Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Cell ; 187(5): 1296-1311.e26, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38428397

ABSTRACT

Most membrane proteins are modified by covalent addition of complex sugars through N- and O-glycosylation. Unlike proteins, glycans do not typically adopt specific secondary structures and remain very mobile, shielding potentially large fractions of protein surface. High glycan conformational freedom hinders complete structural elucidation of glycoproteins. Computer simulations may be used to model glycosylated proteins but require hundreds of thousands of computing hours on supercomputers, thus limiting routine use. Here, we describe GlycoSHIELD, a reductionist method that can be implemented on personal computers to graft realistic ensembles of glycan conformers onto static protein structures in minutes. Using molecular dynamics simulation, small-angle X-ray scattering, cryoelectron microscopy, and mass spectrometry, we show that this open-access toolkit provides enhanced models of glycoprotein structures. Focusing on N-cadherin, human coronavirus spike proteins, and gamma-aminobutyric acid receptors, we show that GlycoSHIELD can shed light on the impact of glycans on the conformation and activity of complex glycoproteins.


Subject(s)
Glycoproteins , Molecular Dynamics Simulation , Humans , Cryoelectron Microscopy , Glycoproteins/chemistry , Glycosylation , Polysaccharides/chemistry
2.
J Biol Chem ; 300(1): 105553, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072060

ABSTRACT

Proteins can spontaneously tie a variety of intricate topological knots through twisting and threading of the polypeptide chains. Recently developed artificial intelligence algorithms have predicted several new classes of topological knotted proteins, but the predictions remain to be authenticated experimentally. Here, we showed by X-ray crystallography and solution-state NMR spectroscopy that Q9PR55, an 89-residue protein from Ureaplasma urealyticum, possesses a novel 71 knotted topology that is accurately predicted by AlphaFold 2, except for the flexible N terminus. Q9PR55 is monomeric in solution, making it the smallest and most complex knotted protein known to date. In addition to its exceptional chemical stability against urea-induced unfolding, Q9PR55 is remarkably robust to resist the mechanical unfolding-coupled proteolysis by a bacterial proteasome, ClpXP. Our results suggest that the mechanical resistance against pulling-induced unfolding is determined by the complexity of the knotted topology rather than the size of the molecule.


Subject(s)
Artificial Intelligence , Bacterial Proteins , Protein Folding , Ureaplasma urealyticum , Models, Molecular , Peptides , Bacterial Proteins/chemistry , Protein Structure, Tertiary
3.
J Biol Chem ; 300(5): 107230, 2024 May.
Article in English | MEDLINE | ID: mdl-38537699

ABSTRACT

Arsenite-induced stress granule (SG) formation can be cleared by the ubiquitin-proteasome system aided by the ATP-dependent unfoldase p97. ZFAND1 participates in this pathway by recruiting p97 to trigger SG clearance. ZFAND1 contains two An1-type zinc finger domains (ZF1 and ZF2), followed by a ubiquitin-like domain (UBL); but their structures are not experimentally determined. To shed light on the structural basis of the ZFAND1-p97 interaction, we determined the atomic structures of the individual domains of ZFAND1 by solution-state NMR spectroscopy and X-ray crystallography. We further characterized the interaction between ZFAND1 and p97 by methyl NMR spectroscopy and cryo-EM. 15N spin relaxation dynamics analysis indicated independent domain motions for ZF1, ZF2, and UBL. The crystal structure and NMR structure of UBL showed a conserved ß-grasp fold homologous to ubiquitin and other UBLs. Nevertheless, the UBL of ZFAND1 contains an additional N-terminal helix that adopts different conformations in the crystalline and solution states. ZFAND1 uses the C-terminal UBL to bind to p97, evidenced by the pronounced line-broadening of the UBL domain during the p97 titration monitored by methyl NMR spectroscopy. ZFAND1 binding induces pronounced conformational heterogeneity in the N-terminal domain of p97, leading to a partial loss of the cryo-EM density of the N-terminal domain of p97. In conclusion, this work paved the way for a better understanding of the interplay between p97 and ZFAND1 in the context of SG clearance.


Subject(s)
Intracellular Signaling Peptides and Proteins , Models, Molecular , Stress Granules , Valosin Containing Protein , Humans , Arsenites/metabolism , Arsenites/chemistry , Crystallography, X-Ray , Protein Binding , Protein Domains , Stress Granules/metabolism , Ubiquitin/metabolism , Valosin Containing Protein/metabolism , Valosin Containing Protein/chemistry , Valosin Containing Protein/genetics , Zinc Fingers , Protein Folding , Magnetic Resonance Imaging , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism
4.
Biochem Biophys Res Commun ; 696: 149470, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38244314

ABSTRACT

Knotted proteins are fascinating to biophysicists because of their robust ability to fold into intricately defined three-dimensional structures with complex and topologically knotted arrangements. Exploring the biophysical properties of the knotted proteins is of significant interest, as they could offer enhanced chemical, thermal, and mechanostabilities. A true mathematical knot requires a closed path; in contrast, knotted protein structures have open N- and C-termini. To address the question of how a truly knotted protein differs from the naturally occurring counterpart, we enzymatically cyclized a 31 knotted YibK protein from Haemophilus influenza (HiYibK) to investigate the impact of path closure on its structure-function relationship and folding stability. Through the use of a multitude of structural and biophysical tools, including X-ray crystallography, NMR spectroscopy, small angle X-ray scattering, differential scanning calorimetry, and isothermal calorimetry, we showed that the path closure minimally perturbs the native structure and ligand binding of HiYibK. Nevertheless, the cyclization did alter the folding stability and mechanism according to chemical and thermal unfolding analysis. These molecular insights contribute to our fundamental understanding of protein folding and knotting that could have implications in the protein design with higher stabilities.


Subject(s)
Protein Folding , Proteins , Cyclization , Models, Molecular , Proteins/chemistry , Crystallography, X-Ray , Protein Conformation
5.
Nat Chem Biol ; 18(1): 81-90, 2022 01.
Article in English | MEDLINE | ID: mdl-34754101

ABSTRACT

Emerging evidence suggests that host glycans influence severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we reveal that the receptor-binding domain (RBD) of the spike (S) protein on SARS-CoV-2 recognizes oligosaccharides containing sialic acid (Sia), with preference for monosialylated gangliosides. Gangliosides embedded within an artificial membrane also bind to the RBD. The monomeric affinities (Kd = 100-200 µM) of gangliosides for the RBD are similar to another negatively charged glycan ligand of the RBD proposed as a viral co-receptor, heparan sulfate (HS) dp2-dp6 oligosaccharides. RBD binding and infection of SARS-CoV-2 pseudotyped lentivirus to angiotensin-converting enzyme 2 (ACE2)-expressing cells is decreased following depletion of cell surface Sia levels using three approaches: sialyltransferase (ST) inhibition, genetic knockout of Sia biosynthesis, or neuraminidase treatment. These effects on RBD binding and both pseudotyped and authentic SARS-CoV-2 viral entry are recapitulated with pharmacological or genetic disruption of glycolipid biosynthesis. Together, these results suggest that sialylated glycans, specifically glycolipids, facilitate viral entry of SARS-CoV-2.


Subject(s)
Glycolipids/metabolism , SARS-CoV-2/metabolism , Sialic Acids/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , Humans
6.
Proteomics ; 23(20): e2300143, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37271932

ABSTRACT

Complete coverage of all N-glycosylation sites on the SARS-CoV2 spike protein would require the use of multiple proteases in addition to trypsin. Subsequent identification of the resulting glycopeptides by searching against database often introduces assignment errors due to similar mass differences between different permutations of amino acids and glycosyl residues. By manually interpreting the individual MS2 spectra, we report here the common sources of errors in assignment, especially those introduced by the use of chymotrypsin. We show that by applying a stringent threshold of acceptance, erroneous assignment by the commonly used Byonic software can be controlled within 15%, which can be reduced further if only those also confidently identified by a different search engine, pGlyco3, were considered. A representative site-specific N-glycosylation pattern could be constructed based on quantifying only the overlapping subset of N-glycopeptides identified at higher confidence. Applying the two complimentary glycoproteomic software in a concerted data analysis workflow, we found and confirmed that glycosylation at several sites of an unstable Omicron spike protein differed significantly from those of the stable trimeric product of the parental D614G variant.

7.
Biochem Biophys Res Commun ; 672: 81-88, 2023 09 10.
Article in English | MEDLINE | ID: mdl-37343318

ABSTRACT

CP74 is an engineered circular permutant of a deep trefoil knotted SpoU-TrmD (SPOUT) RNA methyl transferase protein YbeA from E. coli. We have previously established that the circular permutation unties the knotted topology of YbeA and CP74 forms a domain-swapped dimer with a large dimeric interface of ca. 4600 Å2. To understand the impact of domain-swapping and the newly formed hinge region joining the two folded domains on the folding and stability of CP74, the five equally spaced tryptophan residues were individually substituted into phenylalanine to monitor their conformational and stability changes by a battery of biophysical tools. Far-UV circular dichroism, intrinsic fluorescence, and small-angle X-ray scattering dictated minimal global conformational perturbations to the native structures in the tryptophan variants. The structures of the tryptophan variants also showed the conservation of the domain-swapped ternary structure with the exception that the W72F exhibited significant asymmetry in the α-helix 5. Comparative global thermal and chemical stability analyses indicated the pivotal role of W100 in the folding of CP74 followed by W19 and W72. Solution-state NMR spectroscopy and hydrogen-deuterium exchange mass spectrometry further revealed the accumulation of a native-like intermediate state in which the hinge region made important contributions to maintain the domain-swapped ternary structure of CP74.


Subject(s)
Escherichia coli , Protein Folding , Circular Dichroism , Kinetics , Proteins , Tryptophan
8.
PLoS Pathog ; 17(10): e1009704, 2021 10.
Article in English | MEDLINE | ID: mdl-34673836

ABSTRACT

Development of effective therapeutics for mitigating the COVID-19 pandemic is a pressing global need. Neutralizing antibodies are known to be effective antivirals, as they can be rapidly deployed to prevent disease progression and can accelerate patient recovery without the need for fully developed host immunity. Here, we report the generation and characterization of a series of chimeric antibodies against the receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Some of these antibodies exhibit exceptionally potent neutralization activities in vitro and in vivo, and the most potent of our antibodies target three distinct non-overlapping epitopes within the RBD. Cryo-electron microscopy analyses of two highly potent antibodies in complex with the SARS-CoV-2 spike protein suggested they may be particularly useful when combined in a cocktail therapy. The efficacy of this antibody cocktail was confirmed in SARS-CoV-2-infected mouse and hamster models as prophylactic and post-infection treatments. With the emergence of more contagious variants of SARS-CoV-2, cocktail antibody therapies hold great promise to control disease and prevent drug resistance.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cricetinae , Disease Models, Animal , Female , Male , Mice
9.
Proc Natl Acad Sci U S A ; 117(3): 1438-1446, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31900356

ABSTRACT

Feline infectious peritonitis virus (FIPV) is an alphacoronavirus that causes a nearly 100% mortality rate without effective treatment. Here we report a 3.3-Å cryoelectron microscopy (cryo-EM) structure of the serotype I FIPV spike (S) protein, which is responsible for host recognition and viral entry. Mass spectrometry provided site-specific compositions of densely distributed high-mannose and complex-type N-glycans that account for 1/4 of the total molecular mass; most of the N-glycans could be visualized by cryo-EM. Specifically, the N-glycans that wedge between 2 galectin-like domains within the S1 subunit of FIPV S protein result in a unique propeller-like conformation, underscoring the importance of glycosylation in maintaining protein structures. The cleavage site within the S2 subunit responsible for activation also showed distinct structural features and glycosylation. These structural insights provide a blueprint for a better molecular understanding of the pathogenesis of FIP.


Subject(s)
Coronavirus, Feline/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Cryoelectron Microscopy , Galectins/chemistry , Glycosylation , HEK293 Cells , Humans , Mannose/chemistry , Protein Conformation
10.
J Biol Chem ; 297(4): 101238, 2021 10.
Article in English | MEDLINE | ID: mdl-34563540

ABSTRACT

The D614G mutation in the spike protein of SARS-CoV-2 alters the fitness of the virus, leading to the dominant form observed in the COVID-19 pandemic. However, the molecular basis of the mechanism by which this mutation enhances fitness is not clear. Here we demonstrated by cryo-electron microscopy that the D614G mutation resulted in increased propensity of multiple receptor-binding domains (RBDs) in an upward conformation poised for host receptor binding. Multiple substates within the one RBD-up or two RBD-up conformational space were determined. According to negative staining electron microscopy, differential scanning calorimetry, and differential scanning fluorimetry, the most significant impact of the mutation lies in its ability to eliminate the unusual cold-induced unfolding characteristics and to significantly increase the thermal stability under physiological pH. The D614G spike variant also exhibited exceptional long-term stability when stored at 37 °C for up to 2 months. Our findings shed light on how the D614G mutation enhances the infectivity of SARS-CoV-2 through a stabilizing mutation and suggest an approach for better design of spike protein-based conjugates for vaccine development.


Subject(s)
SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/pathology , COVID-19/virology , Calorimetry, Differential Scanning , Cryoelectron Microscopy , Humans , Mutagenesis, Site-Directed , Protein Domains , Protein Stability , Protein Structure, Quaternary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Temperature
11.
Glycobiology ; 32(1): 60-72, 2022 02 26.
Article in English | MEDLINE | ID: mdl-34735575

ABSTRACT

Extensive glycosylation of the spike protein of severe acute respiratory syndrome coronavirus 2 virus not only shields the major part of it from host immune responses, but glycans at specific sites also act on its conformation dynamics and contribute to efficient host receptor binding, and hence infectivity. As variants of concern arise during the course of the coronavirus disease of 2019 pandemic, it is unclear if mutations accumulated within the spike protein would affect its site-specific glycosylation pattern. The Alpha variant derived from the D614G lineage is distinguished from others by having deletion mutations located right within an immunogenic supersite of the spike N-terminal domain (NTD) that make it refractory to most neutralizing antibodies directed against this domain. Despite maintaining an overall similar structural conformation, our mass spectrometry-based site-specific glycosylation analyses of similarly produced spike proteins with and without the D614G and Alpha variant mutations reveal a significant shift in the processing state of N-glycans on one specific NTD site. Its conversion to a higher proportion of complex type structures is indicative of altered spatial accessibility attributable to mutations specific to the Alpha variant that may impact its transmissibility. This and other more subtle changes in glycosylation features detected at other sites provide crucial missing information otherwise not apparent in the available cryogenic electron microscopy-derived structures of the spike protein variants.


Subject(s)
COVID-19/epidemiology , Glycopeptides/chemistry , Mutation , Polysaccharides/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/transmission , COVID-19/virology , Carbohydrate Sequence , Datasets as Topic , Glycopeptides/genetics , Glycopeptides/metabolism , Glycosylation , HEK293 Cells , Humans , Mass Spectrometry , Peptide Mapping , Polysaccharides/metabolism , Protein Binding , Receptors, Virus/genetics , Receptors, Virus/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
12.
Biochem Biophys Res Commun ; 599: 57-62, 2022 04 09.
Article in English | MEDLINE | ID: mdl-35176625

ABSTRACT

Deubiquitinating enzymes (DUBs) form a large protease family involved in a myriad of biological and pathological processes, including ROS sensors. ROS-mediated inhibition of their DUB activities is critical for fine-tuning the stress-activated signaling pathways. Here, we demonstrate that the ubiquitin C-terminal hydrolase (UCH) domain of BAP1 (BAP1-UCH) is highly sensitive to moderate oxidative stress. Oxidation of the catalytic C91 significantly destabilizes BAP1-UCH and increases the population of partially unfolded form, which is prone to aggregation. Unlike other DUBs, the oxidation-induced structural and functional loss of BAP1-UCH cannot be fully reversed by reducing agents. The oligomerization of oxidized BAP1-UCH is attributed to inter-molecular disulfide bond formation. Hydrogen-deuterium mass exchange spectrometry (HDX-MS) reveals increased fluctuations of the central ß-sheet upon oxidation. Our findings suggest that oxidation-mediated functional loss and increased aggregation propensity may contribute to oncogenesis associated with BAP1.


Subject(s)
Cysteine/metabolism , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/chemistry , Ubiquitin Thiolesterase/metabolism , Carcinogenesis , Circular Dichroism , Disulfides/chemistry , Humans , Hydrogen Deuterium Exchange-Mass Spectrometry , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Oxidative Stress , Protein Aggregation, Pathological/metabolism , Protein Domains , Protein Folding , Spectrometry, Fluorescence , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics
13.
Biophys J ; 120(11): 2276-2286, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33812848

ABSTRACT

MJ0366 from Methanocaldococcus jannaschii is the smallest topologically knotted protein known to date. 92 residues in length, MJ0366 ties a trefoil (31) knot by threading its C-terminal helix through a buttonhole formed by the remainder of the secondary structure elements. By generating a library of point mutations at positions pertinent to the knot formation, we systematically evaluated the contributions of individual residues to the folding stability and kinetics of MJ0366. The experimental Φ-values were used as restraints to computationally generate an ensemble of conformations that correspond to the transition state of MJ0366, which revealed several nonnative contacts. The importance of these nonnative contacts in stabilizing the transition state of MJ0366 was confirmed by a second round of mutagenesis, which also established the pivotal role of F15 in stapling the network of hydrophobic interactions around the threading C-terminal helix. Our converging experimental and computational results show that, despite the small size, the transition state of MJ0366 is formed at a very late stage of the folding reaction coordinate, following a polarized pathway. Eventually, the formation of extensive native contacts, as well as a number of nonnative ones, leads to the threading of the C-terminal helix that defines the topological knot.


Subject(s)
Protein Folding , Proteins , Kinetics , Methanocaldococcus , Protein Conformation , Proteins/genetics , Thermodynamics
14.
Biochemistry ; 60(14): 1075-1079, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33719392

ABSTRACT

Cryo-electron microscopy (cryo-EM)-based structure determination of small proteins is hindered by the technical challenges associated with low signal-to-noise ratios of their particle images in intrinsically noisy micrographs. One solution is to attach the target protein to a large protein scaffold to increase its apparent size and, therefore, image contrast. Here we report a novel scaffold design based on a trimeric helical protein, E. coli ornithine transcarbamylase (OTC), fused to human ubiquitin. As a proof of principle, we demonstrated the ability to resolve a cryo-EM map of a 26 kDa human ubiquitin C-terminal hydrolase (UCHL1) attached to the C-terminus of ubiquitin as part of the trimeric assembly. The results revealed conformational changes in UCHL1 upon binding to ubiquitin, namely, a significant displacement of α-helix 2, which was also observed by X-ray crystallography. Our findings demonstrated the potential of the trimeric OTC scaffold design for studying a large number of ubiquitin interacting proteins by cryo-EM.


Subject(s)
Cryoelectron Microscopy , Ornithine Carbamoyltransferase/chemistry , Algorithms , Crystallography, X-Ray , Escherichia coli/enzymology , Humans , Models, Molecular , Protein Multimerization , Protein Structure, Quaternary , Recombinant Fusion Proteins/chemistry
15.
J Biol Chem ; 293(51): 19645-19658, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30377253

ABSTRACT

Human sialic acid-binding immunoglobulin-like lectin 14 (Siglec-14) is a glycan-recognition protein that is expressed on myeloid cells, recognizes bacterial pathogens, and elicits pro-inflammatory responses. Although Siglec-14 is a transmembrane protein, a soluble form of Siglec-14 is also present in human blood. However, the mechanism that generates soluble Siglec-14 and what role this protein form may play remain unknown. Here, investigating the generation and function of soluble Siglec-14, we found that soluble Siglec-14 is derived from an alternatively spliced mRNA that retains intron 5, containing a termination codon and thus preventing the translation of exon 6, which encodes Siglec-14's transmembrane domain. We also note that the translated segment in intron 5 encodes a unique C-terminal 7-amino acid extension, which allowed the specific antibody-mediated detection of this isoform in human blood. Moreover, soluble Siglec-14 dose-dependently suppressed pro-inflammatory responses of myeloid cells that expressed membrane-bound Siglec-14, likely by interfering with the interaction between membrane-bound Siglec-14 and Toll-like receptor 2 on the cell surface. We also found that intron 5 contains a G-rich segment that assumes an RNA tertiary structure called a G-quadruplex, which may regulate the efficiency of intron 5 splicing. Taken together, we propose that soluble Siglec-14 suppresses pro-inflammatory responses triggered by membrane-bound Siglec-14.


Subject(s)
Alternative Splicing , Lectins/genetics , Lectins/metabolism , Myeloid Cells/pathology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Amino Acid Sequence , Base Sequence , Cell Line, Tumor , G-Quadruplexes , Gene Expression Regulation , Humans , Inflammation/genetics , Inflammation/metabolism , Introns/genetics , Lectins/chemistry , Myeloid Cells/metabolism , Receptors, Cell Surface/chemistry , Solubility
16.
Biochem Biophys Res Commun ; 503(2): 822-829, 2018 09 05.
Article in English | MEDLINE | ID: mdl-29920242

ABSTRACT

Ornithine transcarbamylases (OTCs) are conserved enzymes involved in arginine biosynthesis in microbes and the urea cycle in mammals. Recent bioinformatics analyses identified two unique OTC variants, N-succinyl-l-ornithine transcarbamylase from Bacteroides fragilis (BfSOTC) and N-acetyl-l-ornithine transcarbamylase from Xanthomonas campestris (XcAOTC). These two variants diverged from other OTCs during evolution despite sharing the common tertiary and quaternary structures, with the exception that the substrate recognition motifs are topologically knotted. The OTC family therefore offers a unique opportunity for investigating the importance of protein knots in biological functions and folding stabilities. Using hydrogen-deuterium exchange-coupled mass spectrometry, we compared the native dynamics of BfSOTC and XcAOTC with respect to the unknotted ornithine transcarbamylase from Escherichia coli (EcOTC). Our results suggest that, in addition to substrate specificity, the knotted structures in XcAOTC and BfSOTC may play an important role in stabilizing the folding dynamics, particularly around the knotted structural elements.


Subject(s)
Bacterial Proteins/chemistry , Ornithine Carbamoyltransferase/chemistry , Protein Folding , Protein Structure, Quaternary , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteroides fragilis/enzymology , Bacteroides fragilis/genetics , Escherichia coli/enzymology , Escherichia coli/genetics , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Mass Spectrometry/methods , Models, Molecular , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase/metabolism , Phylogeny , Protein Multimerization , Protein Stability , Sequence Homology, Amino Acid , Species Specificity , Substrate Specificity , Xanthomonas campestris/enzymology , Xanthomonas campestris/genetics
17.
Nucleic Acids Res ; 44(8): 3958-68, 2016 05 05.
Article in English | MEDLINE | ID: mdl-26975658

ABSTRACT

The folding topology of DNA G-quadruplexes (G4s) depends not only on their nucleotide sequences but also on environmental factors and/or ligand binding. Here, a G4 ligand, 3,6-bis(1-methyl-4-vinylpyridium iodide)-9-(1-(1-methyl-piperidinium iodide)-3,6,9-trioxaundecane) carbazole (BMVC-8C3O), can induce topological conversion of non-parallel to parallel forms in human telomeric DNA G4s. Nuclear magnetic resonance (NMR) spectroscopy with hydrogen-deuterium exchange (HDX) reveals the presence of persistent imino proton signals corresponding to the central G-quartet during topological conversion of Tel23 and Tel25 G4s from hybrid to parallel forms, implying that the transition pathway mainly involves local rearrangements. In contrast, rapid HDX was observed during the transition of 22-CTA G4 from an anti-parallel form to a parallel form, resulting in complete disappearance of all the imino proton signals, suggesting the involvement of substantial unfolding events associated with the topological transition. Site-specific imino proton NMR assignments of Tel23 G4 enable determination of the interconversion rates of individual guanine bases and detection of the presence of intermediate states. Since the rate of ligand binding is much higher than the rate of ligand-induced topological conversion, a three-state kinetic model was evoked to establish the associated energy diagram for the topological conversion of Tel23 G4 induced by BMVC-8C3O.


Subject(s)
G-Quadruplexes , Telomere/chemistry , Acetonitriles/chemistry , Carbazoles/chemistry , DNA/chemistry , Humans , Kinetics , Ligands , Nuclear Magnetic Resonance, Biomolecular
18.
Int J Mol Sci ; 19(2)2018 Jan 29.
Article in English | MEDLINE | ID: mdl-29382172

ABSTRACT

Galectins are ß-galactoside-binding proteins. As carbohydrate-binding proteins, they participate in intracellular trafficking, cell adhesion, and cell-cell signaling. Accumulating evidence indicates that they play a pivotal role in numerous physiological and pathological activities, such as the regulation on cancer progression, inflammation, immune response, and bacterial and viral infections. Galectins have drawn much attention as targets for therapeutic interventions. Several molecules have been developed as galectin inhibitors. In particular, TD139, a thiodigalactoside derivative, is currently examined in clinical trials for the treatment of idiopathic pulmonary fibrosis. Herein, we provide an in-depth review on the development of galectin inhibitors, aiming at the dissection of the structure-activity relationship to demonstrate how inhibitors interact with galectin(s). We especially integrate the structural information established by X-ray crystallography with several biophysical methods to offer, not only in-depth understanding at the molecular level, but also insights to tackle the existing challenges.


Subject(s)
Galectins/chemistry , Quantitative Structure-Activity Relationship , Animals , Binding Sites , Galectins/antagonists & inhibitors , Humans , Molecular Docking Simulation , Protein Binding , Thiogalactosides/chemistry , Thiogalactosides/pharmacology
19.
Molecules ; 22(8)2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28813004

ABSTRACT

Galectins are ß-galactoside-binding proteins implicated in a myriad of biological functions. Despite their highly conserved carbohydrate binding motifs with essentially identical structures, their affinities for lactose, a common galectin inhibitor, vary significantly. Here, we aimed to examine the molecular basis of differential lactose affinities amongst galectins using solution-based techniques. Consistent dissociation constants of lactose binding were derived from nuclear magnetic resonance (NMR) spectroscopy, intrinsic tryptophan fluorescence, isothermal titration calorimetry and bio-layer interferometry for human galectin-1 (hGal1), galectin-7 (hGal7), and the N-terminal and C-terminal domains of galectin-8 (hGal8NTD and hGal8CTD, respectively). Furthermore, the dissociation rates of lactose binding were extracted from NMR lineshape analyses. Structural mapping of chemical shift perturbations revealed long-range perturbations upon lactose binding for hGal1 and hGal8NTD. We further demonstrated using the NMR-based hydrogen-deuterium exchange (HDX) that lactose binding increases the exchange rates of residues located on the opposite side of the ligand-binding pocket for hGal1 and hGal8NTD, indicative of allostery. Additionally, lactose binding induces significant stabilisation of hGal8CTD across the entire domain. Our results suggested that lactose binding reduced the internal dynamics of hGal8CTD on a very slow timescale (minutes and slower) at the expense of reduced binding affinity due to the unfavourable loss of conformational entropy.


Subject(s)
Galectin 1/chemistry , Galectins/chemistry , Lactose/chemistry , Binding Sites , Calorimetry , Deuterium Exchange Measurement , Entropy , Humans , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Protein Binding , Protein Domains
20.
J Am Chem Soc ; 138(14): 4787-95, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-27010847

ABSTRACT

In this study, we report the structure and function of a lectin from the sea mollusk Crenomytilus grayanus collected from the sublittoral zone of Peter the Great Bay of the Sea of Japan. The crystal structure of C. grayanus lectin (CGL) was solved to a resolution of 1.08 Å, revealing a ß-trefoil fold that dimerizes into a dumbbell-shaped quaternary structure. Analysis of the crystal CGL structures bound to galactose, galactosamine, and globotriose Gb3 indicated that each CGL can bind three ligands through a carbohydrate-binding motif involving an extensive histidine- and water-mediated hydrogen bond network. CGL binding to Gb3 is further enhanced by additional side-chain-mediated hydrogen bonds in each of the three ligand-binding sites. NMR titrations revealed that the three binding sites have distinct microscopic affinities toward galactose and galactosamine. Cell viability assays showed that CGL recognizes Gb3 on the surface of breast cancer cells, leading to cell death. Our findings suggest the use of this lectin in cancer diagnosis and treatment.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Bivalvia/chemistry , Lectins/chemistry , Lectins/pharmacology , Trisaccharides/chemistry , Amino Acid Sequence , Animals , Antineoplastic Agents/metabolism , Binding Sites , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carbohydrate Sequence , Drug Screening Assays, Antitumor , Female , Humans , Lectins/metabolism , MCF-7 Cells , Models, Molecular , Protein Structure, Secondary , Trisaccharides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL