Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nat Immunol ; 19(10): 1137-1145, 2018 10.
Article in English | MEDLINE | ID: mdl-30224821

ABSTRACT

Numerous microRNAs and their target mRNAs are coexpressed across diverse cell types. However, it is unknown whether they are regulated in a manner independent of or dependent on cellular context. Here, we explored transcriptome-wide targeting and gene regulation by miR-155, whose activation-induced expression plays important roles in innate and adaptive immunity. Through mapping of miR-155 targets through differential iCLIP, mRNA quantification with RNA-seq, and 3' untranslated region (UTR)-usage analysis with poly(A)-seq in macrophages, dendritic cells, and T and B lymphocytes either sufficient or deficient in activated miR-155, we identified numerous targets differentially bound by miR-155. Whereas alternative cleavage and polyadenylation (ApA) contributed to differential miR-155 binding to some transcripts, in most cases, identical 3'-UTR isoforms were differentially regulated across cell types, thus suggesting ApA-independent and cellular-context-dependent miR-155-mediated gene regulation. Our study provides comprehensive maps of miR-155 regulatory networks and offers a valuable resource for dissecting context-dependent and context-independent miRNA-mediated gene regulation in key immune cell types.


Subject(s)
B-Lymphocytes/immunology , Dendritic Cells/immunology , Gene Expression Regulation/immunology , Macrophages/immunology , MicroRNAs/immunology , T-Lymphocytes/immunology , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout
2.
Immunity ; 43(1): 52-64, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26163372

ABSTRACT

MicroRNA (miRNA)-dependent regulation of gene expression confers robustness to cellular phenotypes and controls responses to extracellular stimuli. Although a single miRNA can regulate expression of hundreds of target genes, it is unclear whether any of its distinct biological functions can be due to the regulation of a single target. To explore in vivo the function of a single miRNA-mRNA interaction, we mutated the 3' UTR of a major miR-155 target (SOCS1) to specifically disrupt its regulation by miR-155. We found that under physiologic conditions and during autoimmune inflammation or viral infection, some immunological functions of miR-155 were fully or largely attributable to the regulation of SOCS1, whereas others could be accounted only partially or not at all by this interaction. Our data suggest that the role of a single miRNA-mRNA interaction is dependent on cell type and biological context.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Killer Cells, Natural/immunology , MicroRNAs/genetics , Suppressor of Cytokine Signaling Proteins/genetics , T-Lymphocytes, Regulatory/immunology , 3' Untranslated Regions/genetics , Animals , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Gene Expression Profiling , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Killer Cells, Natural/transplantation , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Muromegalovirus/immunology , Mutation , RNA, Messenger/genetics , Suppressor of Cytokine Signaling 1 Protein
3.
Genes Dev ; 26(19): 2119-37, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23028141

ABSTRACT

The C-terminal domain (CTD) of the RNA polymerase II largest subunit consists of multiple heptad repeats (consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7), varying in number from 26 in yeast to 52 in vertebrates. The CTD functions to help couple transcription and processing of the nascent RNA and also plays roles in transcription elongation and termination. The CTD is subject to extensive post-translational modification, most notably phosphorylation, during the transcription cycle, which modulates its activities in the above processes. Therefore, understanding the nature of CTD modifications, including how they function and how they are regulated, is essential to understanding the mechanisms that control gene expression. While the significance of phosphorylation of Ser2 and Ser5 residues has been studied and appreciated for some time, several additional modifications have more recently been added to the CTD repertoire, and insight into their function has begun to emerge. Here, we review findings regarding modification and function of the CTD, highlighting the important role this unique domain plays in coordinating gene activity.


Subject(s)
RNA Polymerase II/metabolism , RNA Processing, Post-Transcriptional/physiology , Transcription, Genetic/physiology , Animals , Chromatin/genetics , Chromatin/metabolism , Humans , Phosphoprotein Phosphatases/metabolism , Protein Kinases/metabolism , Protein Structure, Tertiary
4.
iScience ; 27(6): 109913, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38799557

ABSTRACT

Here, we show that a NOT gated cell therapy (Tmod) can exploit antigens such as epidermal growth factor receptor (EGFR) and human leukocyte antigen-E (HLA-E) which are widely expressed on cancer cells. Noncancerous cells-despite high expression of these antigens-are protected from cytotoxicity by the action of an inhibitory receptor ("blocker") via a mechanism that involves blocker modulation of CAR surface expression. The blocker is triggered by the product of a polymorphic HLA allele (e.g., HLA-A∗02) deleted in a significant subset of solid tumors via loss of heterozygosity. Moreover, Tmod constructs that target mouse homologs of EGFR or HLA-E for activation, and a mouse-equivalent of HLA-A∗02 for inhibition, protect mice from toxicity caused by the CAR alone. The blocker also controls graft vs. host response in allogeneic T cells in vitro, consistent with the use of Tmod cells for off-the-shelf therapy without additional gene-editing.

5.
Mol Cell Biol ; 34(13): 2488-98, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24752900

ABSTRACT

The C-terminal domain of the RNA polymerase II largest subunit (the Rpb1 CTD) is composed of tandem heptad repeats of the consensus sequence Y(1)S(2)P(3)T(4)S(5)P(6)S(7). We reported previously that Thr 4 is phosphorylated and functions in histone mRNA 3'-end formation in chicken DT40 cells. Here, we have extended our studies on Thr 4 and to other CTD mutations by using these cells. We found that an Rpb1 derivative containing only the N-terminal half of the CTD, as well as a similar derivative containing all-consensus repeats (26r), conferred full viability, while the C-terminal half, with more-divergent repeats, did not, reflecting a strong and specific defect in snRNA 3'-end formation. Mutation in 26r of all Ser 2 (S2A) or Ser 5 (S5A) residues resulted in lethality, while Ser 7 (S7A) mutants were fully viable. While S2A and S5A cells displayed defects in transcription and RNA processing, S7A cells behaved identically to 26r cells in all respects. Finally, we found that Thr 4 was phosphorylated by cyclin-dependent kinase 9 in cells and dephosphorylated both in vitro and in vivo by the phosphatase Fcp1.


Subject(s)
Cyclin-Dependent Kinase 9/genetics , Phosphoprotein Phosphatases/genetics , RNA Polymerase II/genetics , RNA Processing, Post-Transcriptional , Threonine/chemistry , Amino Acid Sequence , Animals , Cell Line , Chickens , HEK293 Cells , Humans , Mutation , Phosphorylation/genetics , Protein Subunits/genetics , RNA, Small Nuclear/biosynthesis , RNA, Small Nuclear/genetics , Threonine/genetics , Transcription, Genetic
6.
Elife ; 3: e02112, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24842995

ABSTRACT

The RNA polymerase II largest subunit (Rpb1) contains a unique C-terminal domain (CTD) that plays multiple roles during transcription. The CTD is composed of consensus Y(1)S(2)P(3)T(4)S(5)P(6)S(7) repeats, in which Ser, Thr and Tyr residues can all be phosphorylated. Here we report analysis of CTD Tyr1 using genetically tractable chicken DT40 cells. Cells expressing an Rpb1 derivative with all Tyr residues mutated to Phe (Rpb1-Y1F) were inviable. Remarkably, Rpb1-Y1F was unstable, degraded to a CTD-less form; however stability, but not cell viability, was fully rescued by restoration of a single C-terminal Tyr (Rpb1-25F+Y). Cytoplasmic and nucleoplasmic Rpb1 was phosphorylated exclusively on Tyr1, and phosphorylation specifically of Tyr1 prevented CTD degradation by the proteasome in vitro. Tyr1 phosphorylation was also detected on chromatin-associated, hyperphosphorylated Rpb1, consistent with a role in transcription. Indeed, we detected accumulation of upstream antisense (ua) RNAs in Rpb1-25F+Y cells, indicating a role for Tyr1 in uaRNA expression.DOI: http://dx.doi.org/10.7554/eLife.02112.001.


Subject(s)
RNA Polymerase II/metabolism , Tyrosine/metabolism , Animals , Cell Line , Chickens , Phosphorylation , RNA Polymerase II/chemistry
7.
Science ; 334(6056): 683-6, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-22053051

ABSTRACT

The RNA polymerase II (RNAP II) largest subunit contains a C-terminal domain (CTD) with up to 52 Tyr(1)-Ser(2)-Pro(3)-Thr(4)-Ser(5)-Pro(6)-Ser(7) consensus repeats. Serines 2, 5, and 7 are known to be phosphorylated, and these modifications help to orchestrate the interplay between transcription and processing of messenger RNA (mRNA) precursors. Here, we provide evidence that phosphorylation of CTD Thr(4) residues is required specifically for histone mRNA 3' end processing, functioning to facilitate recruitment of 3' processing factors to histone genes. Like Ser(2), Thr(4) phosphorylation requires the CTD kinase CDK9 and is evolutionarily conserved from yeast to human. Our data thus illustrate how a CTD modification can play a highly specific role in facilitating efficient gene expression.


Subject(s)
Histones/genetics , RNA 3' End Processing , RNA Polymerase II/metabolism , RNA, Messenger/metabolism , Threonine/metabolism , Amino Acid Sequence , Animals , Cell Line , Cell Survival , Chickens , Cleavage And Polyadenylation Specificity Factor/metabolism , Cyclin-Dependent Kinase 9/metabolism , Humans , Molecular Sequence Data , Nuclear Proteins/metabolism , Phosphorylation , RNA Polymerase II/chemistry , mRNA Cleavage and Polyadenylation Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL