Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
Add more filters

Publication year range
1.
Ann Neurol ; 95(3): 544-557, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37997521

ABSTRACT

OBJECTIVE: To determine multidimensional impulsivity levels across different early stages of α-synucleinopathy. METHODS: This cross-sectional study investigated motor and decisional impulsivity levels using a panel of computerized tasks among drug-naïve parkinsonism patients, isolated/idiopathic rapid eye movement sleep behavior disorder (iRBD) patients and their first-degree relatives (iRBD-FDRs), and control participants. Trait impulsivity and impulse control behaviors were assessed by self-reported questionnaires. RESULTS: A total of 27 drug-naïve parkinsonism patients, 157 iRBD patients, 66 iRBD-FDRs, and 82 control participants were recruited. Parkinsonism and iRBD patients had fewer numbers of extracted beads in beads task 1 and 2 (both p < 0.001), and a higher rate of irrational choice in task 1 (p = 0.046) before making decisions, and fewer numbers of pumps of unexploded blue balloons in the balloon analog risk task (p = 0.004) than control participants, indicating a higher level of reflection impulsivity and a lower level of risk taking, respectively. iRBD patients had more no-go errors in the go/no-go task than control participants (padjusted = 0.036), suggesting a higher level of motor impulsivity. iRBD-FDRs with dream-enactment behaviors had fewer numbers of extracted beads (p = 0.047) in beads task 2 than FDRs without dream-enactment behaviors, suggesting a possible higher level of reflection impulsivity. INTERPRETATION: A complex construct of altered impulsivity with decreased risk taking, but increased reflection and motor impulsivity, has already occurred at the prodromal and early stages of α-synucleinopathy, which have implications for underlying pathophysiology and clinical management of α-synucleinopathy, especially for impulse control behaviors upon dopaminergic drug treatment. ANN NEUROL 2024;95:544-557.


Subject(s)
Parkinsonian Disorders , REM Sleep Behavior Disorder , Synucleinopathies , Humans , Cross-Sectional Studies , Impulsive Behavior
2.
Ann Neurol ; 95(6): 1178-1192, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38466158

ABSTRACT

OBJECTIVE: To apply a machine learning analysis to clinical and presynaptic dopaminergic imaging data of patients with rapid eye movement (REM) sleep behavior disorder (RBD) to predict the development of Parkinson disease (PD) and dementia with Lewy bodies (DLB). METHODS: In this multicenter study of the International RBD study group, 173 patients (mean age 70.5 ± 6.3 years, 70.5% males) with polysomnography-confirmed RBD who eventually phenoconverted to overt alpha-synucleinopathy (RBD due to synucleinopathy) were enrolled, and underwent baseline presynaptic dopaminergic imaging and clinical assessment, including motor, cognitive, olfaction, and constipation evaluation. For comparison, 232 RBD non-phenoconvertor patients (67.6 ± 7.1 years, 78.4% males) and 160 controls (68.2 ± 7.2 years, 53.1% males) were enrolled. Imaging and clinical features were analyzed by machine learning to determine predictors of phenoconversion. RESULTS: Machine learning analysis showed that clinical data alone poorly predicted phenoconversion. Presynaptic dopaminergic imaging significantly improved the prediction, especially in combination with clinical data, with 77% sensitivity and 85% specificity in differentiating RBD due to synucleinopathy from non phenoconverted RBD patients, and 85% sensitivity and 86% specificity in discriminating PD-converters from DLB-converters. Quantification of presynaptic dopaminergic imaging showed that an empirical z-score cutoff of -1.0 at the most affected hemisphere putamen characterized RBD due to synucleinopathy patients, while a cutoff of -1.0 at the most affected hemisphere putamen/caudate ratio characterized PD-converters. INTERPRETATION: Clinical data alone poorly predicted phenoconversion in RBD due to synucleinopathy patients. Conversely, presynaptic dopaminergic imaging allows a good prediction of forthcoming phenoconversion diagnosis. This finding may be used in designing future disease-modifying trials. ANN NEUROL 2024;95:1178-1192.


Subject(s)
Dopamine , Lewy Body Disease , Machine Learning , Parkinson Disease , REM Sleep Behavior Disorder , Synucleinopathies , Humans , REM Sleep Behavior Disorder/diagnostic imaging , Male , Female , Aged , Synucleinopathies/diagnostic imaging , Middle Aged , Lewy Body Disease/diagnostic imaging , Parkinson Disease/diagnostic imaging , Parkinson Disease/complications , Dopamine/metabolism , Tomography, Emission-Computed, Single-Photon , Presynaptic Terminals/metabolism , Dopaminergic Imaging
3.
Mov Disord ; 39(2): 433-438, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38140767

ABSTRACT

BACKGROUND: Clinical trials of disease-modifying therapies in PD require valid and responsive primary outcome measures that are relevant to patients. OBJECTIVES: The objective is to select a patient-centered primary outcome measure for disease-modification trials over three or more years. METHODS: Experts in Parkinson's disease (PD), statistics, and health economics and patient and public involvement and engagement (PPIE) representatives reviewed and discussed potential outcome measures. A larger PPIE group provided input on their key considerations for such an endpoint. Feasibility, clinimetric properties, and relevance to patients were assessed and synthesized. RESULTS: Although initial considerations favored the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part III in Off, feasibility, PPIE input, and clinimetric properties supported the MDS-UPDRS Part II. However, PPIE input also highlighted the importance of nonmotor symptoms, especially in the longer term, leading to the selection of the MDS-UPDRS Parts I + II sum score. CONCLUSIONS: The MDS-UPDRS Parts I + II sum score was chosen as the primary outcome for large 3-year disease-modification trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/therapy , Parkinson Disease/diagnosis , Severity of Illness Index , Mental Status and Dementia Tests , Societies, Medical
4.
Mov Disord ; 39(3): 462-471, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38243775

ABSTRACT

The International Parkinson and Movement Disorder Society (MDS) created a task force (TF) to provide a critical overview of the Parkinson's disease (PD) subtyping field and develop a guidance on future research in PD subtypes. Based on a literature review, we previously concluded that PD subtyping requires an ultimate alignment with principles of precision medicine, and consequently novel approaches were needed to describe heterogeneity at the individual patient level. In this manuscript, we present a novel purpose-driven framework for subtype research as a guidance to clinicians and researchers when proposing to develop, evaluate, or use PD subtypes. Using a formal consensus methodology, we determined that the key purposes of PD subtyping are: (1) to predict disease progression, for both the development of therapies (use in clinical trials) and prognosis counseling, (2) to predict response to treatments, and (3) to identify therapeutic targets for disease modification. For each purpose, we describe the desired product and the research required for its development. Given the current state of knowledge and data resources, we see purpose-driven subtyping as a pragmatic and necessary step on the way to precision medicine. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , Parkinson Disease/therapy , Precision Medicine , Disease Progression , Advisory Committees
5.
Eur J Neurol ; 31(6): e16258, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38407533

ABSTRACT

BACKGROUND: Multiple system atrophy (MSA), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) show a high prevalence and rapid progression of dysphagia, which is associated with reduced survival. Despite this, the evidence base for gastrostomy is poor, and the optimal frequency and outcomes of this intervention are not known. We aimed to characterise the prevalence and outcomes of gastrostomy in patients with these three atypical parkinsonian disorders. METHOD: We analysed data from the natural history and longitudinal cohorts of the PROSPECT-M-UK study with up to 60 months of follow-up from baseline. Survival post-gastrostomy was analysed using Kaplan-Meier survival curves. RESULTS: In a total of 339 patients (mean age at symptom onset 63.3 years, mean symptom duration at baseline 4.6 years), dysphagia was present in >50% across all disease groups at baseline and showed rapid progression during follow-up. Gastrostomy was recorded as recommended in 44 (13%) and performed in 21 (6.2%; MSA 7, PSP 11, CBS 3) of the total study population. Median survival post-gastrostomy was 24 months compared with 12 months where gastrostomy was recommended but not done (p = 0.008). However, this was not significant when correcting for age and duration of symptoms at the time of procedure or recommendation. CONCLUSIONS: Gastrostomy was performed relatively infrequently in this cohort despite the high prevalence of dysphagia. Survival post-gastrostomy was longer than previously reported, but further data on other outcomes and clinician and patient perspectives would help to guide use of this intervention in MSA, PSP and CBS.


Subject(s)
Deglutition Disorders , Gastrostomy , Multiple System Atrophy , Parkinsonian Disorders , Supranuclear Palsy, Progressive , Humans , Middle Aged , Male , Female , Aged , Longitudinal Studies , Supranuclear Palsy, Progressive/surgery , Multiple System Atrophy/surgery , Multiple System Atrophy/epidemiology , Parkinsonian Disorders/surgery , Parkinsonian Disorders/epidemiology , Deglutition Disorders/etiology , Deglutition Disorders/epidemiology , Cohort Studies , Treatment Outcome , Disease Progression
6.
Brain ; 146(6): 2502-2511, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36395092

ABSTRACT

Idiopathic rapid eye movement sleep behaviour disorder (iRBD) has now been established as an important marker of the prodromal stage of Parkinson's disease and related synucleinopathies. However, although dopamine transporter single photon emission computed tomography (SPECT) has been used to demonstrate the presence of nigro-striatal deficit in iRBD, quantifiable correlates of this are currently lacking. Sensitivity to rewarding stimuli is reduced in some people with Parkinson's disease, potentially contributing to aspects of the neuropsychiatric phenotype in these individuals. Furthermore, a role for dopaminergic degeneration is suggested by the fact that reward insensitivity can be improved by dopaminergic medications. Patients with iRBD present a unique opportunity to study the relationship between reward sensitivity and early dopaminergic deficit in the unmedicated state. Here, we investigate whether a non-invasive, objective measure of reward sensitivity might be a marker of dopaminergic status in prodromal Parkinson's disease by comparing with SPECT/CT measurement of dopaminergic loss in the basal ganglia. Striatal dopaminergic deficits in iRBD are associated with progression to Parkinsonian disorders. Therefore, identification of a clinically measurable correlate of this degenerative process might provide a basis for the development of novel risk stratification tools. Using a recently developed incentivized eye-tracking task, we quantified reward sensitivity in a cohort of 41 patients with iRBD and compared this with data from 40 patients with Parkinson's disease and 41 healthy controls. Patients with iRBD also underwent neuroimaging with dopamine transporter SPECT/CT. Overall, reward sensitivity, indexed by pupillary response to monetary incentives, was reduced in iRBD cases compared with controls and was not significantly different to that in patients with Parkinson's disease. However, in iRBD patients with normal dopamine transporter SPECT/CT imaging, reward sensitivity was not significantly different from healthy controls. Across all iRBD cases, a positive association was observed between reward sensitivity and dopaminergic SPECT/CT signal in the putamen. These findings demonstrate a direct relationship between dopaminergic deficit and reward sensitivity in patients with iRBD and suggest that measurement of pupillary responses could be of value in models of risk stratification and disease progression in these individuals.


Subject(s)
Parkinson Disease , REM Sleep Behavior Disorder , Humans , REM Sleep Behavior Disorder/diagnostic imaging , Parkinson Disease/diagnostic imaging , Dopamine Plasma Membrane Transport Proteins , Dopamine , Reward
7.
Brain ; 146(5): 1873-1887, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36348503

ABSTRACT

Parkinson's disease is one of the most common age-related neurodegenerative disorders. Although predominantly a motor disorder, cognitive impairment and dementia are important features of Parkinson's disease, particularly in the later stages of the disease. However, the rate of cognitive decline varies among Parkinson's disease patients, and the genetic basis for this heterogeneity is incompletely understood. To explore the genetic factors associated with rate of progression to Parkinson's disease dementia, we performed a genome-wide survival meta-analysis of 3923 clinically diagnosed Parkinson's disease cases of European ancestry from four longitudinal cohorts. In total, 6.7% of individuals with Parkinson's disease developed dementia during study follow-up, on average 4.4 ± 2.4 years from disease diagnosis. We have identified the APOE ε4 allele as a major risk factor for the conversion to Parkinson's disease dementia [hazard ratio = 2.41 (1.94-3.00), P = 2.32 × 10-15], as well as a new locus within the ApoE and APP receptor LRP1B gene [hazard ratio = 3.23 (2.17-4.81), P = 7.07 × 10-09]. In a candidate gene analysis, GBA variants were also identified to be associated with higher risk of progression to dementia [hazard ratio = 2.02 (1.21-3.32), P = 0.007]. CSF biomarker analysis also implicated the amyloid pathway in Parkinson's disease dementia, with significantly reduced levels of amyloid ß42 (P = 0.0012) in Parkinson's disease dementia compared to Parkinson's disease without dementia. These results identify a new candidate gene associated with faster conversion to dementia in Parkinson's disease and suggest that amyloid-targeting therapy may have a role in preventing Parkinson's disease dementia.


Subject(s)
Cognitive Dysfunction , Dementia , Parkinson Disease , Humans , Parkinson Disease/genetics , Dementia/complications , Cognitive Dysfunction/etiology , Apolipoproteins E/genetics , Biomarkers , Receptors, LDL
8.
Brain ; 146(8): 3232-3242, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36975168

ABSTRACT

The advent of clinical trials of disease-modifying agents for neurodegenerative disease highlights the need for evidence-based end point selection. Here we report the longitudinal PROSPECT-M-UK study of progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), multiple system atrophy (MSA) and related disorders, to compare candidate clinical trial end points. In this multicentre UK study, participants were assessed with serial questionnaires, motor examination, neuropsychiatric and MRI assessments at baseline, 6 and 12 months. Participants were classified by diagnosis at baseline and study end, into Richardson syndrome, PSP-subcortical (PSP-parkinsonism and progressive gait freezing subtypes), PSP-cortical (PSP-frontal, PSP-speech and language and PSP-CBS subtypes), MSA-parkinsonism, MSA-cerebellar, CBS with and without evidence of Alzheimer's disease pathology and indeterminate syndromes. We calculated annual rate of change, with linear mixed modelling and sample sizes for clinical trials of disease-modifying agents, according to group and assessment type. Two hundred forty-three people were recruited [117 PSP, 68 CBS, 42 MSA and 16 indeterminate; 138 (56.8%) male; age at recruitment 68.7 ± 8.61 years]. One hundred and fifty-nine completed the 6-month assessment (82 PSP, 27 CBS, 40 MSA and 10 indeterminate) and 153 completed the 12-month assessment (80 PSP, 29 CBS, 35 MSA and nine indeterminate). Questionnaire, motor examination, neuropsychiatric and neuroimaging measures declined in all groups, with differences in longitudinal change between groups. Neuroimaging metrics would enable lower sample sizes to achieve equivalent power for clinical trials than cognitive and functional measures, often achieving N < 100 required for 1-year two-arm trials (with 80% power to detect 50% slowing). However, optimal outcome measures were disease-specific. In conclusion, phenotypic variance within PSP, CBS and MSA is a major challenge to clinical trial design. Our findings provide an evidence base for selection of clinical trial end points, from potential functional, cognitive, clinical or neuroimaging measures of disease progression.


Subject(s)
Multiple System Atrophy , Parkinsonian Disorders , Supranuclear Palsy, Progressive , Male , Humans , Middle Aged , Aged , Female , Parkinsonian Disorders/diagnostic imaging , Parkinsonian Disorders/drug therapy , Supranuclear Palsy, Progressive/diagnostic imaging , Supranuclear Palsy, Progressive/pathology , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/pathology , Magnetic Resonance Imaging , United Kingdom
9.
Brain ; 146(8): 3258-3272, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36881989

ABSTRACT

The neurodegenerative synucleinopathies, including Parkinson's disease and dementia with Lewy bodies, are characterized by a typically lengthy prodromal period of progressive subclinical motor and non-motor manifestations. Among these, idiopathic REM sleep behaviour disorder is a powerful early predictor of eventual phenoconversion, and therefore represents a critical opportunity to intervene with neuroprotective therapy. To inform the design of randomized trials, it is essential to study the natural progression of clinical markers during the prodromal stages of disease in order to establish optimal clinical end points. In this study, we combined prospective follow-up data from 28 centres of the International REM Sleep Behavior Disorder Study Group representing 12 countries. Polysomnogram-confirmed REM sleep behaviour disorder subjects were assessed for prodromal Parkinson's disease using the Movement Disorder Society criteria and underwent periodic structured sleep, motor, cognitive, autonomic and olfactory testing. We used linear mixed-effect modelling to estimate annual rates of clinical marker progression stratified by disease subtype, including prodromal Parkinson's disease and prodromal dementia with Lewy bodies. In addition, we calculated sample size requirements to demonstrate slowing of progression under different anticipated treatment effects. Overall, 1160 subjects were followed over an average of 3.3 ± 2.2 years. Among clinical variables assessed continuously, motor variables tended to progress faster and required the lowest sample sizes, ranging from 151 to 560 per group (at 50% drug efficacy and 2-year follow-up). By contrast, cognitive, olfactory and autonomic variables showed modest progression with higher variability, resulting in high sample sizes. The most efficient design was a time-to-event analysis using combined milestones of motor and cognitive decline, estimating 117 per group at 50% drug efficacy and 2-year trial duration. Finally, while phenoconverters showed overall greater progression than non-converters in motor, olfactory, cognitive and certain autonomic markers, the only robust difference in progression between Parkinson's disease and dementia with Lewy bodies phenoconverters was in cognitive testing. This large multicentre study demonstrates the evolution of motor and non-motor manifestations in prodromal synucleinopathy. These findings provide optimized clinical end points and sample size estimates to inform future neuroprotective trials.


Subject(s)
Lewy Body Disease , Parkinson Disease , REM Sleep Behavior Disorder , Humans , Parkinson Disease/complications , Parkinson Disease/diagnosis , Lewy Body Disease/diagnosis , REM Sleep Behavior Disorder/diagnosis , Prospective Studies , Disease Progression , Biomarkers , Prodromal Symptoms
10.
Eur J Epidemiol ; 39(5): 521-533, 2024 May.
Article in English | MEDLINE | ID: mdl-38281297

ABSTRACT

Identifying factors that are causes of disease progression, especially in neurodegenerative diseases, is of considerable interest. Disease progression can be described as a trajectory of outcome over time-for example, a linear trajectory having both an intercept (severity at time zero) and a slope (rate of change). A technique for identifying causal relationships between one exposure and one outcome in observational data whilst avoiding bias due to confounding is two sample Mendelian Randomisation (2SMR). We consider a multivariate approach to 2SMR using a multilevel model for disease progression to estimate the causal effect an exposure has on the intercept and slope. We carry out a simulation study comparing a naïve univariate 2SMR approach to a multivariate 2SMR approach with one exposure that effects both the intercept and slope of an outcome that changes linearly with time since diagnosis. The simulation study results, across six different scenarios, for both approaches were similar with no evidence against a non-zero bias and appropriate coverage of the 95% confidence intervals (for intercept 93.4-96.2% and the slope 94.5-96.0%). The multivariate approach gives a better joint coverage of both the intercept and slope effects. We also apply our method to two Parkinson's cohorts to examine the effect body mass index has on disease progression. There was no strong evidence that BMI affects disease progression, however the confidence intervals for both intercept and slope were wide.


Subject(s)
Disease Progression , Mendelian Randomization Analysis , Humans , Mendelian Randomization Analysis/methods , Body Mass Index , Parkinson Disease/genetics , Computer Simulation , Causality
11.
Clin Rehabil ; 38(3): 403-413, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37941369

ABSTRACT

OBJECTIVE: A diagnosis of Parkinson's often leads to uncertainty about the future and loss of perceived control. Peer support may offer a means to address these concerns and promote self-management. DESIGN: A programme evaluation of the feasibility and potential effects of 'First Steps', utilising a pragmatic step wedge approach. Comparing First Steps (intervention) to (control) conditions.Setting: In the community at four sites in southern England.Participants: Newly diagnosed (≤ 12months) people with Parkinson's.Intervention: First Steps was a 2-day peer-conceived, developed and led intervention to support self-management.Main measures: At 0, 12 and 24 weeks anxiety and depression (Hospital, Anxiety and Depression Scale, HADS), daily functioning (World Health Organisation Disability Assessment Schedule, WHODAS), physical activity, quality of life (EQ5D), carer strain and service utilisation were assessed. RESULTS: Between February 2018 and July 2019, 36 participants were enrolled into intervention and 21 to control conditions, all were included in statistical analysis. Lost to follow up was n = 1 (intervention) and n = 1 adverse event was reported (control, unrelated). Of the 36 allocated to the intervention n = 22 participants completed both days of First Steps during the study period. Completion of outcome measures was >95% at 24 weeks. Small effects favouring the intervention were found for HADS (odds ratio (OR) = 2.06, 95% confidence interval (CI) 0.24:17.84), Carer Strain Index (OR = 2.22, 95% CI 0.5:9.76) and vigorous (d = 0.42, 95% CI -0.12:0.97) and total physical activity (d = 0.41, 95% CI -0.13:0.95). EQ5D, WHOSDAS and service utilisation, was similar between groups. CONCLUSIONS: First Steps was feasible and safe and we found potential to benefit physical activity, mental health and carer strain. Further research with longer-term follow up is warranted.


Subject(s)
Parkinson Disease , Self-Management , Humans , Quality of Life , Program Evaluation , Parkinson Disease/diagnosis , Physical Therapy Modalities
12.
Alzheimers Dement ; 20(1): 91-102, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37461299

ABSTRACT

INTRODUCTION: Isolated/idiopathic rapid eye movement sleep behavior disorder (iRBD) is a powerful early predictor of dementia with Lewy bodies (DLB) and Parkinson's disease (PD). This provides an opportunity to directly observe the evolution of prodromal DLB and to identify which cognitive variables are the strongest predictors of evolving dementia. METHODS: IRBD participants (n = 754) from 10 centers of the International RBD Study Group underwent annual neuropsychological assessment. Competing risk regression analysis determined optimal predictors of dementia. Linear mixed-effect models determined the annual progression of neuropsychological testing. RESULTS: Reduced attention and executive function, particularly performance on the Trail Making Test Part B, were the strongest identifiers of early DLB. In phenoconverters, the onset of cognitive decline began up to 10 years prior to phenoconversion. Changes in verbal memory best differentiated between DLB and PD subtypes. DISCUSSION: In iRBD, attention and executive dysfunction strongly predict dementia and begin declining several years prior to phenoconversion. HIGHLIGHTS: Cognitive decline in iRBD begins up to 10 years prior to phenoconversion. Attention and executive dysfunction are the strongest predictors of dementia in iRBD. Decline in episodic memory best distinguished dementia-first from parkinsonism-first phenoconversion.


Subject(s)
Cognitive Dysfunction , Lewy Body Disease , Parkinson Disease , Parkinsonian Disorders , REM Sleep Behavior Disorder , Humans , Lewy Body Disease/diagnosis , REM Sleep Behavior Disorder/diagnosis , Cognitive Dysfunction/diagnosis
13.
Hum Brain Mapp ; 44(11): 4239-4255, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37269181

ABSTRACT

There is a pressing need to understand the factors that predict prognosis in progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS), with high heterogeneity over the poor average survival. We test the hypothesis that the magnitude and distribution of connectivity changes in PSP and CBS predict the rate of progression and survival time, using datasets from the Cambridge Centre for Parkinson-plus and the UK National PSP Research Network (PROSPECT-MR). Resting-state functional MRI images were available from 146 participants with PSP, 82 participants with CBS, and 90 healthy controls. Large-scale networks were identified through independent component analyses, with correlations taken between component time series. Independent component analysis was also used to select between-network connectivity components to compare with baseline clinical severity, longitudinal rate of change in severity, and survival. Transdiagnostic survival predictors were identified using partial least squares regression for Cox models, with connectivity compared to patients' demographics, structural imaging, and clinical scores using five-fold cross-validation. In PSP and CBS, between-network connectivity components were identified that differed from controls, were associated with disease severity, and were related to survival and rate of change in clinical severity. A transdiagnostic component predicted survival beyond demographic and motion metrics but with lower accuracy than an optimal model that included the clinical and structural imaging measures. Cortical atrophy enhanced the connectivity changes that were most predictive of survival. Between-network connectivity is associated with variability in prognosis in PSP and CBS but does not improve predictive accuracy beyond clinical and structural imaging metrics.


Subject(s)
Corticobasal Degeneration , Neurodegenerative Diseases , Supranuclear Palsy, Progressive , Humans , Supranuclear Palsy, Progressive/diagnostic imaging , Prognosis , Neurodegenerative Diseases/diagnostic imaging
14.
Brain ; 145(2): 584-595, 2022 04 18.
Article in English | MEDLINE | ID: mdl-34894214

ABSTRACT

Several studies have confirmed the α-synuclein real-time quaking-induced conversion (RT-QuIC) assay to have high sensitivity and specificity for Parkinson's disease. However, whether the assay can be used as a robust, quantitative measure to monitor disease progression, stratify different synucleinopathies and predict disease conversion in patients with idiopathic REM sleep behaviour disorder remains undetermined. The aim of this study was to assess the diagnostic value of CSF α-synuclein RT-QuIC quantitative parameters in regard to disease progression, stratification and conversion in synucleinopathies. We performed α-synuclein RT-QuIC in the CSF samples from 74 Parkinson's disease, 24 multiple system atrophy and 45 idiopathic REM sleep behaviour disorder patients alongside 55 healthy controls, analysing quantitative assay parameters in relation to clinical data. α-Synuclein RT-QuIC showed 89% sensitivity and 96% specificity for Parkinson's disease. There was no correlation between RT-QuIC quantitative parameters and Parkinson's disease clinical scores (e.g. Unified Parkinson's Disease Rating Scale motor), but RT-QuIC positivity and some quantitative parameters (e.g. Vmax) differed across the different phenotype clusters. RT-QuIC parameters also added value alongside standard clinical data in diagnosing Parkinson's disease. The sensitivity in multiple system atrophy was 75%, and CSF samples showed longer T50 and lower Vmax compared to Parkinson's disease. All RT-QuIC parameters correlated with worse clinical progression of multiple system atrophy (e.g. change in Unified Multiple System Atrophy Rating Scale). The overall sensitivity in idiopathic REM sleep behaviour disorder was 64%. In three of the four longitudinally followed idiopathic REM sleep behaviour disorder cohorts, we found around 90% sensitivity, but in one sample (DeNoPa) diagnosing idiopathic REM sleep behaviour disorder earlier from the community cases, this was much lower at 39%. During follow-up, 14 of 45 (31%) idiopathic REM sleep behaviour disorder patients converted to synucleinopathy with 9/14 (64%) of convertors showing baseline RT-QuIC positivity. In summary, our results showed that α-synuclein RT-QuIC adds value in diagnosing Parkinson's disease and may provide a way to distinguish variations within Parkinson's disease phenotype. However, the quantitative parameters did not correlate with disease severity in Parkinson's disease. The assay distinguished multiple system atrophy patients from Parkinson's disease patients and in contrast to Parkinson's disease, the quantitative parameters correlated with disease progression of multiple system atrophy. Our results also provided further evidence for α-synuclein RT-QuIC having potential as an early biomarker detecting synucleinopathy in idiopathic REM sleep behaviour disorder patients prior to conversion. Further analysis of longitudinally followed idiopathic REM sleep behaviour disorder patients is needed to better understand the relationship between α-synuclein RT-QuIC signature and the progression from prodromal to different synucleinopathies.


Subject(s)
Multiple System Atrophy , Parkinson Disease , REM Sleep Behavior Disorder , Synucleinopathies , Disease Progression , Humans , Multiple System Atrophy/diagnosis , Parkinson Disease/diagnosis , REM Sleep Behavior Disorder/diagnosis , Synucleinopathies/diagnosis , alpha-Synuclein/analysis
15.
Brain ; 145(12): 4398-4408, 2022 12 19.
Article in English | MEDLINE | ID: mdl-35903017

ABSTRACT

Disease-modifying treatments are currently being trialled in multiple system atrophy. Approaches based solely on clinical measures are challenged by heterogeneity of phenotype and pathogenic complexity. Neurofilament light chain protein has been explored as a reliable biomarker in several neurodegenerative disorders but data on multiple system atrophy have been limited. Therefore, neurofilament light chain is not yet routinely used as an outcome measure in multiple system atrophy. We aimed to comprehensively investigate the role and dynamics of neurofilament light chain in multiple system atrophy combined with cross-sectional and longitudinal clinical and imaging scales and for subject trial selection. In this cohort study, we recruited cross-sectional and longitudinal cases in a multicentre European set-up. Plasma and CSF neurofilament light chain concentrations were measured at baseline from 212 multiple system atrophy cases, annually for a mean period of 2 years in 44 multiple system atrophy patients in conjunction with clinical, neuropsychological and MRI brain assessments. Baseline neurofilament light chain characteristics were compared between groups. Cox regression was used to assess survival; receiver operating characteristic analysis to assess the ability of neurofilament light chain to distinguish between multiple system atrophy patients and healthy controls. Multivariate linear mixed-effects models were used to analyse longitudinal neurofilament light chain changes and correlated with clinical and imaging parameters. Polynomial models were used to determine the differential trajectories of neurofilament light chain in multiple system atrophy. We estimated sample sizes for trials aiming to decrease neurofilament light chain levels. We show that in multiple system atrophy, baseline plasma neurofilament light chain levels were better predictors of clinical progression, survival and degree of brain atrophy than the neurofilament light chain rate of change. Comparative analysis of multiple system atrophy progression over the course of disease, using plasma neurofilament light chain and clinical rating scales, indicated that neurofilament light chain levels rise as the motor symptoms progress, followed by deceleration in advanced stages. Sample size prediction suggested that significantly lower trial participant numbers would be needed to demonstrate treatment effects when incorporating plasma neurofilament light chain values into multiple system atrophy clinical trials in comparison to clinical measures alone. In conclusion, neurofilament light chain correlates with clinical disease severity, progression and prognosis in multiple system atrophy. Combined with clinical and imaging analysis, neurofilament light chain can inform patient stratification and serve as a reliable biomarker of treatment response in future multiple system atrophy trials of putative disease-modifying agents.


Subject(s)
Multiple System Atrophy , Humans , Cohort Studies , Cross-Sectional Studies , Intermediate Filaments , Neurofilament Proteins , Biomarkers , Disease Progression
16.
Biomed Eng Online ; 22(1): 108, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37974260

ABSTRACT

Freezing-of-gait (FOG) and impaired walking are common features of Parkinson's disease (PD). Provision of external stimuli (cueing) can improve gait, however, many cueing methods are simplistic, increase task loading or have limited utility in a real-world setting. Closed-loop (automated) somatosensory cueing systems have the potential to deliver personalised, discrete cues at the appropriate time, without requiring user input. Further development of cue delivery methods and FOG-detection are required to achieve this. In this feasibility study, we aimed to test if FOG-initiated vibration cues applied to the lower-leg via wearable devices can improve gait in PD, and to develop real-time FOG-detection algorithms. 17 participants with Parkinson's disease and daily FOG were recruited. During 1 h study sessions, participants undertook 4 complex walking circuits, each with a different intervention: continuous rhythmic vibration cueing (CC), responsive cueing (RC; cues initiated by the research team in response to FOG), device worn with no cueing (NC), or no device (ND). Study sessions were grouped into 3 stages/blocks (A-C), separated by a gap of several weeks, enabling improvements to circuit design and the cueing device to be implemented. Video and onboard inertial measurement unit (IMU) data were analyzed for FOG events and gait metrics. RC significantly improved circuit completion times demonstrating improved overall performance across a range of walking activities. Step frequency was significantly enhanced by RC during stages B and C. During stage C, > 10 FOG events were recorded in 45% of participants without cueing (NC), which was significantly reduced by RC. A machine learning framework achieved 83% sensitivity and 80% specificity for FOG detection using IMU data. Together, these data support the feasibility of closed-loop cueing approaches coupling real-time FOG detection with responsive somatosensory lower-leg cueing to improve gait in PD.


Subject(s)
Gait Disorders, Neurologic , Parkinson Disease , Wearable Electronic Devices , Humans , Cues , Parkinson Disease/diagnosis , Walking , Gait/physiology
17.
J Neurol Neurosurg Psychiatry ; 93(6): 617-624, 2022 06.
Article in English | MEDLINE | ID: mdl-35387867

ABSTRACT

BACKGROUND: An unmet need remains for sensitive outcome measures in neuroprotective trials. The study aims to determine whether a composite clinical motor score, combining the Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III motor examination score, Purdue Pegboard Test, and Timed Up and Go, provides greater sensitivity in detecting motor change in early disease than the MDS-UPDRS III alone. METHODS: The Oxford Discovery longitudinal cohort study involves individuals with isolated rapid eye movement sleep behaviour disorder (iRBD) (n=272, confirmed polysomnographically, median follow-up: 1.6 years), idiopathic Parkinson's disease (PD) (n=909, median follow-up: 3.5 years, baseline: <3.5 years disease duration) and controls (n=316, age-matched and sex-matched, without a first-degree family history of PD). Motor and non-motor assessments were performed at each in-person visit. RESULTS: Compared with the MDS-UPDRS III, the composite clinical motor score demonstrated a wider score distribution in iRBD and controls, lower coefficient of variation (37% vs 67%), and higher correlation coefficients with self-reported measures of motor severity (0.65 vs 0.61) and overall health status (-0.40 vs -0.33). Greater score range in mild to moderate PD, higher magnitude of longitudinal change in iRBD and longitudinal score linearity suggest better sensitivity in detecting subtle motor change. The composite clinical motor score was more accurate than the MDS-UPDRS III in predicting clinical outcomes, requiring 64% fewer participants with PD and 51% fewer participants with iRBD in sample size estimations for a hypothetical 18-month placebo-controlled clinical trial. CONCLUSION: The composite clinical motor score may offer greater consistency and sensitivity in detecting change than the MDS-UPDRS III.


Subject(s)
Parkinson Disease , REM Sleep Behavior Disorder , Humans , Longitudinal Studies , Mental Status and Dementia Tests , Outcome Assessment, Health Care , Parkinson Disease/diagnosis , Severity of Illness Index
18.
Article in English | MEDLINE | ID: mdl-35732412

ABSTRACT

OBJECTIVES: To explore the genetics of four Parkinson's disease (PD) subtypes that have been previously described in two large cohorts of patients with recently diagnosed PD. These subtypes came from a data-driven cluster analysis of phenotypic variables. METHODS: We looked at the frequency of genetic mutations in glucocerebrosidase (GBA) and leucine-rich repeat kinase 2 against our subtypes. Then we calculated Genetic Risk Scores (GRS) for PD, multiple system atrophy, progressive supranuclear palsy, Lewy body dementia, and Alzheimer's disease. These GRSs were regressed against the probability of belonging to a subtype in the two independent cohorts and we calculated q-values as an adjustment for multiple testing across four subtypes. We also carried out a Genome-Wide Association Study (GWAS) of belonging to a subtype. RESULTS: A severe disease subtype had the highest rates of patients carrying GBA mutations while the mild disease subtype had the lowest rates (p=0.009). Using the GRS, we found a severe disease subtype had a reduced genetic risk of PD (p=0.004 and q=0.015). In our GWAS no individual variants met genome wide significance (<5×10e-8) although four variants require further follow-up, meeting a threshold of <1×10e-6. CONCLUSIONS: We have found that four previously defined PD subtypes have different genetic determinants which will help to inform future studies looking at underlying disease mechanisms and pathogenesis in these different subtypes of disease.

19.
Brain ; 144(1): 278-287, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33348363

ABSTRACT

This is an international multicentre study aimed at evaluating the combined value of dopaminergic neuroimaging and clinical features in predicting future phenoconversion of idiopathic REM sleep behaviour (iRBD) subjects to overt synucleinopathy. Nine centres sent 123I-FP-CIT-SPECT data of 344 iRBD patients and 256 controls for centralized analysis. 123I-FP-CIT-SPECT images were semiquantified using DaTQUANTTM, obtaining putamen and caudate specific to non-displaceable binding ratios (SBRs). The following clinical variables were also analysed: (i) Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale, motor section score; (ii) Mini-Mental State Examination score; (iii) constipation; and (iv) hyposmia. Kaplan-Meier survival analysis was performed to estimate conversion risk. Hazard ratios for each variable were calculated with Cox regression. A generalized logistic regression model was applied to identify the best combination of risk factors. Bayesian classifier was used to identify the baseline features predicting phenoconversion to parkinsonism or dementia. After quality check of the data, 263 iRBD patients (67.6 ± 7.3 years, 229 males) and 243 control subjects (67.2 ± 10.1 years, 110 males) were analysed. Fifty-two (20%) patients developed a synucleinopathy after average follow-up of 2 years. The best combination of risk factors was putamen dopaminergic dysfunction of the most affected hemisphere on imaging, defined as the lower value between either putamina (P < 0.000001), constipation, (P < 0.000001) and age over 70 years (P = 0.0002). Combined features obtained from the generalized logistic regression achieved a hazard ratio of 5.71 (95% confidence interval 2.85-11.43). Bayesian classifier suggested that patients with higher Mini-Mental State Examination score and lower caudate SBR asymmetry were more likely to develop parkinsonism, while patients with the opposite pattern were more likely to develop dementia. This study shows that iRBD patients older than 70 with constipation and reduced nigro-putaminal dopaminergic function are at high risk of short-term phenoconversion to an overt synucleinopathy, providing an effective stratification approach for future neuroprotective trials. Moreover, we provide cut-off values for the significant predictors of phenoconversion to be used in single subjects.


Subject(s)
Caudate Nucleus/diagnostic imaging , Dopamine Plasma Membrane Transport Proteins/metabolism , Putamen/diagnostic imaging , REM Sleep Behavior Disorder/diagnostic imaging , REM Sleep Behavior Disorder/metabolism , Synucleinopathies/diagnostic imaging , Synucleinopathies/metabolism , Aged , Caudate Nucleus/metabolism , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Putamen/metabolism , ROC Curve , Retrospective Studies , Tomography, Emission-Computed, Single-Photon , Tropanes
20.
Neurol Sci ; 43(2): 1047-1054, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34109514

ABSTRACT

OBJECTIVE: Cognitive-driven activity of daily living (ADL) impairment in Parkinson's disease (PD) is increasingly discussed as prodromal marker for dementia. Diagnostic properties of assessments for this specific ADL impairment are sparsely investigated in PD. The ability of the Functional Activities Questionnaire (FAQ) for differentiating between PD patients with normal cognition and with mild cognitive impairment (PD-MCI), according to informant and self-reports, was examined. Global cognitive function in groups with and without mild ADL impairment was compared according to different cut-offs. METHODS: Multicenter data of 589 patients of an international cohort (CENTRE-PD) were analyzed. Analyses were run separately for informant-rated and self-rated FAQ. Receiver operating characteristic (ROC) analysis was conducted to define the optimal FAQ cut-off for PD-MCI (≥ 1), and groups were additionally split according to reported FAQ cut-offs for PD-MCI in the literature (≥ 3, ≥ 5). Binary logistic regressions examined the effect of the Montreal Cognitive Assessment (MoCA) score in PD patients with and without mild ADL impairment. RESULTS: Two hundred and twenty-five (38.2%) patients were classified as PD-MCI. For all three cut-off values, sensitivity was moderate to low (< 0.55), but specificity was moderately high (> 0.54) with a tendency of higher values for self-reported deficits. For the self-report, the cut-off ≥ 3 showed a significant effect of the MoCA (B = - 0.31, p = 0.003), where FAQ ≥ 3 patients had worse cognition. No effect for group differences based on informant ratings was detected. CONCLUSION: Our data argue that self-reported ADL impairments assessed by the FAQ show a relation to the severity of cognitive impairment in PD.


Subject(s)
Cognitive Dysfunction , Parkinson Disease , Activities of Daily Living , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Humans , Mental Status and Dementia Tests , Neuropsychological Tests , Parkinson Disease/complications , Parkinson Disease/diagnosis , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL