Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Environ Toxicol ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152744

ABSTRACT

Integrins, the receptors of the extracellular matrix, are critical in the proliferation and metastasis of cancer cells. GMI, a Ganoderma microsporum immunomodulatory protein, possesses anticancer and antivirus abilities. The object of this study is to investigate the role of GMI in the integrins signaling pathway in lung cancer cells that harbor the EGFR L858R/T790M double mutation and osimertinib-resistance. Liquid chromatography-mass spectrometry and western blot assay were used to investigate the effect of GMI on inhibiting the protein expressions of integrins in H1975 cells. The migration ability and xenograft tumor growth of H1975 were suppressed by GMI. To elucidate the role of the integrin family in lung cancer resistant to osimertinib (AZD-9291, Tagrisso), H1975 cells were used to establish the osimertinib-resistant cells, named H1975/TR cells. The expressions of Integrin αV and stemness markers were much higher in H1975/TR cells than in H1975 cells. GMI suppressed cell viability, tumor spheroid growth, and the expressions of integrin αV and ß1 in H1975/TR cells. Furthermore, GMI suppressed the expressions of stemness markers and formation of tumor spheres via blocking integrin αV signaling cascade. This is the first study to reveal the novel function of GMI in constraining cancer stem cells and migration by abolishing the integrin αV-related signaling pathway in EGFR-mutated and osimertinib-resistant lung cancer cells.

2.
J Cell Physiol ; 238(10): 2440-2450, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37682852

ABSTRACT

The incidence of endometrial cancer has been rising in recent years. Gene mutation and high protein expression of ß-catenin are commonly detected in endometrioid endometrial cancer. ICG-001 is a ß-catenin inhibitor via blocking the complex formation of ß-catenin and cAMP response element-binding protein (CREB)-binding protein (CBP). This study aims to investigate the effect of ICG-001 on endometrial cancer inhibition. First, endometrial carcinoma patient-derived xenograft (PDX)-derived organoids and primary cells were used to verify the inhibiting ability of ICG-001 on endometrial cancer. Furthermore, endometrial cancer cell lines were used to investigate the anticancer mechanism of ICG-001. Using MTT assay and tumor spheroid formation assay, ICG-001 significantly reduced the cell viability of HEC-59 and HEC-1A cells. ICG-001 enhanced cisplatin-mediated cytotoxicity. ICG-001 decreased cancer stem cell sphere formation. ICG-001 decreased the protein expressions of CD44, hexokinase 2 (HK2), and cyclin A. ICG-001 lowered the cell cycle progression by flow cytometer analysis. Autophagy, but no apoptosis, was activated by ICG-001 in endometrial cancer cells. Autophagy inhibition by ATG5 silencing enhanced ICG-001-mediated suppression of cell viability, tumor spheroid formation, and protein expression of cyclin A and CD44. This study clarified the mechanism and revealed the clinical potential of ICG-001 against endometrial cancer.

3.
J Cell Physiol ; 236(2): 1148-1157, 2021 02.
Article in English | MEDLINE | ID: mdl-32686156

ABSTRACT

Saracatinib is an oral Src-kinase inhibitor and has been studied in preclinical models and clinical trials of cancer therapy. GMI, a fungal immunomodulatory protein from Ganoderma microsporum, possesses antitumor capacity. The aim of this study is to evaluate the cytotoxic effect of combination treatment with saracatinib and GMI on parental and pemetrexed-resistant lung cancer cells. Cotreatment with saracatinib and GMI induced synergistic and additive cytotoxic effect in A549 and A400 cells by annexin V/propidium iodide assay and combination index. Using western blot assay, saracatinib, and GMI combined treatment synergistically induced caspase-7 activation in A549 cells. Different from A549 cells, saracatinib and GMI cotreatment markedly increased LC3B-II in A400 cells. ATG5 silencing abolished the caspase-7 activation and reduced cell death in A549 cells after cotreatment. This is the first study to provide a novel strategy of treating lung cancer with or without drug resistance via combination treatment with GMI and saracatinib.


Subject(s)
Autophagy-Related Protein 5/genetics , Benzodioxoles/pharmacology , Caspase 7/genetics , Enzyme Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Quinazolines/pharmacology , src-Family Kinases/genetics , A549 Cells , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Autophagy-Related Protein 5/antagonists & inhibitors , Cell Proliferation/drug effects , Fungal Proteins/chemistry , Fungal Proteins/pharmacology , Ganoderma/chemistry , Humans , Immunologic Factors/pharmacology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Synthetic Lethal Mutations/drug effects , Xenograft Model Antitumor Assays , src-Family Kinases/antagonists & inhibitors
4.
Br J Cancer ; 123(3): 449-458, 2020 08.
Article in English | MEDLINE | ID: mdl-32448867

ABSTRACT

BACKGROUND: Adaptive drug resistance is an unfavourable prognostic factor in cancer therapy. Pemetrexed-resistant lung cancer cells possess high-metastatic ability via ERK-ZEB1 pathway-activated epithelial-mesenchymal transition. GMI is a fungal immunomodulatory protein that suppresses the survival of several cancer cells. METHODS: Cell viability was analysed by MTT, clonogenic, tumour spheroid, and cancer stem cell sphere assays. Western blot assay was performed to detect the protein expression. Chemical inhibitors and ATG5 shRNA were used to inhibit autophagy. Tumour growth was investigated using xenograft mouse model. RESULTS: GMI decreased the viability with short- and long-term effects and induced autophagy but not apoptosis in A549/A400 cells. GMI downregulated the expression levels of CD133, CD44, NANOG and OCT4. GMI induces the protein degradation of CD133 via autophagy. CD133 silencing decreased the survival and proliferation of A549/A400 cells. GMI suppressed the growth and CD133 expression of A549/A400 xenograft tumour. CONCLUSIONS: This study is the first to reveal the novel function of GMI in eliciting cytotoxic effect and inhibiting CD133 expression in pemetrexed-resistant lung cancer cells via autophagy. Our finding provides evidence that CD133 is a potential target for cancer therapy.


Subject(s)
AC133 Antigen/metabolism , Drug Resistance, Neoplasm/drug effects , Ganoderma/metabolism , Immunologic Factors/administration & dosage , Lung Neoplasms/drug therapy , A549 Cells , AC133 Antigen/genetics , Animals , Autophagy , Autophagy-Related Protein 5/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Fungal Proteins/administration & dosage , Fungal Proteins/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunologic Factors/pharmacology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Male , Mice , Pemetrexed/administration & dosage , Pemetrexed/pharmacology , Proteolysis , Xenograft Model Antitumor Assays
5.
Environ Toxicol ; 33(9): 955-961, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29974605

ABSTRACT

ß-catenin is important in development of lung cancer. In our previous study, GMI, a fungal immunomodulatory protein, inhibits lung cancer cell survival. The aim of this study is to evaluate the effect of GMI on ß-catenin inhibition and apoptosis induction. GMI induced apoptosis in lung cancer cells bearing wild-type and mutated EGFR. GMI did not reduce the ß-catenin mRNA expression but suppressed the protein expressions of ß-catenin that resulted in the transcriptional downregulation of its target genes: survivin and cyclin-D1. The transcriptional activation activity of ß-catenin was demonstrated by TOPFLASH/FOPFLASH luciferase reporter assay. Inhibition of GSK-3ß and proteasome blocked the inhibiting effect of GMI on ß-catenin and its target genes. ß-catenin silencing increased activation of apoptosis in GMI-treated H1355 cells. This is the first study to reveal the novel function of GMI in inducing apoptosis via ß-catenin inhibition. These results provide a new potential of GMI in against lung cancer.


Subject(s)
Apoptosis/drug effects , Fungal Proteins/pharmacology , Ganoderma/metabolism , Immunologic Factors/pharmacology , Lung Neoplasms/pathology , beta Catenin/antagonists & inhibitors , Cell Line, Tumor , Cell Survival/drug effects , Down-Regulation , Glycogen Synthase Kinase 3 beta/metabolism , Humans , beta Catenin/metabolism
6.
Tumour Biol ; 36(7): 5389-98, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25680408

ABSTRACT

Growth signals are directly or indirectly involved in telomerase regulation. In this study, we investigated molecular mechanisms of the effect of EGF (epidermal growth factor) on regulating hTERT (human telomerase reverse transcriptase) expression. To elucidate specific transcription factors involved in EGF-stimulated hTERT transcription in A549 and H1299 lung cancer cells, transcription factors drives hTERT promoter activity, such as Myc, Mad, and Ets-2, was evaluated on luciferase reporter assay. The upregulation of hTERT promoter by Ets-2 and Myc were abolished by Mad. Using DAPA (DNA affinity precipitation assay), Ets-2 binding to SNP (T) was stronger than Ets-2 binding to SNP (C) at -245 bp upstream of the transcription start site within the core promoter of hTERT. Ets-2 silence by siRNA decreased hTERT expression at mRNA and protein levels. The regulation of hTERT promoter by EGF/Ets-2 was diminished via the EGFR kinase signal pathway-specific inhibitors AG1478 and Iressa. Inhibitors of Erk and Akt inhibited Ets-2-activated hTERT promoter activity. These data suggested that Ets-2, a genuine cancer-specific transcription factor, is actively involved in EGFR kinase-induced hTERT overexpression pathway in lung cancer cells. Blockage of this pathway may contribute to targeted gene therapy in lung cancer.


Subject(s)
Epidermal Growth Factor/genetics , ErbB Receptors/genetics , Lung Neoplasms/genetics , Proto-Oncogene Protein c-ets-2/metabolism , Telomerase/biosynthesis , Cell Line, Tumor , DNA-Binding Proteins , Epidermal Growth Factor/metabolism , ErbB Receptors/biosynthesis , Gene Expression Regulation, Enzymologic , Humans , Lung Neoplasms/pathology , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Proto-Oncogene Protein c-ets-2/genetics , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction/genetics , Telomerase/genetics , Transcription, Genetic
7.
Mol Pharm ; 12(5): 1534-43, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25811903

ABSTRACT

Cisplatin-based therapy is common in the treatment of several types of cancers, including lung cancers. In our previous study, GMI, an immunomodulatory protein cloned from Ganoderma microsporum, induced a cytotoxic effect in lung cancer cells via autophagy. The aim of this study is to examine the role of GMI in enhancing cisplatin-mediated cell death. On the basis of MTT assay and Combination Index, GMI and cisplatin cotreatment induced a synergistic cytotoxic effect. GMI and cisplatin-induced apoptosis was determined by sub-G1, nuclear condensation, and annexin-V/propidium iodide analyses. On Western blot, expressions of γH2AX and cleaved forms of PARP, caspase-3, and caspase-7 were induced by combined treatment. Akt/mTOR pathway activity, LC3-II expression, and acidic vesicular organelle development demonstrated that cisplatin does not abolish GMI-mediated autophagy. Cyto-ID Green/hoechst 33342 double staining and time-dependent experiment indicated that GMI and cisplatin-treated A549 cells simultaneously express autophagosomes and apoptotic nuclei. To elucidate the role of autophagy in inducing apoptosis by GMI and cisplatin, chemical inhibitors and LC3 shRNA were used to inhibit autophagy. The results showed that 3-methyladenine decreases, while chloroquine increases GMI and cisplatin cotreatment-induced cleavage of caspase-7 and PARP. LC3 silencing abolished activation of apoptosis in A549 cells. Caspase inhibitors and caspase-7 silencing mitigated GMI and cisplatin-elicited cell viability inhibition and apoptosis. This is the first study to reveal the novel function of GMI in potentiating cisplatin-mediated apoptosis. GMI and cisplatin induce apoptosis via autophagy/caspase-7-dependent and survivin- and ERCC1-independent pathway. GMI may be a potential cisplatin adjuvant against lung cancer.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Cisplatin/pharmacology , Fungal Proteins/pharmacology , Ganoderma/chemistry , Caspase 3/metabolism , Caspase 7/metabolism , Cell Line , Cell Survival/drug effects , Humans , Lung Neoplasms/metabolism
8.
Biomedicines ; 11(4)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37189810

ABSTRACT

The protein p53 is a well-known tumor suppressor that plays a crucial role in preventing cancer development [...].

9.
Chem Biol Interact ; 369: 110258, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36372261

ABSTRACT

Cisplatin is an effective chemotherapeutic drug against tumors. Studies often report on the improvement of kidney injury by probiotics or short-chain fatty acids (SCFAs); however, the effects of SCFAs on cisplatin-induced kidney injury are rarely studied. The aim of this study is to evaluate the function of sodium acetate on preventing cisplatin-induced kidney injury. Cell viability was detected by MTT assay. SA-ß-gal staining was performed to investigate premature senescence. Reactive oxygen species (ROS) production was analyzed by H2DCFDA staining. Propidium iodide (PI) staining was analyzed by cell cycle. Protein expression was determined by Western blot assay. Annexin Ⅴ/PI staining was used to investigate cisplatin-induced apoptosis. Tumor growth and kidney injury were evaluated in C57BL/6 mice. Sodium acetate ameliorated cisplatin-induced premature senescence and ROS production in SV40 MES-13 glomerular cells, NRK-52E renal tubular cells, and NRK-49F renal fibroblast cells. Cisplatin-induced cell cycle arrest was inhibited by sodium acetate in SV40 MES-13 and NRK-49F cells. Sodium acetate alleviated cisplatin-induced apoptosis in vivo and in vitro but not cisplatin-induced fibrosis. Our study demonstrated that sodium acetate inhibited cisplatin-induced premature senescence, cell cycle arrest, and apoptosis by attenuating ROS production. This strategy may be useful in the treatment of cisplatin-induced kidney injury.


Subject(s)
Acute Kidney Injury , Cisplatin , Mice , Animals , Cisplatin/toxicity , Cisplatin/metabolism , Sodium Acetate/pharmacology , Reactive Oxygen Species/metabolism , Cell Line , Mice, Inbred C57BL , Kidney/metabolism , Acute Kidney Injury/chemically induced , Apoptosis
10.
Microbiol Spectr ; 11(3): e0313022, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37212664

ABSTRACT

Cachexia is a lethal muscle-wasting syndrome associated with cancer and chemotherapy use. Mounting evidence suggests a correlation between cachexia and intestinal microbiota, but there is presently no effective treatment for cachexia. Whether the Ganoderma lucidum polysaccharide Liz-H exerts protective effects on cachexia and gut microbiota dysbiosis induced by the combination cisplatin plus docetaxel (cisplatin + docetaxel) was investigated. C57BL/6J mice were intraperitoneally injected with cisplatin + docetaxel, with or without oral administration of Liz-H. Body weight, food consumption, complete blood count, blood biochemistry, and muscle atrophy were measured. Next-generation sequencing was also performed to investigate changes to gut microbial ecology. Liz-H administration alleviated the cisplatin + docetaxel-induced weight loss, muscle atrophy, and neutropenia. Furthermore, upregulation of muscle protein degradation-related genes (MuRF-1 and Atrogin-1) and decline of myogenic factors (MyoD and myogenin) after treatment of cisplatin and docetaxel were prevented by Liz-H. Cisplatin and docetaxel treatment resulted in reducing comparative abundances of Ruminococcaceae and Bacteroides, but Liz-H treatment restored these to normal levels. This study indicates that Liz-H is a good chemoprotective reagent for cisplatin + docetaxel-induced cachexia. IMPORTANCE Cachexia is a multifactorial syndrome driven by metabolic dysregulation, anorexia, systemic inflammation, and insulin resistance. Approximately 80% of patients with advanced cancer have cachexia, and cachexia is the cause of death in 30% of cancer patients. Nutritional supplementation has not been shown to reverse cachexia progression. Thus, developing strategies to prevent and/or reverse cachexia is urgent. Polysaccharide is a major biologically active compound in the fungus Ganoderma lucidum. This study is the first to report that G. lucidum polysaccharides could alleviate chemotherapy-induced cachexia via reducing expression of genes that are known to drive muscle wasting, such as MuRF-1 and Atrogin-1. These results suggest that Liz-H is an effective treatment for cisplatin + docetaxel-induced cachexia.


Subject(s)
Muscular Diseases , Neoplasms , Reishi , Mice , Animals , Cisplatin/adverse effects , Cachexia/chemically induced , Cachexia/drug therapy , Docetaxel/adverse effects , Mice, Inbred C57BL , Muscular Atrophy/chemically induced , Muscular Atrophy/drug therapy , Muscular Diseases/chemically induced , Muscular Diseases/complications , Polysaccharides/therapeutic use
11.
Toxicol Appl Pharmacol ; 263(3): 330-7, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22800509

ABSTRACT

Endoplasmic reticulum (ER) stress is activated under severe cellular conditions. GADD153, a member of the C/EBP family, is an unfolded protein response (UPR) responsive transcription factor. Increased levels of lipocalin 2, an acute phase protein, have been found in several epithelial cancers. The aim of this study is to investigate the function of lipocalin 2 in lung cancer cells under ER stress. Treatment with thapsigargin, an ER stress activator, led to increases in cytotoxicity, ER stress, apoptosis, and lipocalin 2 expression in A549 cells. GADD153 silencing decreased lipocalin 2 expression in A549 cells. On chromatin immunoprecipitation assay, ER stress increased GADD153 DNA binding to lipocalin 2 promoter. Furthermore, silencing of lipocalin 2 mitigated ER stress-mediated apoptosis in A549 cells. Our findings demonstrated that lipocalin 2 is a new GADD153 target gene that mediates ER stress-induced apoptosis.


Subject(s)
Acute-Phase Proteins/metabolism , Apoptosis , Endoplasmic Reticulum Stress , Lipocalins/metabolism , Lung Neoplasms/pathology , Proto-Oncogene Proteins/metabolism , Transcription Factor CHOP/genetics , Apoptosis/drug effects , Cell Line, Tumor , Chromatin Immunoprecipitation , Endoplasmic Reticulum Stress/drug effects , Gene Silencing , Humans , Lipocalin-2 , Thapsigargin/pharmacology
12.
Chem Biol Interact ; 368: 110177, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36100036

ABSTRACT

Cyclosporin A is an immunosuppressive drug with anti-cancer effect. Arsenic trioxide (As2O3), a well-known cancer-inhibiting drug, induced cytotoxicity via apoptosis and autophagy. The aim of this study is to evaluate the effect of combinational treatment with cyclosporin A and arsenic trioxide on cell viability inhibition in cervical cancer cells. Using MTT assay and combination index, combinational treatment with cyclosporin A and arsenic trioxide induced a synergistic cytotoxic effect in Caski and SiHa cells. Cyclosporin A and arsenic trioxide triggered cell death via non-apoptotic pathway by using annexin V/propidium iodide (PI) assay. Cyclosporin A and arsenic trioxide combined treatment decreased mitochondrial membrane potential and increase reactive oxygen species (ROS) generation. This co-treatment increased LC3B-II expression and autophagosome formation in cervical cancer cells. This study first demonstrated that combinational treatment with cyclosporin A and As2O3 trigger synergistic cytotoxic effect via autophagy in cervical cancer cells.


Subject(s)
Antineoplastic Agents , Arsenicals , Uterine Cervical Neoplasms , Female , Humans , Arsenic Trioxide/pharmacology , Uterine Cervical Neoplasms/drug therapy , Cyclosporine/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Arsenicals/pharmacology , Oxides/pharmacology , Cell Line, Tumor
13.
Cells ; 10(11)2021 10 27.
Article in English | MEDLINE | ID: mdl-34831139

ABSTRACT

Gene mutations in PIK3CA, PIK3R1, KRAS, PTEN, and PPP2R1A commonly detected in type I endometrial cancer lead to PI3K/Akt/mTOR pathway activation. Bimiralisib (PQR309), an orally bioavailable selective dual inhibitor of PI3K and mTOR, has been studied in preclinical models and clinical trials. The aim of this study is to evaluate the anticancer effect of PQR309 on endometrial cancer cells. PQR309 decreased cell viability in two-dimensional and three-dimensional cell culture models. PQR309 induced G1 cell cycle arrest and little cell death in endometrial cancer cell lines. It decreased CDK6 expression and increased p27 expression. Using the Proteome Profiler Human XL Oncology Array and Western blot assay, the dual inhibitor could inhibit the expressions of c-Myc and mtp53. KJ-Pyr-9, a c-Myc inhibitor, was used to prove the role of c-Myc in endometrial cancer survival and regulating the expression of mtp53. Knockdown of mtp53 lowered cell proliferation, Akt/mTOR pathway activity, and the expressions of c-Myc. mtp53 silence enhanced PQR309-inhibited cell viability, spheroid formation, and the expressions of p-Akt, c-Myc, and CDK6. This is the first study to reveal the novel finding of the PI3K/mTOR dual inhibitor in lowering cell viability by abolishing the PI3K/Akt/mTOR/c-Myc/mtp53 positive feedback loop in endometrial cancer cell lines.


Subject(s)
Endometrial Neoplasms/pathology , Feedback, Physiological , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-myc/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/metabolism , Autophagy/drug effects , Cell Cycle Checkpoints/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Endometrial Neoplasms/metabolism , Female , Humans , Models, Biological , Mutant Proteins/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology
14.
Toxicol Lett ; 352: 17-25, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34571076

ABSTRACT

Angiopoietin-like protein 4 (ANGPTL4) is a hypoxia-induced gene, and its high expression is associated with poor prognosis and promotion of tumour progression in several cancers. Some studies reported that ANGPTL4 is affected by epigenetic regulation. Our previous results demonstrated that ANGPTL4 is highly expressed in most lung cancer cell lines than in normal cell lines and is upregulated by HIF-1α accumulation under NiCl2 exposure. The accurate role of ANGPTL4 and its methylation status caused by nickel in the lung carcinogenesis is not fully explored yet. In this study, we found that ANGPTL4 and HIF-1α in lung adenocarcinoma (LUAD) tissues were significantly upregulated compared with those in normal tissues in The Cancer Genome Atlas (TCGA) cohort (p < 0.001). The ANGPTL4 expression was statistically correlated to advanced stage (p = 0.019) and N value (p = 0.002). The Kaplan-Meier analysis revealed that ANGPTL4 and HIF-1α expression levels were independently associated with the 5-year survival of patients with LUAD in TCGA database and immunohistochemistry staining. In vitro experiments indicated that ANGPTL4 was upregulated by the demethylation agent. The methylation-specific PCR and bisulfite sequencing assessed the methylation status of the ANGPTL4 promoter, and results showed that NiCl2-treated cells had low ANGPTL4 methylation status. We further demonstrated that the DNA demethylase, TET1, was significantly increased under NiCl2 exposure. The knockdown of TET1 expression repressed the NiCl2-induced ANGPTL4. We also showed that nickel-induced TET1 was stimulated by HIF-1α. Our work established ANGPTL4 as a potential oncogene that contributes to lung cancer progression and nickel-elicited carcinogenesis.


Subject(s)
Angiopoietin-Like Protein 4/metabolism , Gene Expression Regulation/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lung/pathology , Mixed Function Oxygenases/metabolism , Nickel/toxicity , Proto-Oncogene Proteins/metabolism , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Aged , Angiopoietin-Like Protein 4/genetics , Bronchi/cytology , Cell Line, Tumor , Epithelial Cells/drug effects , Female , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Middle Aged , Mixed Function Oxygenases/genetics , Proto-Oncogene Proteins/genetics
15.
Cancer Manag Res ; 13: 9305-9318, 2021.
Article in English | MEDLINE | ID: mdl-35221721

ABSTRACT

PURPOSE: Pemetrexed-based chemotherapy (Pem-C) is the first-line chemotherapy for advanced non-squamous non-small cell lung cancer (NSCLC). However, limited tumor-associated proteins in blood are available to predict pemetrexed response and/or survival. PATIENTS AND METHODS: Plasma samples from three responders and three nonresponders with stage IIIB-IV NSCLC were collected prior to Pem-C and analyzed using Proteome ProfilerTM Human XL Oncology Array to detect 84 oncology-related proteins. The plasma concentrations of cathepsin S, endoglin (ENG), and matrix metalloproteinases 3 and 9 in 71 patients with advanced NSCLC treated with Pem-C were further measured using enzyme-linked immunosorbent assay based on the remarkable differences in the four proteins between responders and nonresponders in the array results. RESULTS: Pem-C responders had significantly higher ENG levels but not the other three markers than nonresponders (mean ENG level: 27.1 ± 7.4 vs 22.3 ± 6.9, p < 0.01). High ENG concentration was correlated with improved progression-free survival (hazard ratio [HR]: 0.52, 95% confidence interval [CI]: 0.31-0.86, p < 0.01) and overall survival (HR: 0.55, 95% CI: 0.32-0.94, p < 0.05) in patients treated with Pem-C, and the ENG level was an independent factor in our cohort (HR: 0.54, 95% CI: 0.33-0.89, p < 0.05). ENG concentration in Pem-C responders also significantly increased at the time of best response (p < 0.05). CONCLUSION: Cumulatively, this study reveals that ENG is correlated with Pem-C responsiveness in patients, which indicates the potential use of plasma ENG levels as a non-invasive biomarker for pemetrexed-based treatment in patients with non-squamous NSCLC.

16.
Mutat Res ; 688(1-2): 72-7, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20363232

ABSTRACT

Curcumin is a natural compound that has been extensively observed due to its potential as an anticancer drug. Curcumin restrains cancer cell progression via telomerase activity suppression. However, the exact mechanism is still unknown. In this study, we demonstrate that the effects of curcumin on cell viability and telomerase activity can be blunted by reactive oxygen species (ROS) inhibitor N-acetyl cysteine (NAC). The ROS induced by curcumin in A549 cells was detected by flow cytometry. Using Western blot and RT-PCR, human telomerase reverse transcriptase (hTERT) decreased in the presence of curcumin. Sp1 is one of the important transcription factors in hTERT expression. Our data showed that curcumin decreases the expression of Sp1 through proteasome pathway. In addition, NAC blunted the Sp1 reduction and hTERT downregulation by curcumin. Further, reporter assay and DNA affinity precipitation assay confirmed the influence of curcumin on Sp1 in hTERT regulation. This is the first study to demonstrate that curcumin induces ROS production resulting in Sp1 binding activity inhibition and hTERT downregulation.


Subject(s)
Acetylcysteine/pharmacology , Adenocarcinoma/metabolism , Curcumin/pharmacology , Lung Neoplasms/metabolism , Sp1 Transcription Factor/antagonists & inhibitors , Cell Line, Tumor , Cell Shape/drug effects , Cell Survival/drug effects , Down-Regulation , Humans , Reactive Oxygen Species , Telomerase/antagonists & inhibitors , Telomerase/metabolism
17.
Cancers (Basel) ; 12(1)2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31906234

ABSTRACT

ABT-737, a B cell lymphoma-2 (Bcl-2) family inhibitor, activates apoptosis in cancer cells. Arsenic trioxide is an apoptosis activator that impairs cancer cell survival. The aim of this study was to evaluate the effect of a combination treatment with ABT-737 and arsenic trioxide on uterine cervical cancer cells. MTT (3-(4,5-dimethylthiazol-2-yl)-25-diphenyltetrazolium bromide) assay revealed that ABT-737 and arsenic trioxide induced a synergistic effect on uterine cervical cancer cells. Arsenic trioxide enhanced ABT-737-induced apoptosis and caspase-7 activation and the ABT-737-mediated reduction of anti-apoptotic protein Mcl-1 in Caski cells. Western blot assay revealed that arsenic trioxide promoted the ABT-737-mediated reduction of CDK6 and thymidylate synthetase in Caski cells. Arsenic trioxide promoted ABT-737-inhibited mitochondrial membrane potential and ABT-737-inhibited ANT expression in Caski cells. However, ABT-737-elicited reactive oxygen species were not enhanced by arsenic trioxide. The combined treatment induced an anti-apoptosis autophagy in SiHa cells. This study is the first to demonstrate that a combination treatment with ABT-737 and arsenic trioxide induces a synergistic effect on uterine cervical cancer cells through apoptosis. Our findings provide new insights into uterine cervical cancer treatment.

18.
Mol Neurobiol ; 55(11): 8403-8413, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29549646

ABSTRACT

POU-homeodomain transcription factor POU3F2 is a critical transcription factor that participates in neuronal differentiation. However, little is known about its downstream mediators. Here genome-wide analyses of a human neuronal differentiation cell model, NT2D1, suggested neurotrophin-3 (NTF3), a key mediator of neuronal development during the early neurogenic period, as a putative regulatory target of POU3F2. Western blot, cDNA microarray, and real-time quantitative PCR analyses showed that POU3F2 and NTF3 were upregulated during neuronal differentiation. Next-generation-sequence-based POU3F2 chromatin immunoprecipitation-sequencing and genome-wide in silico prediction demonstrated that POU3F2 binds to the NTF3 promoter during neuronal differentiation. Furthermore, unidirectional deletion or mutation of the binding site of POU3F2 in the NTF3 promoter decreased promoter-driven luciferase activity, indicating that POU3F2 is a positive regulator of NTF3 promoter activity. While NTF3 knockdown resulted in decreased viability and differentiation of NT2D1 cells, and POU3F2 knockdown downregulated NTF3 expression, recombinant NTF3 significantly rescued viable neuronal cells from NTF3- or POU3F2-knockdown cell cultures. Moreover, immunostaining showed colocalization of POU3F2 and NTF3 in developing mouse neurons. Thus, our data suggest that NTF3 is a novel target gene of POU3F2 and that the POU3F2/NTF3 pathway plays a role in the process of neuronal differentiation.


Subject(s)
Cell Differentiation , Homeodomain Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Neurotrophin 3/genetics , POU Domain Factors/metabolism , Animals , Base Sequence , Cell Differentiation/genetics , Female , Gene Silencing/drug effects , Humans , Mice, Inbred C57BL , Neurotrophin 3/metabolism , Promoter Regions, Genetic , Protein Binding/drug effects , Recombinant Proteins/pharmacology , Transcriptional Activation/genetics , Up-Regulation/drug effects , Up-Regulation/genetics
19.
Ind Health ; 55(4): 345-353, 2017 Aug 08.
Article in English | MEDLINE | ID: mdl-28420806

ABSTRACT

The welding is the major working process in fitness equipment manufacturing industry, and International Agency for Research on Cancer has classified welding fumes as possibly carcinogenic to humans (Group 2B). The present study aimed to evaluate associations between the occupational exposure of metals and oxidative damage and telomere length shortening in workers involved in the manufacture of fitness equipment. The blood metal concentrations were monitored and malondialdehyde (MDA), alkaline Comet assay was determined as oxidative damage in 117 workers from two representative fitness equipment manufacturing plants. MDA levels varied according to workers' roles at the manufacturing plants, and showed a trend as cutting>painting>welding>administration workers. Welders had marginally shorter average telomere lengths than the administrative workers (p=0.058). Cr and Mn levels were significantly greater in welders than they were in administrative workers. There were significantly positive correlations between MDA and Cr and Mn levels, the major components of welding fume. However, the association would be eliminated if co-metals exposure were considered simultaneously. In future, telomere length and MDA might be potential biomarkers for predicting cardiovascular disease in co-metals exposed workers.


Subject(s)
Metals, Heavy/blood , Occupational Exposure/analysis , Telomere Shortening , Welding , Adult , Air Pollutants, Occupational/analysis , Biomarkers/analysis , DNA Damage , Female , Humans , Male , Malondialdehyde/blood , Oxidative Stress , Taiwan/epidemiology
20.
Cell Death Dis ; 8(10): e3089, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28981104

ABSTRACT

Hispolon, a phenolic compound isolated from Phellinus igniarius, induces apoptosis and anti-tumor effects in cancers. However, the molecular mechanism involved in hispolon-mediated tumor-suppressing activities observed in cervical cancer is poorly characterized. Here, we demonstrated that treatment with hispolon inhibited cell metastasis in two cervical cancer cell lines. In addition, the downregulation of the lysosomal protease Cathepsin S (CTSS) was critical for hispolon-mediated suppression of tumor cell metastasis in both in vitro and in vivo models. Moreover, hispolon induced autophagy, which increased LC3 conversion and acidic vesicular organelle formation. Mechanistically, hispolon inhibited the cell motility of cervical cells through the extracellular signal-regulated kinase (ERK) pathway, and blocking of the ERK pathway reversed autophagy-mediated cell motility and CTSS inhibition. Our results indicate that autophagy is essential for decreasing CTSS activity to inhibit tumor metastasis by hispolon treatment in cervical cancer; this finding provides a new perspective on molecular regulation.


Subject(s)
Autophagy/drug effects , Catechols/administration & dosage , Cathepsins/genetics , Uterine Cervical Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Apoptosis/genetics , Autophagy/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Cell Movement/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Neoplasm Metastasis , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL