Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
RNA ; 21(12): 2103-18, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26516084

ABSTRACT

N(6)-threonylcarbamoyl-adenosine (t6A) is one of the few RNA modifications that is universally present in life. This modification occurs at high frequency at position 37 of most tRNAs that decode ANN codons, and stabilizes cognate anticodon-codon interactions. Nearly all genetic studies of the t6A pathway have focused on single-celled organisms. In this study, we report the isolation of an extensive allelic series in the Drosophila ortholog of the core t6A biosynthesis factor Kae1. kae1 hemizygous larvae exhibit decreases in t6A that correlate with allele strength; however, we still detect substantial t6A-modified tRNAs even during the extended larval phase of null alleles. Nevertheless, complementation of Drosophila Kae1 and other t6A factors in corresponding yeast null mutants demonstrates that these metazoan genes execute t6A synthesis. Turning to the biological consequences of t6A loss, we characterize prominent kae1 melanotic masses and show that they are associated with lymph gland overgrowth and ectopic generation of lamellocytes. On the other hand, kae1 mutants exhibit other phenotypes that reflect insufficient tissue growth. Interestingly, whole-tissue and clonal analyses show that strongly mitotic tissues such as imaginal discs are exquisitely sensitive to loss of kae1, whereas nonproliferating tissues are less affected. Indeed, despite overt requirements of t6A for growth of many tissues, certain strong kae1 alleles achieve and sustain enlarged body size during their extended larval phase. Our studies highlight tissue-specific requirements of the t6A pathway in a metazoan context and provide insights into the diverse biological roles of this fundamental RNA modification during animal development and disease.


Subject(s)
Adenosine/analogs & derivatives , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Adenosine/biosynthesis , Alleles , Amino Acid Sequence , Animals , Biosynthetic Pathways , Conserved Sequence , Drosophila melanogaster/cytology , Drosophila melanogaster/enzymology , Female , Genetic Complementation Test , Imaginal Discs/enzymology , Imaginal Discs/growth & development , Larva/cytology , Larva/enzymology , Larva/genetics , Male , Mitosis , Molecular Sequence Data , Mutation , Organ Specificity , Saccharomyces cerevisiae/genetics
2.
Nat Biotechnol ; 39(8): 978-988, 2021 08.
Article in English | MEDLINE | ID: mdl-33859402

ABSTRACT

Current next-generation RNA-sequencing (RNA-seq) methods do not provide accurate quantification of small RNAs within a sample, due to sequence-dependent biases in capture, ligation and amplification during library preparation. We present a method, absolute quantification RNA-sequencing (AQRNA-seq), that minimizes biases and provides a direct, linear correlation between sequencing read count and copy number for all small RNAs in a sample. Library preparation and data processing were optimized and validated using a 963-member microRNA reference library, oligonucleotide standards of varying length, and RNA blots. Application of AQRNA-seq to a panel of human cancer cells revealed >800 detectable miRNAs that varied during cancer progression, while application to bacterial transfer RNA pools, with the challenges of secondary structure and abundant modifications, revealed 80-fold variation in tRNA isoacceptor levels, stress-induced site-specific tRNA fragmentation, quantitative modification maps, and evidence for stress-induced, tRNA-driven, codon-biased translation. AQRNA-seq thus provides a versatile means to quantitatively map the small RNA landscape in cells.


Subject(s)
MicroRNAs , Sequence Alignment/methods , Sequence Analysis, RNA/methods , Cell Line, Tumor , Gene Library , Humans , MicroRNAs/chemistry , MicroRNAs/genetics , Neoplasms/genetics , Neoplasms/metabolism , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Transfer/chemistry , RNA, Transfer/genetics
3.
Eur J Hum Genet ; 25(5): 545-551, 2017 05.
Article in English | MEDLINE | ID: mdl-28272532

ABSTRACT

Post-transcriptional tRNA modifications are numerous and require a large set of highly conserved enzymes in humans and other organisms. In yeast, the loss of many modifications is tolerated under unstressed conditions; one exception is the N6-threonyl-carbamoyl-adenosine (t6A) modification, loss of which causes a severe growth phenotype. Here we aimed at a molecular diagnosis in a brother and sister from a consanguineous family who presented with global developmental delay, failure to thrive and a renal defect manifesting in proteinuria and hypomagnesemia. Using exome sequencing, the patients were found to be homozygous for the c.974G>A (p.(Arg325Gln)) variant of the KAE1 gene. KAE1 is a constituent of the KEOPS complex, a five-subunit complex that catalyzes the second biosynthetic step of t6A in the cytosol. The yeast KAE1 allele carrying the equivalent mutation did not rescue the t6A deficiency of the kae1Δ yeast strain as efficiently as the WT allele; furthermore, t6A levels quantified by LC-MS/MS were lower in the kae1Δ strain which was complemented by the mutation than in the kae1Δ strain, which was complemented by the WT allele. We conclude that homozygosity for c.974G>A (p.(Arg325Gln)) in KAE1 likely exerts its pathogenic effect by perturbing t6A synthesis, thereby interfering with global protein production. This is the first report of t6A biosynthesis defect in human. KAE1 joins the growing list of cytoplasmic tRNA modification enzymes, all associated with severe neurological disorders.


Subject(s)
Anion Exchange Protein 1, Erythrocyte/genetics , Developmental Disabilities/genetics , Kidney Diseases/genetics , Metabolism, Inborn Errors/genetics , Mutation , RNA, Transfer/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Anion Exchange Protein 1, Erythrocyte/metabolism , Child , Developmental Disabilities/diagnosis , Exome , Female , Genetic Complementation Test , Homozygote , Humans , Kidney Diseases/diagnosis , Magnesium/metabolism , Male , Metabolism, Inborn Errors/diagnosis , RNA Processing, Post-Transcriptional , RNA, Transfer/genetics , Saccharomyces cerevisiae/genetics , Syndrome
4.
Nat Genet ; 49(10): 1529-1538, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28805828

ABSTRACT

Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.


Subject(s)
Hernia, Hiatal/genetics , Microcephaly/genetics , Multiprotein Complexes/genetics , Mutation , Nephrosis/genetics , Animals , Apoptosis/genetics , CRISPR-Cas Systems , Carrier Proteins/genetics , Cell Movement , Cytoskeleton/ultrastructure , DNA Repair/genetics , Endoplasmic Reticulum Stress/genetics , Gene Knockout Techniques , Humans , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Metalloendopeptidases/deficiency , Metalloendopeptidases/genetics , Mice , Models, Molecular , Nephrotic Syndrome/genetics , Nephrotic Syndrome/pathology , Podocytes/metabolism , Podocytes/ultrastructure , Protein Conformation , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , RNA Processing, Post-Transcriptional/genetics , RNA, Transfer/metabolism , Telomere Homeostasis/genetics , Zebrafish , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL