources are explicitly logged, the latter being a critical component for reproducible science. We demonstrate the usefulness of oncoEnrichR through interrogation of two candidate lists from proteomic and CRISPR screens. oncoEnrichR is freely available as a web-based service hosted by the Galaxy platform (https://oncotools.elixir.no), and can also be accessed as a stand-alone R package (https://github.com/sigven/oncoEnrichR).


Subject(s)
Neoplasms , Proteomics , Humans , Computational Biology/methods , Software , Neoplasms/genetics
9.
Annu Rev Genet ; 49: 213-42, 2015.
Article in English | MEDLINE | ID: mdl-26473382

ABSTRACT

Although microRNAs (miRNAs) are among the most intensively studied molecules of the past 20 years, determining what is and what is not a miRNA has not been straightforward. Here, we present a uniform system for the annotation and nomenclature of miRNA genes. We show that less than a third of the 1,881 human miRBase entries, and only approximately 16% of the 7,095 metazoan miRBase entries, are robustly supported as miRNA genes. Furthermore, we show that the human repertoire of miRNAs has been shaped by periods of intense miRNA innovation and that mature gene products show a very different tempo and mode of sequence evolution than star products. We establish a new open access database--MirGeneDB ( http://mirgenedb.org )--to catalog this set of miRNAs, which complements the efforts of miRBase but differs from it by annotating the mature versus star products and by imposing an evolutionary hierarchy upon this curated and consistently named repertoire.


Subject(s)
Biological Evolution , MicroRNAs/genetics , Molecular Sequence Annotation/methods , Vertebrates/genetics , Animals , Databases, Genetic , Evolution, Molecular , Humans , Terminology as Topic
10.
Hered Cancer Clin Pract ; 21(1): 19, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37821984

ABSTRACT

The recognition of dominantly inherited micro-satellite instable (MSI) cancers caused by pathogenic variants in one of the four mismatch repair (MMR) genes MSH2, MLH1, MSH6 and PMS2 has modified our understanding of carcinogenesis. Inherited loss of function variants in each of these MMR genes cause four dominantly inherited cancer syndromes with different penetrance and expressivities: the four Lynch syndromes. No person has an "average sex "or a pathogenic variant in an "average Lynch syndrome gene" and results that are not stratified by gene and sex will be valid for no one. Carcinogenesis may be a linear process from increased cellular division to localized cancer to metastasis. In addition, in the Lynch syndromes (LS) we now recognize a dynamic balance between two stochastic processes: MSI producing abnormal cells, and the host's adaptive immune system's ability to remove them. The latter may explain why colonoscopy surveillance does not reduce the incidence of colorectal cancer in LS, while it may improve the prognosis. Most early onset colon, endometrial and ovarian cancers in LS are now cured and most cancer related deaths are after subsequent cancers in other organs. Aspirin reduces the incidence of colorectal and other cancers in LS. Immunotherapy increases the host immune system's capability to destroy MSI cancers. Colonoscopy surveillance, aspirin prevention and immunotherapy represent major steps forward in personalized precision medicine to prevent and cure inherited MSI cancer.

11.
J Transl Med ; 20(1): 419, 2022 09 11.
Article in English | MEDLINE | ID: mdl-36089578

ABSTRACT

BACKGROUND: This clinical trial evaluated a novel telomerase-targeting therapeutic cancer vaccine, UV1, in combination with ipilimumab, in patients with metastatic melanoma. Translational research was conducted on patient-derived blood and tissue samples with the goal of elucidating the effects of treatment on the T cell receptor repertoire and tumor microenvironment. METHODS: The trial was an open-label, single-center phase I/IIa study. Eligible patients had unresectable metastatic melanoma. Patients received up to 9 UV1 vaccinations and four ipilimumab infusions. Clinical responses were assessed according to RECIST 1.1. Patients were followed up for progression-free survival (PFS) and overall survival (OS). Whole-exome and RNA sequencing, and multiplex immunofluorescence were performed on the biopsies. T cell receptor (TCR) sequencing was performed on the peripheral blood and tumor tissues. RESULTS: Twelve patients were enrolled in the study. Vaccine-specific immune responses were detected in 91% of evaluable patients. Clinical responses were observed in four patients. The mPFS was 6.7 months, and the mOS was 66.3 months. There was no association between baseline tumor mutational burden, neoantigen load, IFN-γ gene signature, tumor-infiltrating lymphocytes, and response to therapy. Tumor telomerase expression was confirmed in all available biopsies. Vaccine-enriched TCR clones were detected in blood and biopsy, and an increase in the tumor IFN-γ gene signature was detected in clinically responding patients. CONCLUSION: Clinical responses were observed irrespective of established predictive biomarkers for checkpoint inhibitor efficacy, indicating an added benefit of the vaccine-induced T cells. The clinical and immunological read-out warrants further investigation of UV1 in combination with checkpoint inhibitors. Trial registration Clinicaltrials.gov identifier: NCT02275416. Registered October 27, 2014. https://clinicaltrials.gov/ct2/show/NCT02275416?term=uv1&draw=2&rank=6.


Subject(s)
Melanoma , Telomerase , Humans , Ipilimumab/pharmacology , Ipilimumab/therapeutic use , Melanoma/pathology , Tumor Microenvironment , Vaccination
12.
J Transl Med ; 20(1): 225, 2022 05 14.
Article in English | MEDLINE | ID: mdl-35568909

ABSTRACT

BACKGROUND: Matching treatment based on tumour molecular characteristics has revolutionized the treatment of some cancers and has given hope to many patients. Although personalized cancer care is an old concept, renewed attention has arisen due to recent advancements in cancer diagnostics including access to high-throughput sequencing of tumour tissue. Targeted therapies interfering with cancer specific pathways have been developed and approved for subgroups of patients. These drugs might just as well be efficient in other diagnostic subgroups, not investigated in pharma-led clinical studies, but their potential use on new indications is never explored due to limited number of patients. METHODS: In this national, investigator-initiated, prospective, open-label, non-randomized combined basket- and umbrella-trial, patients are enrolled in multiple parallel cohorts. Each cohort is defined by the patient's tumour type, molecular profile of the tumour, and study drug. Treatment outcome in each cohort is monitored by using a Simon two-stage-like 'admissible' monitoring plan to identify evidence of clinical activity. All drugs available in IMPRESS-Norway have regulatory approval and are funded by pharmaceutical companies. Molecular diagnostics are funded by the public health care system. DISCUSSION: Precision oncology means to stratify treatment based on specific patient characteristics and the molecular profile of the tumor. Use of targeted drugs is currently restricted to specific biomarker-defined subgroups of patients according to their market authorization. However, other cancer patients might also benefit of treatment with these drugs if the same biomarker is present. The emerging technologies in molecular diagnostics are now being implemented in Norway and it is publicly reimbursed, thus more cancer patients will have a more comprehensive genomic profiling of their tumour. Patients with actionable genomic alterations in their tumour may have the possibility to try precision cancer drugs through IMPRESS-Norway, if standard treatment is no longer an option, and the drugs are available in the study. This might benefit some patients. In addition, it is a good example of a public-private collaboration to establish a national infrastructure for precision oncology. Trial registrations EudraCT: 2020-004414-35, registered 02/19/2021; ClinicalTrial.gov: NCT04817956, registered 03/26/2021.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/therapeutic use , Humans , Medical Oncology , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy , Precision Medicine , Prospective Studies
13.
Nucleic Acids Res ; 48(D1): D132-D141, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31598695

ABSTRACT

Small non-coding RNAs have gained substantial attention due to their roles in animal development and human disorders. Among them, microRNAs are special because individual gene sequences are conserved across the animal kingdom. In addition, unique and mechanistically well understood features can clearly distinguish bona fide miRNAs from the myriad other small RNAs generated by cells. However, making this distinction is not a common practice and, thus, not surprisingly, the heterogeneous quality of available miRNA complements has become a major concern in microRNA research. We addressed this by extensively expanding our curated microRNA gene database - MirGeneDB - to 45 organisms, encompassing a wide phylogenetic swath of animal evolution. By consistently annotating and naming 10,899 microRNA genes in these organisms, we show that previous microRNA annotations contained not only many false positives, but surprisingly lacked >2000 bona fide microRNAs. Indeed, curated microRNA complements of closely related organisms are very similar and can be used to reconstruct ancestral miRNA repertoires. MirGeneDB represents a robust platform for microRNA-based research, providing deeper and more significant insights into the biology and evolution of miRNAs as well as biomedical and biomarker research. MirGeneDB is publicly and freely available at http://mirgenedb.org/.


Subject(s)
Computational Biology/methods , Databases, Nucleic Acid , MicroRNAs/genetics , Software , Web Browser , Animals , Conserved Sequence , Evolution, Molecular , MicroRNAs/classification , Molecular Sequence Annotation , Phylogeny , User-Computer Interface
14.
Int J Cancer ; 149(11): 1955-1960, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34310709

ABSTRACT

The value of high-throughput germline genetic testing is increasingly recognized in clinical cancer care. Disease-associated germline variants in cancer patients are important for risk management and surveillance, surgical decisions and can also have major implications for treatment strategies since many are in DNA repair genes. With the increasing availability of high-throughput DNA sequencing in cancer clinics and research, there is thus a need to provide clinically oriented sequencing reports for germline variants and their potential therapeutic relevance on a per-patient basis. To meet this need, we have developed the Cancer Predisposition Sequencing Reporter (CPSR), an open-source computational workflow that generates a structured report of germline variants identified in known cancer predisposition genes, highlighting markers of therapeutic, prognostic and diagnostic relevance. A fully automated variant classification procedure based on more than 30 refined American College of Medical Genetics and Genomics (ACMG) criteria represents an integral part of the workflow. Importantly, the set of cancer predisposition genes profiled in the report can be flexibly chosen from more than 40 virtual gene panels established by scientific experts, enabling customization of the report for different screening purposes and clinical contexts. The report can be configured to also list actionable secondary variant findings, as recommended by ACMG. CPSR demonstrates comparable sensitivity and specificity for the detection of pathogenic variants when compared to other algorithms in the field. Technically, the tool is implemented in Python/R, and is freely available through Docker technology. Source code, documentation, example reports and installation instructions are accessible via the project GitHub page: https://github.com/sigven/cpsr.


Subject(s)
Genetic Predisposition to Disease/genetics , Neoplasms/genetics , Software , Biomarkers, Tumor/genetics , Computational Biology , Decision Support Systems, Clinical , Early Detection of Cancer , Genetic Testing , Genome-Wide Association Study , Germ-Line Mutation , High-Throughput Screening Assays , Humans , Neoplasms/diagnosis , Precision Medicine , Workflow
15.
Genet Med ; 23(4): 705-712, 2021 04.
Article in English | MEDLINE | ID: mdl-33257847

ABSTRACT

PURPOSE: To determine impact of risk-reducing hysterectomy and bilateral salpingo-oophorectomy (BSO) on gynecological cancer incidence and death in heterozygotes of pathogenic MMR (path_MMR) variants. METHODS: The Prospective Lynch Syndrome Database was used to investigate the effects of gynecological risk-reducing surgery (RRS) at different ages. RESULTS: Risk-reducing hysterectomy at 25 years of age prevents endometrial cancer before 50 years in 15%, 18%, 13%, and 0% of path_MLH1, path_MSH2, path_MSH6, and path_PMS2 heterozygotes and death in 2%, 2%, 1%, and 0%, respectively. Risk-reducing BSO at 25 years of age prevents ovarian cancer before 50 years in 6%, 11%, 2%, and 0% and death in 1%, 2%, 0%, and 0%, respectively. Risk-reducing hysterectomy at 40 years prevents endometrial cancer by 50 years in 13%, 16%, 11%, and 0% and death in 1%, 2%, 1%, and 0%, respectively. BSO at 40 years prevents ovarian cancer before 50 years in 4%, 8%, 0%, and 0%, and death in 1%, 1%, 0%, and 0%, respectively. CONCLUSION: Little benefit is gained by performing RRS before 40 years of age and premenopausal BSO in path_MSH6 and path_PMS2 heterozygotes has no measurable benefit for mortality. These findings may aid decision making for women with LS who are considering RRS.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms, Hereditary Nonpolyposis/epidemiology , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/prevention & control , DNA Mismatch Repair/genetics , Female , Heterozygote , Humans , Hysterectomy , Middle Aged , Mismatch Repair Endonuclease PMS2/genetics , MutL Protein Homolog 1/genetics , Prospective Studies , Salpingo-oophorectomy
16.
BMC Cancer ; 21(1): 930, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34407780

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) screening reduces CRC incidence and mortality. However, current screening methods are either hampered by invasiveness or suboptimal performance, limiting their effectiveness as primary screening methods. To aid in the development of a non-invasive screening test with improved sensitivity and specificity, we have initiated a prospective biomarker study (CRCbiome), nested within a large randomized CRC screening trial in Norway. We aim to develop a microbiome-based classification algorithm to identify advanced colorectal lesions in screening participants testing positive for an immunochemical fecal occult blood test (FIT). We will also examine interactions with host factors, diet, lifestyle and prescription drugs. The prospective nature of the study also enables the analysis of changes in the gut microbiome following the removal of precancerous lesions. METHODS: The CRCbiome study recruits participants enrolled in the Bowel Cancer Screening in Norway (BCSN) study, a randomized trial initiated in 2012 comparing once-only sigmoidoscopy to repeated biennial FIT, where women and men aged 50-74 years at study entry are invited to participate. Since 2017, participants randomized to FIT screening with a positive test result have been invited to join the CRCbiome study. Self-reported diet, lifestyle and demographic data are collected prior to colonoscopy after the positive FIT-test (baseline). Screening data, including colonoscopy findings are obtained from the BCSN database. Fecal samples for gut microbiome analyses are collected both before and 2 and 12 months after colonoscopy. Samples are analyzed using metagenome sequencing, with taxonomy profiles, and gene and pathway content as primary measures. CRCbiome data will also be linked to national registries to obtain information on prescription histories and cancer relevant outcomes occurring during the 10 year follow-up period. DISCUSSION: The CRCbiome study will increase our understanding of how the gut microbiome, in combination with lifestyle and environmental factors, influences the early stages of colorectal carcinogenesis. This knowledge will be crucial to develop microbiome-based screening tools for CRC. By evaluating biomarker performance in a screening setting, using samples from the target population, the generalizability of the findings to future screening cohorts is likely to be high. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01538550 .


Subject(s)
Colorectal Neoplasms/diagnosis , Early Detection of Cancer/methods , Gastrointestinal Microbiome , Life Style , Aged , Case-Control Studies , Colonoscopy , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/microbiology , Female , Follow-Up Studies , Humans , Incidence , Male , Middle Aged , Norway/epidemiology , Occult Blood , Prognosis , Prospective Studies , ROC Curve
17.
Br J Cancer ; 123(11): 1608-1615, 2020 11.
Article in English | MEDLINE | ID: mdl-32939053

ABSTRACT

BACKGROUND: The natural history of breast cancer among BRCA2 carriers has not been clearly established. In a previous study from Iceland, positive ER status was a negative prognostic factor. We sought to identify factors that predicted survival after invasive breast cancer in an expanded cohort of BRCA2 carriers. METHODS: We studied 608 women with invasive breast cancer and a pathogenic BRCA2 mutation (variant) from four Nordic countries. Information on prognostic factors and treatment was retrieved from health records and by analysis of archived tissue specimens. Hazard ratios (HR) were estimated for breast cancer-specific survival using Cox regression. RESULTS: About 77% of cancers were ER-positive, with the highest proportion (83%) in patients under 40 years. ER-positive breast cancers were more likely to be node-positive (59%) than ER-negative cancers (34%) (P < 0.001). The survival analysis included 584 patients. Positive ER status was protective in the first 5 years from diagnosis (multivariate HR = 0.49; 95% CI 0.26-0.93, P = 0.03); thereafter, the effect was adverse (HR = 1.91; 95% CI 1.07-3.39, P = 0.03). The adverse effect of positive ER status was limited to women who did not undergo endocrine treatment (HR = 2.36; 95% CI 1.26-4.44, P = 0.01) and patients with intact ovaries (HR = 1.99; 95% CI 1.11-3.59, P = 0.02). CONCLUSIONS: The adverse effect of a positive ER status in BRCA2 carriers with breast cancer may be contingent on exposure to ovarian hormones.


Subject(s)
BRCA2 Protein/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Receptors, Estrogen/metabolism , Adult , Aged , Aged, 80 and over , Breast Neoplasms/mortality , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Middle Aged , Mutation , Scandinavian and Nordic Countries
18.
Bioinformatics ; 35(9): 1615-1624, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30307532

ABSTRACT

MOTIVATION: Many high-throughput methods produce sets of genomic regions as one of their main outputs. Scientists often use genomic colocalization analysis to interpret such region sets, for example to identify interesting enrichments and to understand the interplay between the underlying biological processes. Although widely used, there is little standardization in how these analyses are performed. Different practices can substantially affect the conclusions of colocalization analyses. RESULTS: Here, we describe the different approaches and provide recommendations for performing genomic colocalization analysis, while also discussing common methodological challenges that may influence the conclusions. As illustrated by concrete example cases, careful attention to analysis details is needed in order to meet these challenges and to obtain a robust and biologically meaningful interpretation of genomic region set data. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genome , Genomics
19.
Genet Med ; 22(1): 15-25, 2020 01.
Article in English | MEDLINE | ID: mdl-31337882

ABSTRACT

PURPOSE: Pathogenic variants affecting MLH1, MSH2, MSH6, and PMS2 cause Lynch syndrome and result in different but imprecisely known cancer risks. This study aimed to provide age and organ-specific cancer risks according to gene and gender and to determine survival after cancer. METHODS: We conducted an international, multicenter prospective observational study using independent test and validation cohorts of carriers of class 4 or class 5 variants. After validation the cohorts were merged providing 6350 participants and 51,646 follow-up years. RESULTS: There were 1808 prospectively observed cancers. Pathogenic MLH1 and MSH2 variants caused high penetrance dominant cancer syndromes sharing similar colorectal, endometrial, and ovarian cancer risks, but older MSH2 carriers had higher risk of cancers of the upper urinary tract, upper gastrointestinal tract, brain, and particularly prostate. Pathogenic MSH6 variants caused a sex-limited trait with high endometrial cancer risk but only modestly increased colorectal cancer risk in both genders. We did not demonstrate a significantly increased cancer risk in carriers of pathogenic PMS2 variants. Ten-year crude survival was over 80% following colon, endometrial, or ovarian cancer. CONCLUSION: Management guidelines for Lynch syndrome may require revision in light of these different gene and gender-specific risks and the good prognosis for the most commonly associated cancers.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA-Binding Proteins/economics , Mismatch Repair Endonuclease PMS2/genetics , MutL Protein Homolog 1/genetics , MutS Homolog 2 Protein/genetics , Mutation , Adult , Aged , Colorectal Neoplasms, Hereditary Nonpolyposis/mortality , DNA Mismatch Repair , Databases, Genetic , Female , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Penetrance , Prospective Studies , Risk Assessment , Sex Characteristics , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL