Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
BMC Genomics ; 25(1): 621, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898417

ABSTRACT

BACKGROUND: Whole plant senescence represents the final stage in the life cycle of annual plants, characterized by the decomposition of aging organs and transfer of nutrients to seeds, thereby ensuring the survival of next generation. However, the transcriptomic profile of vegetative organs during this death process remains to be fully elucidated, especially regarding the distinctions between natural programmed death and artificial sudden death induced by herbicide. RESULTS: Differential genes expression analysis using RNA-seq in leaves and roots of Arabidopsis thaliana revealed that natural senescence commenced in leaves at 45-52 days after planting, followed by roots initiated at 52-60 days. Additionally, both organs exhibited similarities with artificially induced senescence by glyphosate. Transcription factors Rap2.6L and WKRY75 appeared to serve as central mediators of regulatory changes during natural senescence, as indicated by co-expression networks. Furthermore, the upregulation of RRTF1, exclusively observed during natural death, suggested its role as a regulator of jasmonic acid and reactive oxygen species (ROS) responses, potentially triggering nitrogen recycling in leaves, such as the glutamate dehydrogenase (GDH) shunt. Root senescence was characterized by the activation of AMT2;1 and GLN1;3, facilitating ammonium availability for root-to-shoot translocation, likely under the regulation of PDF2.1. CONCLUSIONS: Our study offers valuable insights into the transcriptomic interplay between phytohormones and ROS during whole plant senescence. We observed distinct regulatory networks governing nitrogen utilization in leaf and root senescence processes. Furthermore, the efficient allocation of energy from vegetative organs to seeds emerges as a critical determinant of population sustainability of annual Arabidopsis.


Subject(s)
Arabidopsis , Gene Expression Profiling , Gene Expression Regulation, Plant , Herbicides , Plant Senescence , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/drug effects , Arabidopsis/metabolism , Herbicides/pharmacology , Herbicides/toxicity , Gene Expression Regulation, Plant/drug effects , Plant Senescence/genetics , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/genetics , Transcriptome , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Reactive Oxygen Species/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Neurobiol Dis ; 191: 106402, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184015

ABSTRACT

Social dominance is a universal phenomenon among grouped animals that profoundly affects survival, health, and reproductive success by determining access to resources, and exerting a powerful influence on subsequent behavior. However, the understanding of pain and anxiety comorbidities in dominant or subordinate animals suffering from chronic pain is not well-defined. Here, we provide evidence that subordinate mice are more susceptible to pain-induced anxiety compared to dominant mice. We propose that the gut microbiota may play a mediating role in this mechanism. Our findings demonstrate that transplantation of fecal microbiota from subordinate mice with chronic inflammatory pain, but not dominant mice, into antibiotics-treated pseudo-germ-free mice significantly amplifies anxiety-like phenotypes, highlighting the critical involvement of gut microbiota in this behavioral response. Using chronic inflammatory pain model, we carried out 16S rRNA sequencing and untargeted metabolomic analyses to explore the relationship between microbiota and metabolites in a stable social hierarchy of mice. Interestingly, anxiety-like behaviors were directly associated with some microbial genera and metabolites, especially bile acid metabolism. Overall, we have demonstrated a close relationship between social status and anxiety susceptibility, highlighting the contributions of gut microbiota and the associated metabolites in the high-anxiety state of subordinate mice with chronic inflammatory pain.


Subject(s)
Chronic Pain , Gastrointestinal Microbiome , Mice , Animals , Gastrointestinal Microbiome/genetics , Depression , RNA, Ribosomal, 16S , Hierarchy, Social , Anxiety
3.
Brain Behav Immun ; 115: 64-79, 2024 01.
Article in English | MEDLINE | ID: mdl-37793489

