Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 353
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO J ; 40(4): e105450, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33347625

ABSTRACT

Wnt/ß-catenin signaling is frequently activated in advanced prostate cancer and contributes to therapy resistance and metastasis. However, activating mutations in the Wnt/ß-catenin pathway are not common in prostate cancer, suggesting alternative regulations may exist. Here, we report that the expression of endothelial cell-specific molecule 1 (ESM1), a secretory proteoglycan, is positively associated with prostate cancer stemness and progression by promoting Wnt/ß-catenin signaling. Elevated ESM1 expression correlates with poor overall survival and metastasis. Accumulation of nuclear ESM1, instead of cytosolic or secretory ESM1, supports prostate cancer stemness by interacting with the ARM domain of ß-catenin to stabilize ß-catenin-TCF4 complex and facilitate the transactivation of Wnt/ß-catenin signaling targets. Accordingly, activated ß-catenin in turn mediates the nuclear entry of ESM1. Our results establish the significance of mislocalized ESM1 in driving metastasis in prostate cancer by coordinating the Wnt/ß-catenin pathway, with implications for its potential use as a diagnostic or prognostic biomarker and as a candidate therapeutic target in prostate cancer.


Subject(s)
Cell Nucleus/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/secondary , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/pathology , Prostatic Neoplasms/pathology , Proteoglycans/metabolism , beta Catenin/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Proteins/genetics , Neoplastic Stem Cells/metabolism , Prognosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Proteoglycans/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , beta Catenin/genetics
2.
Nucleic Acids Res ; 51(15): 7777-7797, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37497782

ABSTRACT

Trans-spliced RNAs (ts-RNAs) are a type of non-co-linear (NCL) transcripts that consist of exons in an order topologically inconsistent with the corresponding DNA template. Detecting ts-RNAs is often interfered by experimental artifacts, circular RNAs (circRNAs) and genetic rearrangements. Particularly, intragenic ts-RNAs, which are derived from separate precursor mRNA molecules of the same gene, are often mistaken for circRNAs through analyses of RNA-seq data. Here we developed a bioinformatics pipeline (NCLscan-hybrid), which integrated short and long RNA-seq reads to minimize false positives and proposed out-of-circle and rolling-circle long reads to distinguish between intragenic ts-RNAs and circRNAs. Combining NCLscan-hybrid screening and multiple experimental validation steps successfully confirmed that four NCL events, which were previously regarded as circRNAs in databases, originated from trans-splicing. CRISPR-based endogenous genome modification experiments further showed that flanking intronic complementary sequences can significantly contribute to ts-RNA formation, providing an efficient/specific method to deplete ts-RNAs. We also experimentally validated that one ts-RNA (ts-ARFGEF1) played an important role for p53-mediated apoptosis through affecting the PERK/eIF2a/ATF4/CHOP signaling pathway in breast cancer cells. This study thus described both bioinformatics procedures and experimental validation steps for rigorous characterization of ts-RNAs, expanding future studies for identification, biogenesis, and function of these important but understudied transcripts.


Subject(s)
Sequence Analysis, RNA , Trans-Splicing , Genome , RNA Splicing , RNA, Circular , Sequence Analysis, RNA/methods
3.
Biochem Biophys Res Commun ; 720: 150066, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38749193

ABSTRACT

Alveolar and interstitial macrophages play crucial roles in eradicating pathogens and transformed cells in the lungs. The immune checkpoint CD47, found on normal and malignant cells, interacts with the SIRPα ligand on macrophages, inhibiting phagocytosis, antigen presentation, and promoting immune evasion. In this study, we demonstrated that CD47 is not only a transmembrane protein, but that it is also highly concentrated in extracellular vesicles from lung cancer cell lines and patient plasma. Abundant CD47 was observed in the cytoplasm of lung cancer cells, aligning with our finding that it was packed into extracellular vesicles for physiological and pathological functions. In our clinical cohort, extracellular vesicle CD47 was significantly higher in the patients with early-stage lung cancer, emphasizing innate immunity inactivation in early tumor progression. To validate our hypothesis, we established an orthotopic xenograft model mimicking lung cancer development, which showed increased serum soluble CD47 and elevated IL-10/TNF-α ratio, indicating an immune-suppressive tumor microenvironment. CD47 expression led to reduced tumor-infiltrating macrophages during progression, while there was a post-xenograft increase in tumor-associated macrophages. In conclusion, CD47 is pivotal in early lung cancer progression, with soluble CD47 emerging as a key pathological effector.


Subject(s)
CD47 Antigen , Disease Progression , Lung Neoplasms , CD47 Antigen/metabolism , CD47 Antigen/immunology , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Humans , Animals , Cell Line, Tumor , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Mice , Tumor Escape , Immune Evasion , Tumor Microenvironment/immunology , Macrophages/immunology , Macrophages/metabolism , Female , Neoplasm Staging
4.
Small ; 20(2): e2306020, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37661358

ABSTRACT

To date, all-inorganic lead halide perovskite quantum dots have emerged as promising materials for photonic, optoelectronic devices, and biological applications, especially in solar cells, raising numerous concerns about their biosafety. Most of the studies related to the toxicity of perovskite quantum dots (PeQDs) have focused on the potential risks of hybrid perovskites by using zebrafish or human cells. So far, the neurotoxic effects and fundamental mechanisms of PeQDs remain unknown. Herein, a comprehensive methodology is designed to investigate the neurotoxicity of PeQDs by using Caenorhabditis elegans as a model organism. The results show that the accumulation of PeQDs mainly focuses on the alimentary system and head region. Acute exposure to PeQDs results in a decrease in locomotor behaviors and pharyngeal pumping, whereas chronic exposure to PeQDs causes brood decline and shortens lifespan. In addition, some abnormal issues occur in the uterus during reproduction assays, such as vulva protrusion, impaired eggs left in the vulva, and egg hatching inside the mother. Excessive reactive oxygen species formation is also observed. The neurotoxicity of PeQDs is explained by gene expression. This study provides a complete insight into the neurotoxicity of PeQD and encourages the development of novel nontoxic PeQDs.


Subject(s)
Inorganic Chemicals , Nanoparticles , Oxides , Titanium , Humans , Female , Animals , Caenorhabditis elegans , Zebrafish , Calcium Compounds/toxicity , Nanoparticles/toxicity
5.
Cell Commun Signal ; 22(1): 266, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741139

ABSTRACT

Glioblastoma (GBM) is a type of brain cancer categorized as a high-grade glioma. GBM is characterized by limited treatment options, low patient survival rates, and abnormal serotonin metabolism. Previous studies have investigated the tumor suppressor function of aldolase C (ALDOC), a glycolytic enzyme in GBM. However, it is unclear how ALDOC regulates production of serotonin and its associated receptors, HTRs. In this study, we analyzed ALDOC mRNA levels and methylation status using sequencing data and in silico datasets. Furthermore, we investigated pathways, phenotypes, and drug effects using cell and mouse models. Our results suggest that loss of ALDOC function in GBM promotes tumor cell invasion and migration. We observed that hypermethylation, which results in loss of ALDOC expression, is associated with serotonin hypersecretion and the inhibition of PPAR-γ signaling. Using several omics datasets, we present evidence that ALDOC regulates serotonin levels and safeguards PPAR-γ against serotonin metabolism mediated by 5-HT, which leads to a reduction in PPAR-γ expression. PPAR-γ activation inhibits serotonin release by HTR and diminishes GBM tumor growth in our cellular and animal models. Importantly, research has demonstrated that PPAR-γ agonists prolong animal survival rates and increase the efficacy of temozolomide in an orthotopic brain model of GBM. The relationship and function of the ALDOC-PPAR-γ axis could serve as a potential prognostic indicator. Furthermore, PPAR-γ agonists offer a new treatment alternative for glioblastoma multiforme (GBM).


Subject(s)
Glioblastoma , PPAR-gamma Agonists , Temozolomide , Animals , Humans , Mice , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Disease Progression , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , PPAR gamma/metabolism , PPAR-gamma Agonists/pharmacology , PPAR-gamma Agonists/therapeutic use , Serotonin/metabolism , Signal Transduction/drug effects , Temozolomide/pharmacology , Temozolomide/therapeutic use
6.
Circ Res ; 131(1): 6-20, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35611699

ABSTRACT

BACKGROUND: The sino atrial node (SAN) is characterized by the microenvironment of pacemaker cardiomyocytes (PCs) encased with fibroblasts. An altered microenvironment leads to rhythm failure. Operable cell or tissue models are either generally lacking or difficult to handle. The biological process behind the milieu of SANs to evoke pacemaker rhythm is unknown. We explored how fibroblasts interact with PCs and regulate metabolic reprogramming and rhythmic activity in the SAN. METHODS: Tbx18 (T-box transcription factor 18)-induced PCs and fibroblasts were used for cocultures and engineered tissues, which were used as the in vitro models to explore how fibroblasts regulate the functional integrity of SANs. RNA-sequencing, metabolomics, and cellular and molecular techniques were applied to characterize the molecular signals underlying metabolic reprogramming and identify its critical regulators. These pathways were further validated in vivo in rodents and induced human pluripotent stem cell-derived cardiomyocytes. RESULTS: We observed that rhythmicity in Tbx18-induced PCs was regulated by aerobic glycolysis. Fibroblasts critically activated metabolic reprogramming and aerobic glycolysis within PCs, and, therefore, regulated pacemaker activity in PCs. The metabolic reprogramming was attributed to the exclusive induction of Aldoc (aldolase c) within PCs after fibroblast-PC integration. Fibroblasts activated the integrin-dependent mitogen-activated protein kinase-E2F1 signal through cell-cell contact and turned on Aldoc expression in PCs. Interruption of fibroblast-PC interaction or Aldoc knockdown nullified electrical activity. Engineered Tbx18-PC tissue sheets were generated to recapitulate the microenvironment within SANs. Aldoc-driven rhythmic machinery could be replicated within tissue sheets. Similar machinery was faithfully validated in de novo PCs of adult mice and rats, and in human PCs derived from induced pluripotent stem cells. CONCLUSIONS: Fibroblasts drive Aldoc-mediated metabolic reprogramming and rhythmic regulation in SANs. This work details the cellular machinery behind the complex milieu of vertebrate SANs and opens a new direction for future therapy.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Animals , Cellular Reprogramming , Coculture Techniques , Fibroblasts/metabolism , Induced Pluripotent Stem Cells/metabolism , Mice , Myocytes, Cardiac/metabolism , Rats , Sinoatrial Node/metabolism
7.
J Cell Mol Med ; 27(5): 672-686, 2023 03.
Article in English | MEDLINE | ID: mdl-36807490

ABSTRACT

Follistatin-like (FSTL) family members are associated with cancer progression. However, differences between FSTL members with identical cancer types have not been systematically investigated. Among the most malignant tumours worldwide, colorectal cancer (CRC) has high metastatic potential and chemoresistance, which makes it challenging to treat. A systematic examination of the relationship between the expression of FSTL family members in CRC will provide valuable information for prognosis and therapeutic development. Based on large cohort survival analyses, we determined that FSTL3 was associated with a significantly worse prognosis in CRC at the RNA and protein levels. Immunohistochemistry staining of CRC specimens revealed that FSTL3 expression levels in the cytosol were significantly associated with a poor prognosis in terms of overall and disease-free survival. Molecular simulation analysis showed that FSTL3 participated in multiple cell motility signalling pathways via the TGF-ß1/TWIST1 axis to control CRC metastasis. The findings provide evidence of the significance of FSTL3 in the oncogenesis and metastasis of CRC. FSTL3 may be useful as a diagnostic or prognostic biomarker, and as a potential therapeutic target.


Subject(s)
Colorectal Neoplasms , Follistatin-Related Proteins , Humans , Cytosol/metabolism , Cell Transformation, Neoplastic , Signal Transduction , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Cohort Studies , Biomarkers, Tumor/genetics , Follistatin-Related Proteins/genetics , Follistatin-Related Proteins/metabolism
8.
J Biomed Sci ; 30(1): 68, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580757

ABSTRACT

BACKGROUND: KH-type splicing regulatory protein (KHSRP, also called KSRP), a versatile RNA-binding protein, plays a critical role in various physiological and pathological conditions through modulating gene expressions at multiple levels. However, the role of KSRP in clear cell renal cell carcinoma (ccRCC) remains poorly understood. METHODS: KSRP expression was detected by a ccRCC tissue microarray and evaluated by an in silico analysis. Cell loss-of-function and gain-of-function, colony-formation, anoikis, and transwell assays, and an orthotopic bioluminescent xenograft model were conducted to determine the functional role of KRSP in ccRCC progression. Micro (mi)RNA and complementary (c)DNA microarrays were used to identify downstream targets of KSRP. Western blotting, quantitative real-time polymerase chain reaction, and promoter- and 3-untranslated region (3'UTR)-luciferase reporter assays were employed to validate the underlying mechanisms of KSRP which aggravate progression of ccRCC. RESULTS: Our results showed that dysregulated high levels of KSRP were correlated with advanced clinical stages, larger tumor sizes, recurrence, and poor prognoses of ccRCC. Neural precursor cell-expressed developmentally downregulated 4 like (NEDD4L) was identified as a novel target of KSRP, which can reverse the protumorigenic and prometastatic characteristics as well as epithelial-mesenchymal transition (EMT) promotion by KSRP in vitro and in vivo. Molecular studies revealed that KSRP can decrease NEDD4L messenger (m)RNA stability via inducing mir-629-5p upregulation and directly targeting the AU-rich elements (AREs) of the 3'UTR. Moreover, KSRP was shown to transcriptionally suppress NEDD4L via inducing the transcriptional repressor, Wilm's tumor 1 (WT1). In the clinic, ccRCC samples revealed a positive correlation between KSRP and mesenchymal-related genes, and patients expressing high KSRP and low NEDD4L had the worst prognoses. CONCLUSION: The current findings unveil novel mechanisms of KSRP which promote malignant progression of ccRCC through transcriptional inhibition and post-transcriptional destabilization of NEDD4L transcripts. Targeting KSRP and its pathways may be a novel pharmaceutical intervention for ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , MicroRNAs , RNA-Binding Proteins , Humans , 3' Untranslated Regions , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ubiquitin/metabolism
9.
Int J Mol Sci ; 24(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37958895

ABSTRACT

Gastric cancer (GC) organoids are frequently used to examine cell proliferation and death as well as cancer development. Invasion/migration assay, xenotransplantation, and reactive oxygen species (ROS) production were used to examine the effects of antioxidant drugs, including perillaldehyde (PEA), cinnamaldehyde (CA), and sulforaphane (SFN), on GC. PEA and CA repressed the proliferation of human GC organoids, whereas SFN enhanced it. Caspase 3 activities were also repressed on treatment with PEA and CA. Furthermore, the tumor formation and invasive activities were repressed on treatment with PEA and CA, whereas they were enhanced on treatment with SFN. These results in three-dimensional (3D)-GC organoids showed the different cancer development of phase II enzyme ligands in 2D-GC cells. ROS production and the expression of TP53, nuclear factor erythroid 2-related factor (NRF2), and Jun dimerization protein 2 were also downregulated on treatment with PEA and CA, but not SFN. NRF2 knockdown reversed the effects of these antioxidant drugs on the invasive activities of the 3D-GC organoids. Moreover, ROS production was also inhibited by treatment with PEA and CA, but not SFN. Thus, NRF2 plays a key role in the differential effects of these antioxidant drugs on cancer progression in 3D-GC organoids. PEA and CA can potentially be new antitumorigenic therapeutics for GC.


Subject(s)
Antioxidants , Stomach Neoplasms , Humans , Antioxidants/pharmacology , Apoptosis , Cell- and Tissue-Based Therapy , Isothiocyanates/pharmacology , Isothiocyanates/metabolism , NF-E2-Related Factor 2/metabolism , Organoids/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Sulfoxides/pharmacology
10.
Int J Mol Sci ; 24(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37047540

ABSTRACT

We prepared three-dimensional (3-D) organoids of human stomach cancers and examined the correlation between the tumorigenicity and cytotoxicity of Helicobacter pylori (H. pylori). In addition, the effects of hepatoma-derived growth factor (HDGF) and tumor necrosis factor (TNFα) on the growth and invasion activity of H. pylori-infected gastric cancer organoids were examined. Cytotoxin-associated gene A (CagA)-green fluorescence protein (GFP)-labeled H. pylori was used to trace the infection in gastric organoids. The cytotoxicity of Cag encoded toxins from different species of H. pylori did not affect the proliferation of each H. pylori-infected cancer organoid. To clarify the role of HDGF and TNFα secreted from H. pylori-infected cancer organoids, we prepared recombinant HDGF and TNFα and measured the cytotoxicity and invasion of gastric cancer organoids. HDGF controlled the growth of each organoid in a species-specific manner of H. pylori, but TNFα decreased the cell viability in H. pylori-infected cancer organoids. Furthermore, HDGF controlled the invasion activity of H. pylori-infected cancer organoid in a species-dependent manner. However, TNFα decreased the invasion activities of most organoids. We found different signaling of cytotoxicity and invasion of human gastric organoids in response to HDGF and TNFα during infection by H. pylori. Recombinant HDGF and TNFα inhibited the development and invasion of H. pylori-infected gastric cancer differently. Thus, we propose that HDGF and TNFα are independent signals for development of H. pylori-infected gastric cancer. The signaling of growth factors in 3-D organoid culture systems is different from those in two-dimensional cancer cells.


Subject(s)
Carcinoma, Hepatocellular , Helicobacter Infections , Helicobacter pylori , Liver Neoplasms , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Tumor Necrosis Factor-alpha/metabolism , Helicobacter pylori/metabolism , Antigens, Bacterial/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Organoids/metabolism , Helicobacter Infections/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Bacterial Proteins/metabolism
11.
Molecules ; 28(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36615558

ABSTRACT

Molecular biology applications based on gold nanotechnology have revolutionary impacts, especially in diagnosing and treating molecular and cellular levels. The combination of plasmonic resonance, biochemistry, and optoelectronic engineering has increased the detection of molecules and the possibility of atoms. These advantages have brought medical research to the cellular level for application potential. Many research groups are working towards this. The superior analytical properties of gold nanoparticles can not only be used as an effective drug screening instrument for gene sequencing in new drug development but also as an essential tool for detecting physiological functions, such as blood glucose, antigen-antibody analysis, etc. The review introduces the principles of biomedical sensing systems, the principles of nanomaterial analysis applied to biomedicine at home and abroad, and the chemical surface modification of various gold nanoparticles.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanostructures , Neoplasms , Gold/chemistry , Surface Plasmon Resonance , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Neoplasms/diagnosis
12.
J Cell Mol Med ; 26(15): 4305-4321, 2022 08.
Article in English | MEDLINE | ID: mdl-35794816

ABSTRACT

Lung cancer is the leading cause of cancer-associated death, with a global 5-year survival rate <20%. Early metastasis and recurrence remain major challenges for lung cancer treatment. The stemness property of cancer cells has been suggested to play a key role in cancer plasticity, metastasis and drug-resistance, and is a potential target for drug development. In this study, we found that in non-small cell lung cancer (NSCLC), BMI1 and MCL1 play crucial roles of cancer stemness including invasion, chemo-resistance and tumour initiation. JNK signalling serves as a link between oncogenic pathway or genotoxicity to cancer stemness. The activation of JNK, either by mutant EGFR or chemotherapy agent, stabilized BMI1 and MCL1 proteins through suppressing the expression of E3-ubiquitin ligase HUWE1. In lung cancer patient samples, high level of BMI1 is correlated with poor survival, and the expression of BMI1 is positively correlated with MCL1. A novel small-molecule, BI-44, was developed, which effectively suppressed BMI1/MCL1 expressions and inhibited tumour formation and progression in preclinical models. Targeting cancer stemness mediated by BMI1/MCL1 with BI-44 provides the basis for a new therapeutic approach in NSCLC treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplastic Stem Cells/metabolism , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
13.
Br J Cancer ; 126(5): 778-790, 2022 03.
Article in English | MEDLINE | ID: mdl-34815524

ABSTRACT

BACKGROUND: Castration-resistant prostate cancer (CRPC) patients frequently develop neuroendocrine differentiation, with high mortality and no effective treatment. However, the regulatory mechanism that connects neuroendocrine differentiation and metabolic adaptation in response to therapeutic resistance of prostate cancer remain to be unravelled. METHODS: By unbiased cross-correlation between RNA-sequencing, database signatures, and ChIP analysis, combining in vitro cell lines and in vivo animal models, we identified that PCK1 is a pivotal regulator in therapy-induced neuroendocrine differentiation of prostate cancer through a LIF/ZBTB46-driven glucose metabolism pathway. RESULTS: Upregulation of PCK1 supports cell proliferation and reciprocally increases ZBTB46 levels to promote the expression of neuroendocrine markers that are conducive to the development of neuroendocrine characteristic CRPC. PCK1 and neuroendocrine marker expressions are regulated by the ZBTB46 transcription factor upon activation of LIF signalling. Targeting PCK1 can reduce the neuroendocrine phenotype and decrease the growth of prostate cancer cells in vitro and in vivo. CONCLUSION: Our study uncovers LIF/ZBTB46 signalling activation as a key mechanism for upregulating PCK1-driven glucose metabolism and neuroendocrine differentiation of CRPC, which may yield significant improvements in prostate cancer treatment after ADT using PCK1 inhibitors.


Subject(s)
Glucose/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Leukemia Inhibitory Factor/genetics , Phosphoenolpyruvate Carboxykinase (GTP)/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Transcription Factors/genetics , Up-Regulation , Animals , Cell Line, Tumor , Cell Proliferation , Feedback, Physiological , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , PC-3 Cells , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Sequence Analysis, RNA
14.
J Gene Med ; 24(12): e3451, 2022 12.
Article in English | MEDLINE | ID: mdl-36181245

ABSTRACT

BACKGROUND: The abnormal modification of chondroitin sulfate is one of the leading causes of disease, including cancer progression. During chondroitin sulfate biosynthesis, the CHST11 enzyme plays a vital role in its modification, but its role in cancer is not fully understood. Therefore, understanding the relationship between CHST11 and pulmonary-related diseases through clinically relevant information may be useful for diagnosis or treatment. METHODS: A variety of pulmonary fibrosis clinical gene expression omnibus (GEO) datasets were used to assess the association between CHST11-related manifestations and fibrosis. Multiple lung cancer-related databases, including The Cancer Genome Atlas, GEO datasets, UCSC Xena, GEPIA2, Cbioportal and ingenuity pathway analysis were used to evaluate the clinical correlation between CHST11 and lung cancer and potential molecular mechanisms. For drug repurposing prediction, the molecules that correlated with CHST11 were subjected to the LINCS L1000 algorithm. A variety of in vitro assays were performed to evaluate the in-silico models, including RNA and protein expression, proliferation, migration and invasion. RESULTS: Clinical analyses indicate that the levels of CHST11 are significantly elevated in cases of pulmonary-related diseases, including fibrosis and lung cancer. According to multiple lung cancer cohorts, CHST11 is the only member of the carbohydrate sulfotransferase family associated with overall survival for lung adenocarcinomas, and it is highly related to smoking-induced lung cancer patients. Based on the results of in vitro experiments, CHST11 expression contributes to tumor malignancy and promotes multiple fibrotic activators. Correlation-based ingenuity pathway analysis indicated that CHST11-related molecules contributed to pulmonary fibrosis or lung adenocarcinomas via similar upstream stimulators. Based on known molecular regulatory relationships, CHST11 has been associated with the regulation of TGF-ß and INFγ as important molecules contributing to fibrosis and cancer progression. Interestingly, WordCloud analysis revealed that CHST11-related molecules are involved in regulation primarily by integrin signaling, and these relationships were consistently reflected in the analysis of cell lines and the clinical correlation. A CHST11 signature-based drug repurposing analysis demonstrated that the CHST11/integrin axis could be targeted by AG-1478 (Tyrphostin AG 1478), brefeldin A, geldanamycin and importazole. CONCLUSIONS: This study provides the first demonstration that CHST11 may be used as a biomarker for pulmonary fibrosis or lung cancer, and the levels of CHST11 were increased by TGF-ß and INFγ. The molecular simulation analyses demonstrate that the CHST11/integrin axis is a potential therapeutic target for treating lung cancer.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Pulmonary Fibrosis , Humans , Pulmonary Fibrosis/genetics , Chondroitin Sulfates , Lung Neoplasms/genetics , Adenocarcinoma of Lung/genetics , Transforming Growth Factor beta , Integrins , Sulfotransferases/genetics
15.
Proc Natl Acad Sci U S A ; 116(9): 3518-3523, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30808745

ABSTRACT

The globo-series glycosphingolipids (GSLs) SSEA3, SSEA4, and Globo-H specifically expressed on cancer cells are found to correlate with tumor progression and metastasis, but the functional roles of these GSLs and the key enzyme ß1,3-galactosyltransferase V (ß3GalT5) that converts Gb4 to SSEA3 remain largely unclear. Here we show that the expression of ß3GalT5 significantly correlates with tumor progression and poor survival in patients, and the globo-series GSLs in breast cancer cells form a complex in membrane lipid raft with caveolin-1 (CAV1) and focal adhesion kinase (FAK) which then interact with AKT and receptor-interacting protein kinase (RIP), respectively. Knockdown of ß3GalT5 disrupts the complex and induces apoptosis through dissociation of RIP from the complex to interact with the Fas death domain (FADD) and trigger the Fas-dependent pathway. This finding provides a link between SSEA3/SSEA4/Globo-H and the FAK/CAV1/AKT/RIP complex in tumor progression and apoptosis and suggests a direction for the treatment of breast cancer, as demonstrated by the combined use of antibodies against Globo-H and SSEA4.


Subject(s)
Breast Neoplasms/genetics , Galactosyltransferases/genetics , Glycosphingolipids/genetics , Membrane Microdomains/genetics , Antigens, Tumor-Associated, Carbohydrate/genetics , Antigens, Tumor-Associated, Carbohydrate/metabolism , Apoptosis/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Caveolin 1/genetics , Caveolin 1/metabolism , Disease Progression , Fas-Associated Death Domain Protein/genetics , Female , Focal Adhesion Protein-Tyrosine Kinases/genetics , Gene Expression Regulation, Neoplastic/genetics , Glycosphingolipids/metabolism , Humans , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Membrane Microdomains/metabolism , Middle Aged , Proto-Oncogene Proteins c-akt/genetics , Saporins/genetics , Signal Transduction/genetics , Stage-Specific Embryonic Antigens/genetics , Stage-Specific Embryonic Antigens/metabolism
16.
Int J Mol Sci ; 23(10)2022 May 14.
Article in English | MEDLINE | ID: mdl-35628305

ABSTRACT

Central glucocorticoid receptor (GR) activity is enhanced following traumatic events, playing a key role in the stress-related cognitive abnormalities of posttraumatic stress disorder (PTSD). GR antagonists are expected to have potential as pharmacological agents to treat PTSD-related symptoms such as anxiety and fear memory disruption. However, an incubation period is usually required and stress-induced abnormalities do not develop immediately following the trauma; thus, the optimal intervention timing should be considered. Single prolonged stress (SPS) was employed as a rodent PTSD model to examine the effects of early or late (1-7 versus 8-14 days after the SPS) sub-chronic RU486 (a GR antagonist) administration. Behaviorally, fear conditioning and anxiety behavior were assessed using the fear-conditioning test and elevated T-maze (ETM), respectively. Neurochemically, the expressions of GR, FK506-binding proteins 4 and 5 (FKBP4 and FKBP5), and early growth response-1 (Egr-1) were assessed in the hippocampus, medial prefrontal cortex (mPFC), amygdala, and hypothalamus, together with the level of plasma corticosterone. Early RU486 administration could inhibit SPS-induced behavioral abnormalities and glucocorticoid system dysregulation by reversing the SPS-induced fear extinction deficit, and preventing SPS-reduced plasma corticosterone levels and SPS-induced Egr-1 overexpression in the hippocampus. Early RU486 administration following SPS also increased the FKBP5 level in the hippocampus and hypothalamus. Finally, both early and late RU486 administration inhibited the elevated hippocampal FKBP4 level and hypothalamus GR level in the SPS rats. Early intervention with a GR antagonist aids in the correction of traumatic stress-induced fear and anxiety dysregulation.


Subject(s)
Fear , Mifepristone , Animals , Corticosterone , Disease Models, Animal , Extinction, Psychological/physiology , Glucocorticoids/pharmacology , Mifepristone/pharmacology , Mifepristone/therapeutic use , Rats , Rats, Sprague-Dawley , Receptors, Glucocorticoid/metabolism
17.
Int J Mol Sci ; 23(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35163650

ABSTRACT

Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is overexpressed and activated in many cancer types. FAK regulates diverse cellular processes, including growth factor signaling, cell cycle progression, cell survival, cell motility, angiogenesis, and the establishment of immunosuppressive tumor microenvironments through kinase-dependent and kinase-independent scaffolding functions in the cytoplasm and nucleus. Mounting evidence has indicated that targeting FAK, either alone or in combination with other agents, may represent a promising therapeutic strategy for various cancers. In this review, we summarize the mechanisms underlying FAK-mediated signaling networks during tumor development. We also summarize the recent progress of FAK-targeted small-molecule compounds for anticancer activity from preclinical and clinical evidence.


Subject(s)
Focal Adhesion Kinase 1/physiology , Neoplasms , Animals , Antineoplastic Agents/pharmacology , Humans , Neoplasms/metabolism , Neoplasms/therapy , Tumor Microenvironment
18.
J Biomed Sci ; 28(1): 29, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33888099

ABSTRACT

BACKGROUND: Due to the difficulties in early diagnosing and treating hepatocellular carcinoma (HCC), prognoses for patients remained poor in the past decade. In this study, we established a screening model to discover novel prognostic biomarkers in HCC patients. METHODS: Candidate biomarkers were screened by liquid chromatography with tandem mass spectrometry (LC-MS/MS) analyses of five HCC normal (N)/tumor (T) paired tissues and preliminarily verified them through several in silico database analyses. Expression levels and functional roles of candidate biomarkers were respectively evaluated by immunohistochemical staining in N/T paired tissue (n = 120) and MTS, colony formation, and transwell migration/invasion assays in HCC cell lines. Associations of clinicopathological features and prognoses with candidate biomarkers in HCC patients were analyzed from GEO and TCGA datasets and our recruited cohort. RESULTS: We found that the transmembrane P24 trafficking protein 9 (TMED9) protein was elevated in HCC tissues according to a global proteomic analysis. Higher messenger (m)RNA and protein levels of TMED9 were observed in HCC tissues compared to normal liver tissues or pre-neoplastic lesions. The TMED9 mRNA expression level was significantly associated with an advanced stage and a poor prognosis of overall survival (OS, p = 0.00084) in HCC patients. Moreover, the TMED9 protein expression level was positively correlated with vascular invasion (p = 0.026), OS (p = 0.044), and disease-free survival (p = 0.015) in our recruited Taiwanese cohort. In vitro, manipulation of TMED9 expression in HCC cells significantly affected cell migratory, invasive, proliferative, and colony-forming abilities. CONCLUSIONS: Ours is the first work to identify an oncogenic role of TMED9 in HCC cells and may provide insights into the application of TMED9 as a novel predictor of clinical outcomes and a potential therapeutic target in patients with HCC.


Subject(s)
Carcinoma, Hepatocellular/physiopathology , Gene Expression , Liver Neoplasms/physiopathology , RNA, Messenger/metabolism , Vesicular Transport Proteins/analysis , Aged , Carcinoma, Hepatocellular/diagnosis , Chromatography, Liquid , Female , Humans , Liver Neoplasms/diagnosis , Male , Middle Aged , Prognosis , Proteomics , Tandem Mass Spectrometry
19.
J Nanobiotechnology ; 19(1): 308, 2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34627267

ABSTRACT

In Asia, including Taiwan, malignant tumors such as Hepatocellular carcinoma (HCC) one of the liver cancer is the most diagnosed subtype. Magnetic resonance imaging (MRI) has been a typical diagnostic method for accurately diagnosing HCC. When it is difficult to demonstrate non-enhanced MRI of tumors, radiologists can use contrast agents (such as Gd3+, Fe3O4, or FePt) for T1-weighted and T2-weighted imaging remain in the liver for a long time to facilitate diagnosis via MRI. However, it is sometimes difficult for T2-weighted imaging to detect small tumor lesions because the liver tissue may absorb iron ions. This makes early cancer detection a challenging goal. This challenge has prompted current research to create novel nanocomposites for enhancing the noise-to-signal ratio of MRI. To develop a method that can more efficiently diagnose and simultaneously treat HCC during MRI examination, we designed a functionalized montmorillonite (MMT) material with a porous structure to benefit related drugs, such as mitoxantrone (MIT) delivery or as a carrier for the FePt nanoparticles (FePt NPs) to introduce cancer therapy. Multifunctional FePt@MMT can simultaneously visualize HCC by enhancing MRI signals, treating various diseases, and being used as an inducer of magnetic fluid hyperthermia (MFH). After loading the drug MIT, FePt@MMT-MIT provides both MFH treatment and chemotherapy in one nanosystem. These results ultimately prove that functionalized FePt@MMT-MIT could be integrated as a versatile drugs delivery system by combining with MRI, chemotheraeutic drugs, and magnetic guide targeting.


Subject(s)
Carcinoma, Hepatocellular , Drug Carriers , Liver Neoplasms , Magnetic Resonance Imaging , Magnetite Nanoparticles , Animals , Bentonite/chemistry , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Contrast Media/chemistry , Contrast Media/toxicity , Drug Carriers/chemistry , Drug Carriers/toxicity , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/metabolism , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/toxicity , Male , Mice , Platinum/chemistry , Theranostic Nanomedicine
20.
Chin J Physiol ; 64(5): 218-224, 2021.
Article in English | MEDLINE | ID: mdl-34708713

ABSTRACT

Positive feeling or rewarding experience is crucial for individuals to operative their cognitive activities via an outcome evaluation of incentive reinforcement. For a long time, rewarding process or outcome evaluation is assumed greatly influenced by neuronal construct that holds individuals' impulsiveness, a capacity to inhibit unwanted behaviors provoked in a given situation. In the present study, we proposed that the outcome evaluation or rewarding experience can influence the occurrence of impulsiveness too. We hypothesized that animals would be more likely to deliver impulsive action in the place where it was previously associated with reinforcing process, in which central dopamine may play an important role. By employing five-choice serial reaction time task (5-CSRTT), we examined whether one of the five holes where rats made a correct response to get the reward would gain a higher probability to deliver premature or perseverative activities than other holes in the next trial of 5-CSRTT under baseline or longer waiting period condition. The effects of D1 receptor antagonist SCH23390 were also evaluated in the above paradigm. We demonstrated that (i) the influence on motoric impulsive response from previous rewarded experience can be described in a behavioral paradigm such as the 5-CSRTT, (ii) both prematures and perseverations at the hole associated with previous rewarding were about one-fifth of probability, however were statistically not correlated unless the interventions of inter-trial interval = 7 plus SCH23390, and (iii) the hole associated with the positive reinforcement of the 5-CSRTT appears more likely for rats to carry out an intuitive impetus under SCH23390 in a longer waiting condition. Our results may shed some insight toward the role of rewarding process in impulsive behavior.


Subject(s)
Impulsive Behavior , Reward , Animals , Dopamine , Rats , Reaction Time
SELECTION OF CITATIONS
SEARCH DETAIL