ABSTRACT

CD38 is involved in immune responses, cell proliferation, and has been identified in the brain, where it is implicated in inflammation processes and psychiatric disorders. We hypothesized that dysfunctional CD38 activity in the brain may contribute to the pathogenesis of depression. To investigate the underlying mechanisms, we used a lipopolysaccharide (LPS)-induced depression-like model and conducted behavioral tests, molecular and morphological methods, along with optogenetic techniques. We microinjected adeno-associated virus into the hippocampal CA3 region with stereotaxic instrumentation. Our results showed a marked increase in CD38 expression in both the hippocampus and cortex of LPS-treated mice. Additionally, pharmacological inhibition and genetic knockout of CD38 effectively alleviated neuroinflammation, microglia activation, synaptic defects, and Sirt1/STAT3 signaling, subsequently improving depression-like behaviors. Moreover, optogenetic activation of glutamatergic neurons of hippocampal CA3 reduced the susceptibility of mice to depression-like behaviors, accompanied by reduced CD38 expression. We also found that (R)-ketamine, which displayed antidepressant effects, was linked to its anti-inflammatory properties by suppressing increased CD38 expression and reversing synaptic defects. In conclusion, hippocampal CD38 is closely linked to depression-like behaviors in an inflammation model, highlighting its potential as a therapeutic target for antidepressant development.


Subject(s)
ADP-ribosyl Cyclase 1 , Depression , Ketamine , Animals , Mice , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/metabolism , Depression/metabolism , Hippocampus/metabolism , Inflammation/metabolism , Ketamine/pharmacology , Ketamine/therapeutic use , Ketamine/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , ADP-ribosyl Cyclase 1/metabolism
4.
Mol Psychiatry ; 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37848708

ABSTRACT

Ketamine exhibits rapid and sustained antidepressant effects. As decreased myelination has been linked to depression pathology, changes in myelination may be a pivotal mechanism underlying ketamine's long-lasting antidepressant effects. Although ketamine has a long-lasting facilitating effect on myelination, the precise roles of myelination in ketamine's sustained antidepressant effects remain unknown. In this study, we employed spatial transcriptomics (ST) to examine ketamine's lasting effects in the medial prefrontal cortex (mPFC) and hippocampus of mice subjected to chronic social defeat stress and identified several differentially expressed myelin-related genes. Ketamine's ability to restore impaired myelination in the brain by promoting the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes was demonstrated. Moreover, we showed that inhibiting the expression of myelin-associated oligodendrocytic basic protein (Mobp) blocked ketamine's long-lasting antidepressant effects. We also illustrated that α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) signaling mediated ketamine's facilitation on myelination. In addition, we found that the (R)-stereoisomer of ketamine showed stronger effects on myelination than (S)-ketamine, which may explain its longer-lasting antidepressant effects. These findings reveal novel mechanisms underlying the sustained antidepressant effects of ketamine and the differences in antidepressant effects between (R)-ketamine and (S)-ketamine, providing new insights into the role of myelination in antidepressant mechanisms.

5.
Mol Psychiatry ; 28(3): 1090-1100, 2023 03.
Article in English | MEDLINE | ID: mdl-36642737

ABSTRACT

Pain and anxiety comorbidities are a common health problem, but the neural mechanisms underlying comorbidity remain unclear. We propose that comorbidity implies that similar brain regions and neural circuits, with the lateral septum (LS) as a major candidate, process pain and anxiety. From results of behavioral and neurophysiological experiments combined with selective LS manipulation in mice, we find that LS GABAergic neurons were critical for both pain and anxiety. Selective activation of LS GABAergic neurons induced hyperalgesia and anxiety-like behaviors. In contrast, selective inhibition of LS GABAergic neurons reduced nocifensive withdrawal responses and anxiety-like behaviors. This was found in two mouse models, one for chronic inflammatory pain (induced by complete Freund's adjuvant) and one for anxiety (induced by chronic restraint stress). Additionally, using TetTag chemogenetics to functionally mark LS neurons, we found that activation of LS neurons by acute pain stimulation could induce anxiety-like behaviors and vice versa. Furthermore, we show that LS GABAergic projection to the lateral hypothalamus (LH) plays an important role in the regulation of pain and anxiety comorbidities. Our study revealed that LS GABAergic neurons, and especially the LSGABAergic-LH circuit, are a critical to the modulation of pain and anxiety comorbidities.


Subject(s)
Chronic Pain , Hypothalamic Area, Lateral , Mice , Animals , Hypothalamic Area, Lateral/physiology , Anxiety , Comorbidity , GABAergic Neurons/physiology
6.
J Transl Med ; 21(1): 71, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36732752

ABSTRACT

BACKGROUND: Patients suffering from chronic pain often also exhibit depression symptoms. Soluble epoxide hydrolase (sEH) inhibitors can decrease blood levels of inflammatory cytokines. However, whether inhibiting sEH signaling is beneficial for the comorbidity of pain and depression is unknown. METHODS: According to a sucrose preference test (SPT), spared nerve injury (SNI) mice were classified into pain with or without an anhedonia phenotype. Then, sEH protein expression and inflammatory cytokines were assessed in selected tissues. Furthermore, we used sEH inhibitor TPPU to determine the role of sEH in chronic pain and depression. Importantly, agonists and antagonists of aryl hydrocarbon receptor (AHR) and translocator protein (TSPO) were used to explore the pathogenesis of sEH signaling. RESULTS: In anhedonia-susceptible mice, the tissue levels of sEH were significantly increased in the medial prefrontal cortex (mPFC), hippocampus, spinal cord, liver, kidney, and gut. Importantly, serum CYP1A1 and inflammatory cytokines, such as interleukin 1ß (IL-1ß) and the tumor necrosis factor α (TNF-α), were increased simultaneously. TPPU improved the scores of mechanical withdrawal threshold (MWT) and SPT, and decreased the levels of serum CYP1A1 and inflammatory cytokines. AHR antagonist relieved the anhedonia behaviors but not the algesia behaviors in anhedonia-susceptible mice, whereas an AHR agonist abolished the antidepressant-like effect of TPPU. In addition, a TSPO agonist exerted a similar therapeutic effect to that of TPPU, whereas pretreatment with a TSPO antagonist abolished the antidepressant-like and analgesic effects of TPPU. CONCLUSIONS: sEH underlies the mechanisms of the comorbidity of chronic pain and depression and that TPPU exerts a beneficial effect on anhedonia behaviors in a pain model via AHR and TSPO signaling.


Subject(s)
Chronic Pain , Depression , Animals , Mice , Anhedonia , Antidepressive Agents , Chronic Pain/complications , Chronic Pain/drug therapy , Comorbidity , Cytochrome P-450 CYP1A1 , Cytokines/metabolism , Depression/complications , Depression/drug therapy , Epoxide Hydrolases/genetics , Epoxide Hydrolases/metabolism , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Receptors, Aryl Hydrocarbon , Receptors, Cytoplasmic and Nuclear
7.
FASEB J ; 36(9): e22515, 2022 09.
Article in English | MEDLINE | ID: mdl-35997299

ABSTRACT

It has been shown that PP2A is critical for apoptosis in neural progenitor cells. However, it remains unknown whether PP2A is required for neuronal survival. To address this question, we generated forebrain-specific Ppp2cα knockout (KO) mice. We show that Ppp2cα KO mice display robust neuronal apoptosis and inflammatory responses in the postnatal cortex. Previous evidence has revealed that PD98059 is a potent ERK inhibitor and may protect the brain against cell death after cardiac arrest. To study whether PD98059 may have any effects on Ppp2cα KO mice, the latter was treated with this inhibitor. We demonstrated that the total number of cleaved caspase3 positive (+) cells in the cortex was significantly reduced in Ppp2cα KO mice treated with PD98059 compared with those without PD98059 treatment. We observed that the total number of IBA1+ cells in the cortex was significantly decreased in Ppp2cα KO mice treated with PD98059. Mechanistic analysis reveals that deletion of PP2Aca causes DNA damage, which may be attenuated by PD98059. Together, this study suggests that inhibition of ERK may be an effective strategy to reduce cell death in brain diseases with abnormal neuronal apoptosis.


Subject(s)
Neurons , Prosencephalon , Animals , Apoptosis , Cell Death , Mice , Mice, Knockout , Neurons/metabolism
8.
Microb Ecol ; 85(1): 197-208, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35034142

ABSTRACT

The 2,3,7,8-tetrachlorodibenzodioxin (TCDD), a contaminant in Agent Orange released during the US-Vietnam War, led to a severe environmental crisis. Approximately, 50 years have passed since the end of this war, and vegetation has gradually recovered from the pollution. Soil bacterial communities were investigated by 16S metagenomics in habitats with different vegetation physiognomies in Central Vietnam, namely, forests (S0), barren land (S1), grassland (S2), and developing woods (S3). Vegetation complexity was negatively associated with TCDD concentrations, revealing the reasoning behind the utilization of vegetation physiognomy as an indicator for ecological succession along the gradient of pollutants. Stark changes in bacterial composition were detected between S0 and S1, with an increase in Firmicutes and a decrease in Acidobacteria and Bacteroidetes. Notably, dioxin digesters Arthrobacter, Rhodococcus, Comamonadaceae, and Bacialles were detected in highly contaminated soil (S1). Along the TCDD gradients, following the dioxin decay from S1 to S2, the abundance of Firmicutes and Actinobacteria decreased, while that of Acidobacteria increased; slight changes occurred at the phylum level from S2 to S3. Although metagenomics analyses disclosed a trend toward bacterial communities before contamination with vegetation recovery, non-metric multidimensional scaling analysis unveiled a new trajectory deviating from the native state. Recovery of the bacterial community may have been hindered, as indicated by lower bacterial diversity in S3 compared to S0 due to a significant loss of bacterial taxa and recruitment of fewer colonizers. The results indicate that dioxins significantly altered the soil microbiomes into a state of disorder with a deviating trajectory in restoration.


Subject(s)
Dioxins , Microbiota , Polychlorinated Dibenzodioxins , Agent Orange , Soil , Polychlorinated Dibenzodioxins/analysis , Bacteria/genetics , Acidobacteria/genetics , Firmicutes , Soil Microbiology , RNA, Ribosomal, 16S/genetics
9.
PLoS Genet ; 16(6): e1008831, 2020 06.
Article in English | MEDLINE | ID: mdl-32555673

ABSTRACT

Conspecific male animals fight for resources such as food and mating opportunities but typically stop fighting after assessing their relative fighting abilities to avoid serious injuries. Physiologically, how the fighting behavior is controlled remains unknown. Using the fighting fish Betta splendens, we studied behavioral and brain-transcriptomic changes during the fight between the two opponents. At the behavioral level, surface-breathing, and biting/striking occurred only during intervals between mouth-locking. Eventually, the behaviors of the two opponents became synchronized, with each pair showing a unique behavioral pattern. At the physiological level, we examined the expression patterns of 23,306 brain transcripts using RNA-sequencing data from brains of fighting pairs after a 20-min (D20) and a 60-min (D60) fight. The two opponents in each D60 fighting pair showed a strong gene expression correlation, whereas those in D20 fighting pairs showed a weak correlation. Moreover, each fighting pair in the D60 group showed pair-specific gene expression patterns in a grade of membership analysis (GoM) and were grouped as a pair in the heatmap clustering. The observed pair-specific individualization in brain-transcriptomic synchronization (PIBS) suggested that this synchronization provides a physiological basis for the behavioral synchronization. An analysis using the synchronized genes in fighting pairs of the D60 group found genes enriched for ion transport, synaptic function, and learning and memory. Brain-transcriptomic synchronization could be a general phenomenon and may provide a new cornerstone with which to investigate coordinating and sustaining social interactions between two interacting partners of vertebrates.


Subject(s)
Behavior, Animal/physiology , Brain/physiology , Fishes/physiology , Gene Expression Regulation/physiology , Transcriptome/physiology , Aggression , Animals , Behavior Observation Techniques , Cooperative Behavior , Interpersonal Relations , Ion Transport/physiology , Learning/physiology , Male , Memory/physiology , RNA-Seq , Video Recording
10.
J Integr Neurosci ; 22(6): 140, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-38176917

ABSTRACT

BACKGROUND: Perioperative neurocognitive disorder (PND) is a general term for cognitive impairment that negatively affects multiple domains, including memory, concentration, and physical functioning. Numerous articles have been published on PND; however, only a few quantitative analyses covering this disorder have been published. METHODS AND MATERIALS: To clarify PND's developmental history, research foci, and future directions, we conducted a bibliometric analysis using the bibliometric tools VOSviewer and CiteSpace. A total of 4704 publications were obtained from the Web of Science database, including annual publications and trends, keywords, institutions, journals, and collaboration between countries/regions and authors. RESULTS: In addition, we found that neuroinflammation is a hotspot in recent studies. CONCLUSIONS: This bibliometric analysis provides a broad overview of studies in the field of PND.


Subject(s)
Bibliometrics , Cognitive Dysfunction , Neurocognitive Disorders , Humans
11.
Cereb Cortex ; 30(7): 4183-4196, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32186707

ABSTRACT

Telencephalic radial glial progenitors (RGPs) are retained in the ventricular zone (VZ), the niche for neural stem cells during cortical development. However, the underlying mechanism is not well understood. To study whether protein phosphatase 2A (PP2A) may regulate the above process, we generate Ppp2cα conditional knockout (cKO) mice, in which PP2A catalytic subunit α (PP2Acα) is inactivated in neural progenitor cells in the dorsal telencephalon. We show that RGPs are ectopically distributed in cortical areas outside of the VZ in Ppp2cα cKO embryos. Whereas deletion of PP2Acα does not affect the proliferation of RGPs, it significantly impairs the generation of late-born neurons. We find complete loss of apical adherens junctions (AJs) in the ventricular membrane in Ppp2cα cKO cortices. We observe abundant colocalization for N-cadherin and PP2Acα in control AJs. Moreover, in vitro analysis reveals direct interactions of N-cadherin to PP2Acα and to ß-catenin. Overall, this study not only uncovers a novel function of PP2Acα in retaining RGPs into the VZ but also demonstrates the impact of PP2A-dependent retention of RGPs on the generation for late-born neurons.


Subject(s)
Ependymoglial Cells/cytology , Neocortex/embryology , Neural Stem Cells/cytology , Protein Phosphatase 2/genetics , Adherens Junctions/metabolism , Animals , Cadherins/metabolism , Cell Movement , Cell Proliferation/genetics , Ependymoglial Cells/metabolism , Mice , Mice, Knockout , Neural Stem Cells/metabolism , Protein Phosphatase 2/metabolism , Telencephalon/cytology
12.
J Neurosci ; 39(12): 2195-2207, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30692224

ABSTRACT

The transition of apical progenitors (APs) to basal progenitors (BPs) is an important neurogenic process during cortical expansion. Presenilin enhancer 2 (Pen-2, also named as Psenen) is a key subunit of γ-secretase and has been implicated in neurodevelopmental disease. However, it remains unknown how Pen-2 may regulate the maintenance of APs. To address this question, we generated a conditional KO (cKO) mouse in which Pen-2 is specifically inactivated in neural progenitor cells in the telencephalon. Both male and female embryos were used. We show that Pen-2 cKO cortices display remarkable depletion of Aps, but transient increase on BPs, compared with controls. We demonstrate that the proliferation rate of APs or BPs is not changed, but the switch of APs to BPs is dramatically accelerated in Pen-2 cKO cortices. Molecular analyses reveal decreased levels of Hes1 and Hes5 but increased levels of Ngn2 and NeuroD1 in Pen-2 KO cells. We report that expression of Notch1 intracellular domain in Pen-2 cKO cortices restores the population of APs and BPs. In summary, these findings highlight a central role of the Notch signaling in Pen-2-dependent maintenance of neural stem cells in the developing neocortex.SIGNIFICANCE STATEMENT Presenilin enhancer 2 (Pen-2) has been implicated in neurodevelopmental disease. However, mechanisms by which Pen-2 regulates cortical development are not understood. In this study, we generated neural progenitor cell-specific Pen-2 conditional KO mice. We observe depletion of apical progenitors and transiently increased the number of basal progenitors in the developing neocortex of Pen-2 mutant mice. Mechanistic analyses reveal decreased levels of Hes1 and Hes5, but increased levels of neurogenic transcription factors in Pen-2 mutant cortices, compared with controls. We demonstrate that reintroduction of Notch intracellular domain into mutant mice restores the population of apical progenitors to basal progenitors. The above findings strongly suggest that the Pen-2-Notch pathway plays an essential role in the maintenance of neural stem cells during cortical development.


Subject(s)
Amyloid Precursor Protein Secretases/physiology , Neocortex/embryology , Neural Stem Cells/physiology , Neurogenesis/physiology , Amyloid Precursor Protein Secretases/genetics , Animals , Cell Proliferation , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Receptor, Notch1/physiology
13.
Microb Ecol ; 80(1): 133-144, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31832698

ABSTRACT

Miscanthus in Taiwan occupies a cline along altitude and adapts to diverse environments, e.g., habitats of high salinity and volcanoes. Rhizospheric and endophytic bacteria may help Miscanthus acclimate to those stresses. The relative contributions of rhizosphere vs. endosphere compartments to the adaptation remain unknown. Here, we used targeted metagenomics to compare the microbial communities in the rhizosphere and endosphere among ecotypes of M. sinensis that dwell habitats under different stresses. Proteobacteria and Actinobacteria predominated in the endosphere. Diverse phyla constituted the rhizosphere microbiome, including a core microbiome found consistently across habitats. In endosphere, the predominance of the bacteria colonizing from the surrounding soil suggests that soil recruitment must have subsequently determined the endophytic microbiome in Miscanthus roots. In endosphere, the bacterial diversity decreased with the altitude, likely corresponding to rising limitation to microorganisms according to the species-energy theory. Specific endophytes were associated with different environmental stresses, e.g., Pseudomonas spp. for alpine and Agrobacterium spp. for coastal habitats. This suggests Miscanthus actively recruits an endosphere microbiome from the rhizosphere it influences.


Subject(s)
Bacteria/isolation & purification , Ecotype , Endophytes , Microbiota , Poaceae/microbiology , Rhizosphere , Bacteria/classification , Biofuels , Ecosystem , Metagenomics
14.
BMC Genomics ; 20(1): 478, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31185914

ABSTRACT

BACKGROUND: Salt pond restoration aims to recover the environmental damages that accumulated over the long history of salt production. Of the restoration strategies, phytoremediation that utilizes salt-tolerant plants and soil microorganisms to reduce the salt concentrations is believed to be environmentally-friendly. However, little is known about the change of bacterial community during salt pond restoration in the context of phytoremediation. In the present study, we used 16S metagenomics to compare seasonal changes of bacterial communities between the revegetated and barren salterns at Sicao, Taiwan. RESULTS: In both saltern types, Proteobacteria, Planctomycetes, Chloroflexi, and Bacteroidetes were predominant at the phylum level. In the revegetated salterns, the soil microbiomes displayed high species diversities and underwent a stepwise transition across seasons. In the barren salterns, the soil microbiomes fluctuated greatly, indicating that mangroves tended to stabilize the soil microorganism communities over the succession. Bacteria in the order Halanaerobiaceae and archaea in the family Halobacteriaceae that were adapted to high salinity exclusively occurred in the barren salterns. Among the 441 persistent operational taxonomic units detected in the revegetated salterns, 387 (87.5%) were present as transient species in the barren salterns. Only 32 persistent bacteria were exclusively detected in the revegetated salterns. Possibly, salt-tolerant plants provided shelters for those new colonizers. CONCLUSIONS: The collective data indicate that revegetation tended to stabilize the microbiome across seasons and enriched the microbial diversity in the salterns, especially species of Planctomycetes and Acidobacteria.


Subject(s)
Microbiota , Plant Development , Ponds/chemistry , Ponds/microbiology , Salts , Seasons , Soil Microbiology , Ecosystem , Environmental Restoration and Remediation , Metabolic Networks and Pathways
15.
Plant Cell Physiol ; 58(3): 546-559, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28115496

ABSTRACT

To identify the similarities among responses to diverse environmental stresses, we analyzed the transcriptome response of rice roots to three rhizotoxic perturbations (chromium, ferulic acid and mercury) and identified common early-transient, early-constant and delayed gene inductions. Common early response genes were mostly associated with signal transduction and hormones, and delayed response genes with lipid metabolism. Network component analysis revealed complicated interactions among common genes, the most highly connected signaling hubs being PP2C68, MPK5, LRR-RLK and NPR1. Gene architecture studies revealed different conserved promoter motifs and a different ratio of CpG island distribution between early and delayed genes. In addition, early-transient genes had more exons and a shorter first exon. IMEter was used to calculate the transcription regulation effects of introns, with greater effects for the first introns of early-transient than delayed genes. The higher Ka/Ks (non-synonymous/synonymous mutation) ratio of early-constant genes than early-transient, delayed and the genome median demonstrates the rapid evolution of early-constant genes. Our results suggest that finely tuned transcriptional control in response to environmental stress in rice depends on genomic architecture and signal intensity and duration.


Subject(s)
Gene Expression Profiling/methods , Chromium/toxicity , Coumaric Acids/toxicity , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Mercury/toxicity , Oryza/drug effects , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological
16.
Plant J ; 80(5): 834-47, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25237766

ABSTRACT

Young incipient species provide ideal materials for untangling the process of ecological speciation in the presence of gene flow. The Miscanthus floridulus/sinensis complex exhibits diverse phenotypic and ecological differences despite recent divergence (approximately 1.59 million years ago). To elucidate the process of genetic differentiation during early stages of ecological speciation, we analyzed genomic divergence in the Miscanthus complex using 72 randomly selected genes from a newly assembled transcriptome. In this study, rampant gene flow was detected between species, estimated as M = 3.36 × 10(-9) to 1.20 × 10(-6) , resulting in contradicting phylogenies across loci. Nevertheless, beast analyses revealed the species identity and the effects of extrinsic cohesive forces that counteracted the non-stop introgression. As expected, early in speciation with gene flow, only 3-13 loci were highly diverged; two to five outliers (approximately 2.78-6.94% of the genome) were characterized by strong linkage disequilibrium, and asymmetrically distributed among ecotypes, indicating footprints of diversifying selection. In conclusion, ecological speciation of incipient species of Miscanthus probably followed the parapatric model, whereas allopatric speciation cannot be completely ruled out, especially between the geographically isolated northern and southern M. sinensis, for which no significant gene flow across oceanic barriers was detected. Divergence between local ecotypes in early-stage speciation began at a few genomic regions under the influence of natural selection and divergence hitchhiking that overcame gene flow.


Subject(s)
Gene Flow , Phylogeny , Poaceae/genetics , China , Ecotype , Genetic Speciation , Genetic Variation , Genetics, Population , Linkage Disequilibrium , Models, Genetic , Taiwan
17.
BMC Genomics ; 16: 188, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25879893

ABSTRACT

BACKGROUND: Comparative genomics provides insights into the diversification of bacterial species. Bacterial speciation usually takes place with lasting homologous recombination, which not only acts as a cohering force between diverging lineages but brings advantageous alleles favored by natural selection, and results in ecologically distinct species, e.g., frequent host shift in Xanthomonas pathogenic to various plants. RESULTS: Using whole-genome sequences, we examined the genetic divergence in Xanthomonas campestris that infected Brassicaceae, and X. citri, pathogenic to a wider host range. Genetic differentiation between two incipient races of X. citri pv. mangiferaeindicae was attributable to a DNA fragment introduced by phages. In contrast to most portions of the genome that had nearly equivalent levels of genetic divergence between subspecies as a result of the accumulation of point mutations, 10% of the core genome involving with homologous recombination contributed to the diversification in Xanthomonas, as revealed by the correlation between homologous recombination and genomic divergence. Interestingly, 179 genes were under positive selection; 98 (54.7%) of these genes were involved in homologous recombination, indicating that foreign genetic fragments may have caused the adaptive diversification, especially in lineages with nutritional transitions. Homologous recombination may have provided genetic materials for the natural selection, and host shifts likely triggered ecological adaptation in Xanthomonas. To a certain extent, we observed positive selection nevertheless contributed to ecological divergence beyond host shifting. CONCLUSION: Altogether, mediated with lasting gene flow, species formation in Xanthomonas was likely governed by natural selection that played a key role in helping the deviating populations to explore novel niches (hosts) or respond to environmental cues, subsequently triggering species diversification.


Subject(s)
Adaptation, Physiological/genetics , Genome, Bacterial , Genomics , Homologous Recombination/genetics , Xanthomonas/genetics , Bacterial Proteins/genetics , Ecological and Environmental Phenomena , Genetic Variation , High-Throughput Nucleotide Sequencing , Phylogeny , Sequence Analysis, DNA , Xanthomonas/classification
18.
Neuropharmacology ; 261: 110168, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39332670

ABSTRACT

Placebo analgesia is observed in both humans and animals. Given the complexity of placebo analgesia involving a variety of neurobiological, psychological, and psychosocial processes, further investigation into its underlying mechanisms is essential. Gut microbiota has been implicated in the responsivity of placebo analgesia, but its precise role remains unknown and warrants further investigations. Here, we conducted a conditioning training model with chronic inflammatory pain induced by complete Freund's adjuvant (CFA) in mice, associating parecoxib with different cues. Hierarchical clustering analysis of placebo analgesia behaviors was employed to classify mice into responders and non-responders phenotypes. Approximately 40% of CFA mice undergoing conditioning training exhibited placebo analgesia. Notably, placebo analgesia responders displayed reduced anxiety-like behaviors. 16S rRNA results revealed a distinct composition of gut microbiota composition among the control, placebo analgesia non-responders and responders groups. Notably, levels of Escherichia Shigella and Klebsiella in the gut were increased considerably in the placebo analgesia responders as compared to both control and non-responders groups. In conclusion, placebo analgesia responders demonstrated marked analgesia, reduced anxiety-like behaviors, and increased levels of Escherichia-Shigella and Klebsiella, implying a potential linkage between gut microbiota and placebo analgesia.

19.
Plant J ; 70(5): 769-82, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22268451

ABSTRACT

Asian rice, Oryza sativa, consists of two major subspecies, indica and japonica, which are physiologically differentiated and adapted to different latitudes. Genes for photoperiod sensitivity are likely targets of selection along latitude. We examined the footprints of natural and artificial selections for four major genes of the photoperiod pathway, namely PHYTOCHROME B (PhyB), HEADING DATE 1 (Hd1), HEADING DATE 3a (Hd3a), and EARLY HEADING DATE 1 (Ehd1), by investigation of the patterns of nucleotide polymorphisms in cultivated and wild rice. Geographical subdivision between tropical and subtropical O. rufipogon was found for all of the photoperiod genes in plants divided by the Tropic of Cancer (TOC). All of these genes, except for PhyB, were characterized by the existence of clades that split a long time ago and that corresponded to latitudinal subdivisions, and revealed a likely diversifying selection. Ssp. indica showed close affinity to tropical O. rufipogon for all genes, while ssp. japonica, which has a much wider range of distribution, displayed complex patterns of differentiation from O. rufipogon, which reflected various agricultural needs in relation to crop yield. In japonica, all genes, except Hd3a, were genetically differentiated at the TOC, while geographical subdivision occurred at 31°N in Hd3a, probably the result of varying photoperiods. Many other features of the photoperiod genes revealed domestication signatures, which included high linkage disequilibrium (LD) within genes, the occurrence of frequent and recurrent non-functional Hd1 mutants in cultivated rice, crossovers between subtropical and tropical alleles of Hd1, and significant LD between Hd1 and Hd3a in japonica and indica.


Subject(s)
Genes, Plant , Oryza/genetics , Photoperiod , Selection, Genetic , Alleles , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Crops, Agricultural/physiology , Crossing Over, Genetic , Gene Expression Regulation, Plant , Genetic Loci , Genetic Variation , Geography , Linkage Disequilibrium , Oryza/metabolism , Oryza/physiology , Phytochrome B/genetics , Phytochrome B/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
20.
Psychopharmacology (Berl) ; 240(1): 87-100, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36441221

ABSTRACT

BACKGROUND: Patients with chronic pain frequently suffer from anxiety symptoms. It has been well established that gut microbiota is associated with the pathogenesis of pain and anxiety. However, it is unknown whether the gut microbiota, particularly the specific bacteria, play a role in the comorbidity of chronic pain and anxiety. METHODS: Chronic inflammatory pain was induced in mice by a single injection of complete Freund's adjuvant (CFA). Mice were then separated into anxiety-susceptible and anxiety-resilient phenotypes by hierarchical clustering analysis of behaviors. Fecal samples were collected to perform 16S rRNA gene sequencing. Chronic diazepam intervention served as a therapeutic strategy and its effect on the composition of gut microbiota was also determined. RESULTS: α-Diversity and ß-diversity both showed significant differences among the groups. A total of 12 gut bacteria were both altered after CFA injection and reversed by chronic diazepam treatment. More importantly, the pain hypersensitivity and anxiety-like behaviors were relieved by chronic diazepam treatment. Interestingly, we also found that Desulfovibrio was increased in anxiety-resilient group compared to control and anxiety-susceptible groups. CONCLUSION: Abnormal composition of gut microbiota plays an essential role in chronic pain as well as in anxiety. Besides, the increased level of Desulfovibrio in anxiety-resilient mice indicated its therapeutic effects on the comorbidity of pain and anxiety. Collectively, targeting gut microbiota, especially increasing the Desulfovibrio level, might be effective in the alleviation of chronic pain-anxiety comorbidity.


Subject(s)
Chronic Pain , Desulfovibrio , Mice , Animals , Chronic Pain/drug therapy , RNA, Ribosomal, 16S , Anxiety/drug therapy , Comorbidity , Diazepam/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL